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Abstract

Background: Machine learning (ML) and deep learning (DL) methods have recently garnered a great deal of attention in the
field of cancer research by making a noticeable contribution to the growth of predictive medicine and modern oncological practices.
Considerable focus has been particularly directed toward hematologic malignancies because of the complexity in detecting early
symptoms. Many patients with blood cancer do not get properly diagnosed until their cancer has reached an advanced stage with
limited treatment prospects. Hence, the state-of-the-art revolves around the latest artificial intelligence (AI) applications in
hematology management.

Objective: This comprehensive review provides an in-depth analysis of the current AI practices in the field of hematology. Our
objective is to explore the ML and DL applications in blood cancer research, with a special focus on the type of hematologic
malignancies and the patient’s cancer stage to determine future research directions in blood cancer.

Methods: We searched a set of recognized databases (Scopus, Springer, and Web of Science) using a selected number of
keywords. We included studies written in English and published between 2015 and 2021. For each study, we identified the ML
and DL techniques used and highlighted the performance of each model.

Results: Using the aforementioned inclusion criteria, the search resulted in 567 papers, of which 144 were selected for review.

Conclusions: The current literature suggests that the application of AI in the field of hematology has generated impressive
results in the screening, diagnosis, and treatment stages. Nevertheless, optimizing the patient’s pathway to treatment requires a
prior prediction of the malignancy based on the patient’s symptoms or blood records, which is an area that has still not been
properly investigated.
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Introduction

Background on Hematologic Malignancies
Blood cancers, namely leukemia and lymphoma, are generally
ranked among the most common and deadliest cancer types [1].
Typically, hematologic malignancies result from abnormal
growth of white blood cells (WBCs) in the human body, which
creates a disproportion among blood elements [2]. The blood
contains red blood cells (RBCs), WBCs, and platelets. The role
of RBCs is to transmit oxygen from the heart to the entire
system, and they constitute the largest proportion of the blood
volume [3]. By contrast, WBCs play a crucial role in protecting
the body from diseases and infection by deploying various
immune mechanisms [4]. Hence, maintaining a healthy WBC
level is imperative for the protection of the human body.
Normally, these blood elements mature and replenish depending
on the body’s needs [5]. However, their growth can become
disordered when certain hematologic malignancies are present
[6]. For instance, because of the considerable increase in the
number of abnormal WBCs, the ability of bone marrow to
generate and support healthy RBCs and platelets in terms of
oxygen and nutrition supply is impaired [2,7]. Moreover, these
malignant WBCs can circulate throughout the body via blood
and cause irreparable damage to other organs such as the liver,
kidney, and brain [8].

Challenges in Hematology Management
Although complete blood count (CBC) tests often serve as the
first step in detecting hematologic malignancies by identifying
abnormal blood cell count or any distortion in cell morphology,
this simple test is generally deemed insufficient for a practitioner
to diagnose blood cancer [5,9]. Therefore, several microscopic
evaluations of the blood smear are performed to reach a final
diagnosis [5]. As all the available methods are manual and
require highly skilled medical personnel for interpretation, a
blood cancer diagnosis can be costly and time consuming, which
negatively impacts the patient’s efficient and timely treatment
[10]. Another challenging aspect in hematology detection is
that WBCs are surrounded by other blood components. Thus,
the current identification method of manually counting the
number of WBCs that appear abnormal does not provide
accurate classification results [11]. In fact, it has been reported
that diagnostic delays mainly occur because of the complexity
of symptom analysis and challenges associated with disease
diagnosis.

Artificial Intelligence in Hematology Management
Motivated by the remarkable achievements of artificial
intelligence (AI) in various fields, the applicability of such
algorithms in solving critical problems related to oncology and
hematology was recently investigated and proven efficient [6].
In particular, machine learning (ML) and deep learning (DL)
methods were used to assist to classify various cancer types,
facilitate faster diagnosis, and provide a basis for accurate
clinical decisions for better health outcomes. The 2 main
challenges in the implementation of AI in medicine are the
limitation and restriction of health information.

This review provides a comprehensive contribution to the
hematology care management field, with the objective of
studying the applications of AI in various blood cancer stages
and detecting the limitations of ML- and DL-based models that
have been previously implemented. This paper attempts to
highlight the existing gaps in the field of hematology
management by studying, classifying, and analyzing 144 papers
published between 2015 and 2021.

The “Methods” section clarifies the methodology used to
perform the search of all reviewed papers. The “Results” section
discusses and classifies existing research based on malignancy
type and stage, respectively. Finally, the “Discussion” section
provides a detailed analysis of AI applications for hematologic
malignancies.

Methods

In this review, peer-reviewed and publicly available journal
papers were identified from a variety of online databases, while
publicly unavailable copies were obtained through our
institutional access to journal publications and databases. The
search for appropriate journal papers was performed using
specific keywords such as AI, ML, blood cancer, hematology,
malignancy, leukemia, management, and cancer, which were
linked and combined using 2 Boolean operators “AND” and
“OR” to produce more focused outcomes (Figure 1).

The paper collection process targeted all the articles written in
English in the last 7 years with the aforementioned keywords
in their abstracts or titles. The search identified 567 papers, of
which only 144 were retained for review. The 423 excluded
papers either focused on oncology without paying special
attention to hematology, addressed hematologic malignancies
from an automated perspective without employing AI models,
or covered purely technical drug treatments for blood cancers.
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Figure 1. Review chart showing paper elimination and categorization process. AI: artificial intelligence; DL: deep learning; ML: machine learning.

Results

Overview
This section presents the paper collection results, as well as an
analysis of the literature and its classification with respect to
the study category, malignancy type, and pathway stage.

From the analysis of the selected papers, Figure 2 lists the top
10 most globally cited documents in the field of AI in
hematology management, with “Intelligent leukemia diagnosis
with Bare-bones PSO based feature optimization” [12] rated as
the most cited article with 72 citations globally.

Figure 2. Citation statistics for the most cited documents.
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Descriptive Analysis
With the emergence of AI and the remarkable results it has
achieved over the last decade in many areas, researchers in the
field have recently started to investigate its applications in blood
cancer management. Figure 3 maps the evolution of thematic
research in the field of hematology. We can clearly see a spike
in the year 2019 in the occurrence of ML and leukemia, followed
by DL, AI, and classification trends in the year 2020, which
indicates the progression and development of ML and DL
themes and their applications in the blood cancer field as well
as the recent focus on AI to drive hematologic research.

Furthermore, keywords are used to outline the content of
different articles. An analysis of the high-frequency keywords
can give an idea about the current research status and potential
future directions in the area of AI in hematology management.

Using the mapping and analysis tools provided in the
Biblioshiny software (K-Synth Srl), a word tree map was
generated to highlight the top 10 most frequently used keywords
by scholars in the field. Figure 4 shows the hierarchical
visualization of author keywords.

The highest frequencies were for ML (29%), leukemia (15%),
classification (12%), and DL (11%), with 32, 17, 13, and 12
occurrences respectively, indicating the recent focus on ML and
DL applications in the detection and classification of leukemia
and its types (acute myeloid leukemia [AML] and acute
lymphoblastic leukemia [ALL]). The tree map also highlights
the different techniques and tools used in this field of research
through keywords such as “segmentation,” “image processing,”
and “flow cytometry,” with an identical frequency of 5% each.

Figure 3. Thematic evolution of hematology management research.
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Figure 4. Statistics for most cited keywords.

Category Selection
In the process of analyzing and classifying the set of collected
articles, the generated documents were categorized based on
the blood malignancy type, pathway stage, and ML/DL
techniques used. The collected papers were either reviews of

the literature, journal papers, or conference proceedings.
Nonetheless, special attention was paid to review papers, as
they provided a clear idea of the research that has been carried
out as well as the gaps that remain to be addressed. Table 1
provides a detailed classification of the collected articles by
category.

Table 1. Classification of journal papers by category.

StudiesNumber of articlesCategories

[5,13-24]13Review papers

[1,4,6,10,11,25-52]33Conference proceedings

[2,3,7-9,12,53-144]98Journal articles

Material Evaluation: Hematologic Malignancy Types
After excluding the reviews, this section classifies the 131
remaining journal papers based on the malignancy type and
pathway stage.

Although leukemia and lymphoma share some common
symptoms, there are major differences in their origins, causes,
and treatments. Leukemia is a slowly developing disease that
can be either chronic or acute [12]. Acute leukemia spreads
quickly, whereas chronic leukemia develops more slowly during
its initial stages and is generally more common [33]. For both
types, leukemia can be myeloid, which affects the myeloid cells
that give rise to WBCs; or lymphoblastic, which starts in cells
that later become lymphocytes. Lymphoma, by contrast, affects
the lymph nodes. In the case of lymphoma, WBCs (B and T

lymphocytes) exhibit abnormal proliferation and based on the
presence or absence of Reed-Sternberg cells, they are classified
as either Hodgkin or non-Hodgkin diseases, respectively. Table
2 classifies the studies based on the type of malignancies that
they address, as either acute myeloid/lymphoblastic leukemia,
chronic myeloid/lymphoblastic leukemia, lymphoma, or other
less common types of hematologic diseases.

Among the aforementioned malignancy types, AML is the most
addressed hematologic disease in the literature with an
occurrence of 32.1% (42/131) in the collected journal papers,
followed by ALL. Apparently, the applicability of AI methods
in managing chronic lymphocytic leukemia (CLL; 13/131, 9.9%)
and chronic myeloid leukemia (CML; 2/131, 1.5%) are the least
explored areas, wherein further research is pivotal.
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Table 2. Distribution of the 131 studies based on malignancy type.

Values, n (%)Malignancy type

42 (32.1)Acute myeloid leukemia

40 (30.5)Acute lymphoblastic leukemia

13 (9.9)Chronic lymphocytic leukemia

2 (1.5)Chronic myeloid leukemia

17 (13.0)Lymphoma

17 (13.0)Other

Pathway Stages of Hematologic Malignancies

Prediction
The absence of symptoms during the early stages of leukemia
makes it challenging for practitioners to predict the occurrence
of cancer [117]. Typically, leukemia detection relies on the use
of blood cell image classification methods [29]. The introduction
of AI-based models is intended to enhance identification
accuracy and provide early prediction of potential spread within
the human body to help increase the chances of patient recovery
and survival.

Screening
No standardized leukemia screening tests have been proven
reliable and efficient enough to identify the presence of blood
cancer in its early stages [83]. The causes of leukemia remain
unknown and a diagnosis cannot be confirmed until the initial
symptoms develop. Thus, there is ongoing research on imaging
techniques, screening methods, and ways to increase the
contribution of AI to provide a better understanding of the root
causes of this condition and thus enable expert hematologists
to identify and diagnose blood malignancies accurately [56].

Diagnosis
For many diseases, diagnosis is the most crucial stage in the
illness pathway [85]. As the field of hematologic research is
expanding in an unprecedented manner, the emergence of AI
provides an opportunity to overcome the challenge of handling

large amounts of imaging data, improve the efficiency and
quality of hematologic pattern identification, and provide a clear
understanding of suitable therapies following a precise diagnosis
[87].

Treatment
AI integration into blood cancer treatment has enabled many
advanced practices to deliver timely and efficient therapy [20].
Several techniques were used to identify the doses and
combinations of drugs required for each patient as functions of
their health status, age, and other essential factors. Table 3
classifies the 131 journal papers based on their corresponding
pathway stage.

While there has been more emphasis in the literature on the
diagnosis stage, which represents 39.7% (52/131) of the total
journal papers collected, treatment and prediction are the least
investigated pathway stages with only 13.7% (18/131) and
20.6% (27/131), respectively. This is mainly due to the difficulty
in identifying crucial biomarkers that can be used as
discriminative feature variables to predict the disease before
the onset of symptoms. Similarly, in the case of treatment, as
detailed in later sections of this paper, most of the AI-based
models [9,42,75] reported in the treatment phase utilize gene
expression profiles for model development, which are relatively
complex. Hence, more research is needed to investigate the
feasibility of easily available biological features for the
prediction of treatment-related disease relapse and patient
survival.

Table 3. Classification of journal publications by pathway stage (N=131).

StudiesValues, n (%)Pathway stage

[1,6,7,29,38,40,41,50,51,53,55,64,69,82,92,94,96,99-102,105,117,118,136,143,144]27 (20.6)Prediction

[3,10,28,30,32-34,36,44-46,57,58,61,66,71,72,76-78,80,83,85,89,91,106,112,115,119,124,129,130,132,138]34 (26.0)Screening

[2,4,8,11,12,25-27,31,35-37,39,43,47-49,52,54,60,62,63,65,67,68,70,79,84,86-88,90,95,97,98,107,108,
110,111,113,116,120-123,125-128,133,134,137]

52 (39.7)Diagnosis

[9,42,56,59,73-75,81,93,103,104,109,114,131,135,139-141]18 (13.7)Treatment

Discussion

This section analyses the existing literature with respect to the
methods applied (ML or DL) for solving issues in each pathway
stage.

Hematology Prediction

Machine Learning–Based Models
Childhood ALL is a malignant cancer that is the leading cause
of pediatric cancer mortality, and around 20% of the children
fully treated end up having a recurrence [131]. Hence, it is
crucial to predict relapse to deal with the multiple risk groups
accordingly. For better management and follow-up planning,
Pan et al [131] introduced an ALL relapse prediction model
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based on ML algorithms that help classify patients with ALL
into their appropriate risk categories. In the model selection
process, 103 clinical variables were used to train 4 classification
algorithms, random forest (RF), decision tree, support vector
machine (SVM), and linear regression, to distinguish relapses
from nonrelapses in the 3 clinically predefined risk categories:
standard-, intermediate-, and high-risk levels. While Pan et al
[131] built a model to predict disease relapse, Hauser et al [144]
studied the possibility of predicting CML prior to diagnosis
using only CBC test results and ML algorithms such as XGBoost
and LASSO algorithms on 1623 patients with a definitive CML
status. The variables used in the study included laboratory CBC
test results, patient demographic features such as their age and
gender, and patient encounter information (the number of patient
visits to outpatient clinics, etc.). A forward feature selection
process was employed to measure the predictive performance
of the most potential predictors. The data set was then divided
into 7 subsets, in which time of diagnosis was set as a patient
baseline, and the 6 remaining sets corresponded to the different
time periods preceding the diagnosis test. Interestingly, variable
selection yielded different features for inclusion in the models
depending on the data collection interval.

The performances of the chosen classifiers in [131] were
evaluated by a 10-fold cross validation in each of the 100
training sets. However, the suggested approach is considered
insufficient for internal validation that requires at least 50 repeats
[145]. By contrast, the chosen data set in [144] was divided into
2 distinct groups: train/validation and test groups. While the
latter split-sample validation approach seems reasonable and
justifiable to use in this case given the large sample size,
potential drawbacks may arise, and several aspects still need
attention throughout the application. For instance, as the sample
split was performed fully at random, substantial patient
imbalances might have occurred with respect to the distributions
of predictors and the output. Moreover, 20% was used for model
assessment leading to a potential biased evaluation of the
model’s performance [145].

Furthermore, it is well known that patients with leukemia often
suffer from health issues due to frequent infections, which can
lead to death if it is not detected early. Toward this end, Agius
et al [55] investigated the risk of infection due to a weakness
in the immune system or a cytotoxic treatment immediately
after CLL diagnosis by developing the CLL Treatment-Infection
Model (CLL-TIM). For each patient, the prediction point was
set at 3 months after their diagnosis, and the target output was
the 2-year infection risk or CLL treatment. After excluding 74
patients who died and 373 who initiated their treatment before
the prediction point, the study cohort’s final size corresponded
to 3729 patients. In contrast to Hauser et al [144], Agius et al
[55] employed stratified sampling to maintain class distributions
and compensate for the 52% International Prognostic Index for
CLL (CLL-IPI) missing variables, by dividing the data set into

65% training set and 17.5% for each of the test and internal
validation sets. Using 7288 features resulting from a collection
of variables from different sources, comprising baseline
variables at the time of diagnosis including age, gender, etc.;
routine laboratory tests; microbiology findings; pathology
reports; and diagnosis codes for all patients, the CLL-TIM
ensemble algorithm was composed of 28 ML models that could
identify patients at a high risk of infection to increase their
chances of survival. The model was then validated on both
internal and independent external test cohorts, and exhibited
interesting performances, surpassing the CLL-IPI.

Deep Learning–Based Models
Hassouneh et al [50] suggested the use of deep neural networks
(DNNs) to predict survivability of patients with leukemia to
boost the psychological state of patients and enable physicians
to arrange the proper treatments for different cases. The final
DNN structure encompassed 6 hidden layers, with 45 hidden
neurons in each corresponding hidden layer, and a dropout
activation with 25%. While Hassouneh et al [50] used patient
records and attributes of patients with leukemia for modeling,
Boldú et al [134] relied on a set of 731 blood smear images to
predict initial patient diagnosis. For data set limitation purposes,
4 convolutional neural network (CNN) models were pretrained
on a larger data set and used for the aforementioned task. Their
respective performances were compared and the architecture
achieving the best outcome was trained further. Next, these
pretrained CNNs were fine-tuned to match the type of data that
are fed into the model. Finally, the proposed ALNet model was
able to distinguish, on a first level, between healthy and
abnormal blood cell images. On a second level, it was able to
identify whether the blasts were myeloid or lymphoid. After a
thorough evaluation process using 5-fold cross validation and
the hold-out (80%/20%) approach with 470 iterations, ALNet
demonstrated interesting results and was chosen as the best
architecture for modeling. One strength of this study is that the
5-fold cross validations were approximately balanced, and
despite the random split, the data from the same patient smear
were maintained within the same fold. Alternatively, the
proposed DNN algorithm in [50] was trained and evaluated
using 2 methods: 10-fold cross validation and ensemble method.
Although the 10-fold cross-validation method is known to
generate more stable results, the number of repetitions is quite
crucial, which was absent in this study [145].

Overall, it is very clear that all the aforementioned algorithms
succeeded in predicting the different aspects and repercussions
of the disease. Nevertheless, no existing literature has yet
examined the root cause of the malignancy by predicting the
possibility of patient infection. Table 4 summarizes some studies
in the prediction phase alongside their objectives, the data sets
used in the studies, the methodologies followed, the performance
of the models applied, their strengths and weaknesses, and the
validation approach used, where available.
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Table 4. Study analysis for journal publications on the prediction phase.

Performance and remarksObjective, data set, and methodologyReference

Performance:[131] • Objective: ALLa relapse prediction
• Data set: 336 newly diagnosed children with ALL • Accuracy: 0.829
• Methodology: Random forest algorithm • AUCb: 0.902

Strengths:

• Usage of 4 MLc algorithms and 104 features
• Good model performance in all risk-level groups
• Adoption of a special feature selection strategy: 100-fold Monte

Carlo cross validation combined with 10-fold cross validation

Limitations:

• Data set imbalance (relapsed and nonrelapsed children)
• Strong predictors were excluded from the variable set

Validation:

• 10-fold cross validation

Performance:[144] • Objective: Prediction of patients with CMLd and non-CML
using complete blood count records • AUC range: 0.87-0.96 at the time of diagnosis

• Data set: Complete blood count records of 1623 patients with
a BCR-ABL1 test extracted from the US Veterans Health Ad- Strengths:

• Use of 2 modelsministration
• Use of 2 feature selection methods• Methodology: XGBoost and LASSO

Limitations:

• Imbalanced data set (predominant gender is male)
• Nonstandard data collection process

Validation:

• Split sample validation (20% of the data for validation)

Performance:[1] • Objective: Leukemia detection based on biomedical data
• Data set: 401 leukemia datapoints from Z H Sikder Medical

College and Hospital
• Accuracy: 100%

Strengths:• Methodology: Decision tree

• Use of 4 supervised ML algorithms

Limitations:

• Overfitting

Validation:

• 10-fold cross validation

Performance:[50] • Objective: Prediction of leukemia survivability
• Data set: 131,615 records and 133 attributes for patients with

leukemia from the SEERe database
• Accuracy: 74.85%

Strengths:• Methodology: Deep neural network model
• Use of a DNNf ensemble method

Limitations:

• Many problems in the leukemia data set (redundant attributes,
missing values, and unknown values)

Validation:

• 10-fold cross validation
• Ensemble method
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Performance and remarksObjective, data set, and methodologyReference

Performance:

• ROCh-AUC: above 80%

Strengths:

• Binary classification outperforms survival analytic methods

Limitations:

• Lack of actionable information provided by the ML algorithms

Validation:

• 100 runs of 5-fold cross validation

• Objective: Predictive identification of patients at risk during
treatment

• Data set: 737 samples of patients diagnosed with CLLg at Mayo
Clinic

• Methodology: logistic regression, support vector machine,
gradient boosting machine, random forest

[96]

aALL: acute lymphoblastic leukemia.
bAUC: area under the curve.
cML: machine learning.
dCML: chronic myeloid leukemia.
eSEER: Surveillance, Epidemiology, and End Results
fDNN: deep neural network.
gCLL: chronic lymphocytic leukemia.
hROC: receiver operating characteristic

Hematology Screening

Machine Learning–Based Models
Initial leukemia screening and its efficient diagnosis require a
deep and thorough image analysis process. As opposed to
traditional manual screening, automated leukemia screening is
a novel approach that minimizes human interaction and provides
more accurate clinical information by using blood smear images
to identify ALL automatically [17]. The automated screening
process is considered challenging due to the leukocyte
localization and region extraction phases, which are generally
obtained via background removal and separation of surrounding
blood components that might distort the overall detection
process. For this reason, many studies have employed techniques
such as principal component analysis as a filter to identify any
features that do not bring any important information to the
classification process [115] to enhance detection accuracy.
Similarly, Chebouba et al [32] used a meta-heuristic stochastic
local search technique to select the most important genes and
proteins to be used in the RF-based classification of patients
with AML.

Deep Learning–Based Models
CML consists of 3 sequential phases that change based on the
patient’s status and can progress to more severe phases if timely
treatment is not provided. This makes CML phase identification
very crucial, as different phases require separate treatments and
medical regimens. In the chronic phase, less than 10% of the
cells in both the blood and bone marrow are blasted. The
severity and persistence of the aforementioned phase depend
mainly on the consistency of the therapy followed. If the chronic
stage is neglected and the patient does not receive timely and
effective treatment, the condition can deteriorate to reach an

accelerated phase where the blast count increases to around
10%-19%. Similarly, if the patient’s condition declines with no
appropriate medical intervention, the percentage of blasted
WBCs doubles to reach around 20% or more. At this stage, the
patient’s state is considered uncontrollable, and the patient starts
to exhibit symptoms such as fever, weakness, and weight loss
[33]. As CNNs were proven to be efficient tools for accurate
image recognition, Khosla and Ramesh [33] suggested using
the latter to classify different CML images into their respective
phases. Similarly, Togacar et al [71] used CNNs to separate
WBC images into their 4 subclasses: eosinophil, lymphocyte,
monocyte, and neutrophil. While the aforementioned CNNs are
successful in identifying the most important features in images
with no human supervision, they generally require large training
data to achieve high performance, and their employment is
regarded expensive in terms of both time and training. For this
reason, while many studies tend to employ image augmentation
to the existing data set to create larger samples by slightly
changing the existing collected images [33], others implement
the concept of transfer learning to overcome the training data
shortage. The idea behind the latter is to leverage the power and
knowledge of a pretrained model to apply it on a new similar
task. For instance, Sahlol et al [3] proposed a novel approach
consisting of a hybrid model and combined CNN feature
extraction using the solid architecture of VGGNet that was
pretrained on ImageNet, to separate malignant cells from benign
ones. Similarly, Li et al [127] developed the globally optimized
transfer deep-learning platform with multiple pretrained CNNs
(GOTDP-MP-CNNs). This DL platform is composed of 17
CNNs able to classify pathologic images into human diffuse
large B-cell lymphoma and non–diffuse large B-cell lymphoma.
Table 5 summarizes some of the collected studies in the
screening phase.
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Table 5. Study analysis for journal papers in the screening phase.

Performance and remarksObjective, data set, and methodologyReference

Performance:[3] • Objective: Classification of white blood cell leukemia
• Data set: Acute Lymphoblastic Leukemia Image Database

for Image Processing 1 and 2
• Accuracy: 99.2%
• Sensitivity: 100%

• Methodology: A hybrid model (CNNa and SESSAb)
Strengths:

• Powerful performance using CNN
• Use of the salp swarm optimization method
• Hybrid classification method
• Use of transfer learning

Limitations:

• Small limited data set insufficient to train CNNs

Validation:
• 5-fold internal cross validation and 20% testing (external

validation)

Performance:[61] • Objective: Automated identification of acute lymphoblastic
leukemia • Accuracy: 98.19%

• Data set: Blood smear images obtained from the Department
of Hematology at the University Hospital Ostrava Strengths:

• Methodology: support vector machine/artificial neural net-
works

• High classification accuracy
• Successful feature selection

Limitations:

• Extensive preprocessing is required
• Lack of medical data sets
• Inability to generalize the results and trends for lack of

comparison with other methods

Validation:

• 10-fold cross validation repeated 10 times

Performance:[33] • Objective: Classification of chronic myeloid leukemia
phases • Accuracy: 97.8%

• Data set: 500 pictures from Patliputra Medical College and
Hospital, Dhanbad, and the blood journal repository Strengths:

• Methodology: CNN • Use of transfer learning

Limitations:

• Limited data set

Validation:

• Internal validation (14 left for testing)

aCNN: convolutional neural network.
bSESSA: statistically enhanced salp swarm algorithm.

Hematology Diagnosis

Machine Learning–Based Models
To address the challenge of manually detecting blasted cells,
Dasariraju et al [54], Inbarani et al [66], Abedy et al [29],
Jagadev and Virani [34], and Dharani and Hariprasath [31] used
medical images of healthy and malignant samples to
automatically identify the leukemic types and subtypes. While
Dasariraju et al [54] applied an RF algorithm as an approach to
differentiate between abnormal and healthy leukocytes, and
classify immature leukocytes into their 4 subtypes, Inbarani et
al [66] discussed the implementation of a novel sophisticated
approach to identify ALL blast cells via the histogram-based
soft covering rough K-means clustering (HSCRKM)
segmentation algorithm. The latter is a hybrid-clustering

technique that combines the strengths of both the soft covering
rough set and the rough K-means clustering. Nevertheless, one
main limitation of the HSCRKM segmentation technique is that
it is not suitable for multiple color images because the latter
increase the processing time due to an increase in the peak
values of the histogram. To enhance image representation and
prepare a clean input for the classification model, Jagadev and
Virani [34] applied SVM on 220 blood smear images of healthy
individuals and patients with leukemia to identify the 4 leukemic
subtypes (AML, CML, CLL, and ALL) using both K-means
clustering and hue, saturation, value color–based segmentation
techniques. Similarly, Dasariraju et al [54] performed a set of
morphological imaging modifications and preprocessing
techniques to segment the nucleus and cytoplasm and overcome
the difficulty of blood image detection. To reduce data
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dimensionality, the model’s speed, and processing time, the
most relevant features were obtained using feature extraction
techniques and the resulting output was passed on to the
classifier [34,54,66]. Alternatively, Abedy et al [29] chose to
employ the histogram of oriented gradients for feature
extraction, the Gaussian filter for noise elimination, and the
Sobel kernel for image filtering. Furthermore, Dey and Islam
[49] adopted the principal component analysis technique
followed by grid search for hyperparameter tuning, which
significantly decreased the number of components from 7129
features to only 6 important parameters. This data transformation
technique did not only reduce the computational time and made
it faster, but it also helped giving better results. Alongside the
usage of imaging techniques, many studies employed other
techniques; for example, Moraes et al [133] suggested the usage
of flow cytometry data for distinguishing leukemia/lymphoma,
and Mahmood et al [143] directed their research to focus more
on identifying the most discriminatory features for CLL using
patient laboratory test results, demographic parameters, and
training a Classification and Regression Trees model on 94
pediatric patients, which was evaluated using 10-fold cross
validation. Moreover, both Dharani and Hariprasath [31] and
Jagadev and Virani [34] used SVM to classify leukemia and its
subtypes, while Paswan and Rathore [28] used K-nearest
neighbors to separate blasted blood cells from normal ones and
classify them further into either AML or ALL using a value of
K=4. By contrast, Moraes et al [133] suggested the
implementation of decision tree as an ML-based technique for
distinguishing leukemia/lymphoma, where a binary classification
between healthy and immature leukocytes was performed with
an 80%/20% data split, followed by a subclassification of
immature leukocytes into their respective 4 types using a
70%/30% split, and several combinations of hyperparameters
were evaluated during a 5-fold cross validation. Conversely,
Abedy et al [29] chose to employ logistic regression as a
classifier to identify the shape of the leukemic cell from
microscopic blood images, while Dey and Islam [49] conducted
a study to detect patients’ leukemia type based on their gene
expression information using the RF algorithm and 2 other
algorithms, XGBoost and artificial neural networks (ANNs),
and Dasariraju et al [54] used RF to perform a subclassification
of immature leukocytes into their respective 4 types.

Deep Learning–Based Models
With the objective of optimizing leukemia diagnosis, some
studies made use of genetic features. For example, Rodrigues
and Deusdado [63] suggested the application of a kernel logistic
regression that classifies gene expression data using
meta-learners to select the most relevant attributes before
classification. The data set used for training comprised the 2
types of leukemia (ALL and AML) and a set of gene features.
Pearson correlation and chi-square statistic were the 2
approaches used on meta-learners to assess attributes. Then, all
models used 10-fold cross validation resulting in an

identification of 12 common genes. Other studies, such as that
by Al-Dulaimi et al [23], focused on current practices,
techniques, and challenges in digital hematology detection of
WBCs and their components (nuclei and cytoplasm) using
hematologic microscopy images. In addition to analyzing the
growing trends in computer-aided diagnosis applications, the
review highlighted the main challenges associated with the use
of CNNs in terms of both high computational time and costs to
classify images and detect abnormalities. This gave rise to the
use of transfer learning and enhancing optimization techniques,
such as the bare bones particle swarm optimization algorithm
used by Srisukkham et al [12] to extract the most informative
features and enhance the classification accuracy of the
lymphocytic cells into either normal or blasted. Likewise,
Miyoshi et al [122] directed their work toward enhancing
lymphoma diagnosis by classifying histopathological lymphoma
images using a DL model. The aim of the study was to evaluate
the performance of the suggested automated DL model and
compare it with that of a traditional manual hematopathology
detection procedure using CNNs. In this study, each test set
comprised a total of 100 image patches, and the rest was
randomly divided into 5 separate groups. During each repetition
for 5 iterations, 1 group was kept for validation to evaluate the
classifier performance for every epoch, while the other 4 groups
were used for training. The number of epochs used in this study
was 30. Similarly, Shafique and Tehsin [125] suggested the
deployment of deep CNNs to detect the ALL type and its
corresponding subtypes, while Zhao et al [60] proposed turning
the captured raw multiparameter flow cytometry data into a 2D
image by means of a self-organizing map (SOM) to analyze
and classify them using the aforementioned algorithms. An
SOM is a map of neurons that relies on unsupervised learning,
in the sense that human intervention is not necessarily required.
This model is used in many applications and has strong
generalization abilities. The model was trained for 15 epochs,
at a learning rate of 0.001 using an Adam optimizer function.
The evaluation of classification accuracies used a 10% validation
split, which was also employed for network architecture
optimization. Then, the model performance was evaluated using
the hold-out test set. In the same context, Sipes and Li [4]
attempted fine-grained image classification for ALL diagnosis
and compared the accuracies of CNNs and other models that
used specific hand-selected features, while Vincent et al [37]
proposed a leukemia classification that could be performed on
2 levels. The first process was applied to well-segmented nuclei
extracted from 100 blood smear images. In this step, 90 samples
were used for training and 10 were kept for validation. The cells
were classified into normal and abnormal. The second step
consisted of feeding 5 features extracted from abnormal images
into a second classifier that split the images into ALL and AML
types accordingly. Table 6 summarizes some of the studies in
the diagnosis phase based on their objectives, data sets used,
methodologies, and performance characteristics.
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Table 6. Study analysis for journal publications on the diagnosis phase.

Performance and remarksObjective, data set, and methodologyReference

Performance:[60] • Objective: Classification of mature B-cell neoplasm
• Data set: 20,622 routine diagnostic samples from Munich

Leukemia Laboratory
• Accuracy: 95%

Strengths:• Methodology: CNN-SOMa transformation
• Large data set
• High accuracy

Limitations:

• Nonuniform distribution of misclassifications due to similarity
in flow cytometric profiles

Validation:

• 10% validation split

Performance:[54] • Objective: Detection of immature leukocytes and their classifi-
cation into 4 types • Accuracy: 92.99%

• Data set: Images extracted from a publicly available data set
at The Cancer Imaging Archive Strengths:

• Methodology: Random forest algorithm • High precision results for each class

Limitations:

• High number of false positives leading to low precision and
specificity

Validation:

• 5-fold cross validation

Performance:[49] • Objective: Identification of the leukemia type based on patient
genetic expression • Random forest accuracy: 80.8%

• Data set: A sample of 7129 genes that represent the genetic
expressions of 72 people from Kaggle

• XGBoost accuracy: 92.3%

Strengths:• Methodology: XGBoost, artificial neural networks, and random
forest algorithm • Use of principal component analysis for dimensionality reduc-

tion and faster computation
• Use of grid search for the best hyperparameter selection

Limitations:

• Small data set (72 people)

Validation:

• Internal validation (65%/35% split)

Performance:[135] • Objective: Classification of lymphocytic cells
• Data set: The ALL-IDB2 Database • Accuracy: 94.94%-96.25%
• Methodology: bare bones particle swarm optimization–based

feature optimization Strengths:

• A good performance on capturing prognostic chronic myeloid
leukemia markers by the model

Limitations:

• Challenge of capturing relationships between data types with
no information loss in clinical clustering

Validation:

• Validation on an external independent clinical trial
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Performance and remarksObjective, data set, and methodologyReference

Performance:

• Accuracy: Above 80%

Strengths:

• Use of 3 segmentation methods
• Broader range of leukemia classification (types and subtypes)

Limitations:

• Costly method based on imaging data

Validation:

• Internal validation (train test split)

• Objective: Detection of leukemia and its types
• Data set: 220 blood smear images from healthy individuals and

patients with leukemia
• Methodology: support vector machine

[34]

Performance:

• Accuracy: 97%

Strengths:

• High accuracy outperforming 7 pathologists
• Model ensemble comprising 3 classifiers

Limitations:

• Classifier requires a manual annotation
• Model not able to classify all the subtypes

Validation:

• K-fold cross validation repeated 5 times

• Objective: Automated detection of malignant lymphoma
• Data set: Prepared histopathologic images (388 sections, 259

diffuse large B-cell lymphomas, 89 follicular lymphomas, and
40 reactive lymphoid hyperplasia)

• Methodology: Deep neural network classifier

[122]

Performance:

• Accuracy: 97.7%

Strengths:

• Two-step neural network classifier

Limitations:

• Limited data set (100 blood smear images)

Validation:

• Internal validation (90 images used for training and 10 kept for
validation)

• Objective: Multiclassification of leukemia
• Data set: 100 blood smear images
• Methodology: Neural network classifiers

[37]

Performance:

• Correctness: 95%

Strengths:

• Application of the LASSO algorithm for regularization
• Model robustness and strength against false negatives

Limitations:

• Complexity of the decision tree and the risk of overfitting
through the production of too large trees

Validation:

• 30-fold cross validation

• Objective: Leukemia and lymphoma diagnosis
• Data set: 283 blood and bone marrow sample images from pa-

tients with leukemia and lymphoma
• Methodology: Decision tree

[133]

• Objective: Leukemia image segmentation
• Data set: The Acute Lymphoblastic Leukemia Image Database
• Methodology: HSCRKMb/particle swarm optimization/K-

means

[66]
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Performance and remarksObjective, data set, and methodologyReference

Performance:

• Accuracy: 80% and above

Strengths:

• Use of 7 machine learning methods
• Application of soft covering rough approximation

Limitations:

• Suitable for medical images only

• Application on multiple color images increases the processing
time

Validation:

• Different train/test sizes were used for model evaluation

Performance:

• Accuracy: 87.4%

Strengths:

• High accuracy
• Balanced data set

Limitations:

• Small-scale study
• Few machine learning models
• Socioeconomic risk factors not selected automatically

Validation:

• Internal validation (train/validation data)
• 10-fold cross validation

• Objective: Determining the most predictive features for acute
lymphoblastic leukemia identification

• Data set: 94 pediatric patient samples collected from the De-
partment of Hematology and Oncology, Children Hospital and
Institute of Child Health, Lahore

• Methodology: Random forest, boosting machine, C5.0 decision
tree, and classification and regression trees

[144]

Performance:

• Accuracy: 97.8%

Strengths:

• Good detection accuracy
• Thorough image segmentation process

Limitations:

• Challenging detection process due to the irregularity of the
cancer cell’s shape and nucleus

• Use of only support vector machine for classification

• Objective: Leukemia diagnosis and its subtypes
• Data set: 200 blood smear images extracted from Vidyalankar

Institute of Technology, Mumbai and online databases
• Methodology: support vector machine

[31]

aCNN-SOM: convolutional neural network-self-organizing map.
bHSCRKM: histogram-based soft covering rough K-means clustering.

Hematology Treatment

Machine Learning–Based Models
Complete remission (CR) refers to the disappearance of all signs
and symptoms of an illness [51]. However, a significant
proportion of patients report disease relapse after therapy and
complete disease recovery. In this regard, Gal et al [75] proposed
an ML technique that uses gene expressions to predict the
likelihood of CR in patients with AML who previously received
therapy. The 473 collected samples were divided into training
and testing and were fed into the 3 classifiers for feature
selection using a 5-fold cross validation. To select the most
significant genes that clearly mark the difference between the
state of CR and non-CR, a statistical t test was performed in
each fold for each method. For further gene feature selection
and performance enhancement, the results were compared with
those of 3 algorithms: randomized LASSO, recursive feature

elimination, and hill climbing. It was proven that cancers that
appear pathologically identical do not necessarily exhibit the
exact response to similar drugs. To overcome the challenge of
high demands for personalized or patient-specific medicine,
Lee et al [9] proposed using a gene-expression profile and in
vitro drug sensitivity data to spot molecular markers that explain
this patient-specific drug response. The data set used comprised
160 chemotherapy drugs and inhibitors for 30 patients with
AML. The gene-drug association was identified using the
MERGE algorithm, which utilized gene characteristics such as
a novel mutation, expression hubness, known regulator, genomic
copy number variation, and methylation. The model testing was
done in 2 different ways: the first approach used 2 batches
containing 12 patient samples for training and 12 different
samples for validation, respectively. The second approach used
a leave-one-out cross validation to test the predicted drug
sensitivity for 30 patient samples. The latter cross-validation
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method is regarded as reasonable because it prevents the high
computational training cost and time owing to the small sample
size and is much less biased than using a single test set because
the process fits the data set consisting of n-1 observations
repeatedly [145]. Although having a limited data size permitted
the obtention of efficient validation results, identifying
gene-drug associations is deemed to be a challenging process
in that case. However, the proposed algorithm was successful
to prioritize genes based on the multidimensional data on their
potential to drive cancer. Consequently, upon comparison with
other alternate methods (ElasticNet, multitask learning, Pearson
P value, and Spearman P value), MERGE exhibited the best
gene-drug association result.

Deep Learning–Based Models
In their review and analysis of current AI applications for
hematologic disorders’ treatment, Muhsen et al [24] presented
a study that was performed with a set of patients who underwent

allogeneic hematopoietic cell transplantation to predict the
development of acute graft-versus-host disease using ANNs.
After comparing the performance acquired by ANNs and the
results achieved by logistic regression, ANNs were found to
predict the presence of graft-versus-host disease significantly
better. However, among the limitations remaining to help reach
optimal ML results is the limited data input from patients that
could be further enlarged to include biologic and genetic factors,
for instance. Moreover, the employment of several sampling
techniques such as random oversampling, synthetic
oversampling, and remote under sampling could help improve
the ML models’ accuracies in predicting treatment-related
mortality in allogeneic hematopoietic cell transplantation.

Similarly, Lyu et al [42] used ANNs to classify the progress
and change in gene expressions and peripheral blood
mononuclear cells before treatment and after starting therapy.
Table 7 shows some extracted literature focusing on the
hematology treatment phase.

Table 7. Study analysis for journal publications on the treatment phase.

Performance and remarksObjective, data set, and methodologyReference

Performance:[9] • Objective: Digital analysis of blood smears and preclassification
of cells • Accuracy: 90%

• Data set: Images of blood smears from a hematologic laboratory
Strengths:• Methodology: MERGE algorithm

• Introduction of a new computational and statistical method to
determine gene markers

Limitations:

• Small data set comprising only 30 patients with acute myeloid
leukemia

Validation:

• Leave-one-out cross validation

Performance:[75] • Objective: Prediction of complete remission of acute myeloid
leukemia • Area under the curve: 0.84

• Data set: 473 bone marrow samples from the Children’s Oncol-
ogy Group Strengths:

• Methodology: K-nearest neighbor, support vector machine,
and hill climbing

• Use of 3 feature selection algorithms: randomized LASSO,
recursive feature elimination, and hill climbing

• Use of 3 classifiers: support vector machine, random forest,
and K-nearest neighbor

Limitations:

• Small data set

Validation:

• 100 iterations of a 5-fold cross validation

Performance:[81] • Objective: Identify the right patterns to improve risk stratifica-

tion of patient with CLLsa • Precision: 90%
• Data set: (1) the first cohort comprised CLL cells of 196 indi-

viduals; the second cohort comprised CLL cells of 98 individ-
uals including their clinical data and RNA-seq

Strengths:

• High accuracy and precision

Limitations:• Methodology: (1) EM algorithm and the Gaussian mixture
models; (2) Boosted tree ensemble method

• Large data set and 5-year monitoring is required

Validation:

• External validation on an independent cohort

aCLL: chronic lymphocytic leukemia.
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Conclusions and Future Research Directions
Early diagnosis and prediction of hematologic malignancies
can immensely reduce mortality rates and can improve patient
survival rates. Nevertheless, the nature of data on medical
treatment is complex and requires an in-depth analysis to extract
the important explicative features and hidden data patterns. The
only way to handle enormous sets is through the use of AI. The
challenge that faces AI applications, however, is the limitation
in data availability, which can be overcome by means of data
augmentation techniques, regularization, and transfer learning.
This review of the literature highlights the most recent
applications of both DL and ML in the field of blood cancer
management for every hematologic pathway stage and
malignancy type. Based on the reviewed articles, ML techniques
have been widely used, in comparison with DL methods, as the
latter are relatively newer and require larger data sets than ML,
which is considered a constraint in the medical field. In some
studies, ML techniques performed better than DL methods and
vice versa, depending on the application and nature of data used.
Moreover, screening and diagnosis are challenging tasks, as
hematologic cancers are difficult to identify during their initial
stages. Therefore, many studies in the field investigated the
aforementioned stages alongside prediction, while less attention
has been paid to the treatment stage. The latter is critical and
requires further analysis and study, as repercussions and relapses

may arise due to cancer treatment, namely, chemotherapy, which
requires a risk evaluation and future mitigation plans.
Furthermore, some malignancies appeared to be more addressed
than others, mainly acute myeloid/lymphoblastic leukemias that
have gotten the most attention in the last few years followed by
lymphoma, due to their fast development and aggressivity.
Conversely, there was less emphasis and minor existing
literature tackling the chronic types of leukemia. This can be
due to the slow-growing pattern of the aforementioned, and a
lack of sudden symptom exhibition until very late stages, which
makes the latter’s monitoring quite complex. Overall, a lack of
detection accuracy can have a significant impact on the patient’s
journey to treatment because it can delay diagnosis and affect
the efficiency of therapies. Therefore, predictive models that
can recognize disease patterns and common symptoms in
hematologic malignancies based on medical patient records are
essential to forecast the risk of infection and avoid late-stage
diagnoses. Thus far, many studies employed several techniques
to predict hematologic malignancies’ diagnosis through either
medical image recognition, flow cytometry, or genetic
expressions. However, no study in the literature has ever made
use of patient CBC test results alone for blood disorder
prediction or detection purposes. As the latter is generally
regarded as the first diagnostic routine for hematologists to
confirm leukemia diagnosis, it can be an efficient medium to
potentially investigate in the future.
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AI: artificial intelligence
ALL: acute lymphoblastic leukemia
AML: acute myeloid leukemia
ANN: artificial neural network
AUC: area under the curve
CBC: complete blood count
CLL: chronic lymphocytic leukemia
CLL-TIM: CLL Treatment-Infection Model
CML: chronic myeloid leukemia
CNN: convolutional neural network
CR: complete remission
DL: deep learning
DNN: deep neural network
GOTDP-MP-CNNs: globally optimized transfer deep-learning platform with multiple pretrained CNNs
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HSCRKM: histogram-based soft covering rough K-means clustering
IPI: International Prognostic Index
ML: machine learning
RBC: red blood cell
RF: random forest
ROC: receiver operating characteristic
SEER: Surveillance, Epidemiology, and End Results
SESSA: statistically enhanced Salp Swarm Algorithm
SOM: self-organizing map
SVM: support vector machine
WBC: white blood cell
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