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Abstract

Background: The C-Score, which is an individual health score, is based on a predictive model validated in the UK and US
populations. It was designed to serve as an individualized point-in-time health assessment tool that could be integrated into clinical
counseling or consumer-facing digital health tools to encourage lifestyle modifications that reduce the risk of premature death.

Objective: Our study aimed to conduct an external validation of the C-Score in the US population and expand the original score
to improve its predictive capabilities in the US population. The C-Score is intended for mobile health apps on wearable devices.

Methods: We conducted a literature review to identify relevant variables that were missing in the original C-Score. Subsequently,
we used data from the 2005 to 2014 US National Health and Nutrition Examination Survey (NHANES; N=21,015) to test the
capacity of the model to predict all-cause mortality. We used NHANES III data from 1988 to 1994 (N=1440) to conduct an
external validation of the test. Only participants with complete data were included in this study. Discrimination and calibration
tests were conducted to assess the operational characteristics of the adapted C-Score from receiver operating curves and a
design-based goodness-of-fit test.

Results: Higher C-Scores were associated with reduced odds of all-cause mortality (odds ratio 0.96, P<.001). We found a good
fit of the C-Score for all-cause mortality with an area under the curve (AUC) of 0.72. Among participants aged between 40 and
69 years, C-Score models had a good fit for all-cause mortality and an AUC >0.72. A sensitivity analysis using NHANES III
data (1988-1994) was performed, yielding similar results. The inclusion of sociodemographic and clinical variables in the basic
C-Score increased the AUCs from 0.72 (95% CI 0.71-0.73) to 0.87 (95% CI 0.85-0.88).

Conclusions: Our study shows that this digital biomarker, the C-Score, has good capabilities to predict all-cause mortality in
the general US population. An expanded health score can predict 87% of the mortality in the US population. This model can be
used as an instrument to assess individual mortality risk and as a counseling tool to motivate behavior changes and lifestyle
modifications.

(J Med Internet Res 2022;24(6):e36787) doi: 10.2196/36787
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Introduction

Background
In the United States, 60% of all adults have at least one chronic
condition, and 42% have >1 [1,2], leading to >1.7 million deaths
annually [3]. Reliable indicators of current and future health
can be integrated into digitally enabled strategies to modify
behaviors and reduce the risk of adverse outcomes and death.
Therefore, there is a growing demand for evidence-based tools,
supported by ubiquitous innovations such as wearable
technologies, that could help clinicians and individuals to
calculate the risk of disease and predict future health outcomes
[4,5]. Such tools and technologies often collect data on risk
factors that can be integrated into an index to provide
information on current and future disease risks. The advent of
wearable technologies and other readily accessible nonclinical
sources of anthropometric or biometric data has challenged us
to evaluate the value of extending classical metrics to achieve
greater precision and predictive accuracy. When accurate, such
tools have tremendous potential to inform lifestyle
improvements and drive sustained changes in modifiable risk
factors that can enhance health status.

In recent years, a number of risk-scoring algorithms and models
have demonstrated the capacity to predict adverse health
outcomes such as the risk of developing cardiovascular disease
[6], diabetes [7], hypertension [8], and very specific cancers [9]
and predict complications following surgery [10]. However,
existing models or applications are often reserved for use by
clinicians or incorporate the mathematical analysis of data points
that require invasive testing (eg, blood tests). These models are
rarely presented in friendly digital formats or provide advice to
clients on specific modifiable behaviors. In addition, most
prognostic indices have primarily focused on predicting
short-term mortality among older adults and high-risk
individuals, whereas fewer indices have focused on prognostic
health assessment of the general population [11-16].

The C-Score, derived from metrics that are easily reported by
a person and augmented by measures derivable from most
smartphones, is designed as a tool for individualized health risk
prediction and can be used as a basis for directing targeted
lifestyle modifications to reduce the risk of future adverse
outcomes. Clift et al [17] developed and validated the C-Score
model using a prospective cohort analysis, leveraging the UK
Biobank data set [17]. They found that the C-Score had good
predictive capabilities for all-cause mortality within 10 years
for adults aged between 40 and 69 years. The points-based
model had good discrimination with a c-statistic of 0.66, and a
Cox model with the C-Score and age had improved
discrimination (c-statistic 0.74) and good calibration. Although

the UK Biobank data set is an unparalleled resource of extensive
health information with >400 peer-reviewed publications to
date, its sampling population is volunteer based and hence not
entirely representative of the UK population [18]. Keyes et al
[19] articulated several concerns related to the
nonrepresentativeness of this sample population, whereas Batty
et al [20] concluded that risk factor associations in the UK
Biobank seem to be generalizable, after comparing with pooled
data from the Health Surveys for England and the Scottish
Health Surveys.

Objective
In this study, we conducted an external validation of the C-Score
in the US population and expanded the original score to improve
its predictive capabilities in the US population [17]. The C-Score
is a mobile health app that can be used on wearable devices.

For the external validation, we assessed the discrimination and
calibration of the original C-Score in the US population using
the US National Health and Nutrition Examination Survey
(NHANES). For the expansion and adaptation of the model, we
reviewed the literature and tested additional predictors of
all-cause mortality in the US population to improve the
predictive capacity of the model.

Methods

The C-Score
The risk models were developed following an extensive
literature review that identified key risk factors for all-cause
mortality [17]. The review yielded eight key predictor variables:
age, cigarette consumption, alcohol consumption, sleeping
duration, self-rated health, waist to height (WtHR) ratio, resting
heart rate, and reaction time. Given the interest in modifiable
risk factors, age was not included in the calculation of the score.
Relative weightings, which were developed by Clift et al [17],
using hazard ratios extracted from each identified study, were
used to generate a points-based score. The lowest risk was
denoted with a 0, with increases in scores indicating higher than
optimal risk. The overall score totaled 25 points and was
multiplied by 4 to generate a sum of 100 (Table 1). The score
operates in a penalizing fashion, with users starting with 100
points and losing points for each health domain in accordance
with the hazard ratio extracted from the literature. Thus, the
C-Score is an evidence-based consolidated index that uses 7
parameters to predict mortality. The points-based C-Score model
performed moderately well in the United Kingdom with an area
under the curve (AUC) >0.66 and high calibration [17]. More
detailed information on the development of the score can be
found elsewhere [17].
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Table 1. Points-based score assigned to each explanatory variable for the original C-Score model.a

Points assigned, rangeC-Score input

0-7.83Resting heart rate (beats per minute)

0-10.26Average hours of sleep per night

0-10.8Waist to height ratio

0-31.32Self-rated health (ordinal scale: excellent, good, fair, and poor)

0-12.96Cigarette smoking (status and cigarettes per day)

0-19.44Alcohol consumption (units per week)

0-6.75Reaction time

aThe reaction time variable is not present in the main National Health and Nutrition Examination Survey sample. Therefore, we did not include this in
the main analysis. For the sensitivity analysis, we did not include alcohol consumption or sleep duration as these variables were not present in the
National Health and Nutrition Examination Survey III.

Data Source and Validation Population
The NHANES is a large cross-sectional population-based survey
that combines interviews with physical examinations, thereby
serving as a rich source of both self-reported and directly
measured biometric data. Each survey round includes a
nationally representative sample of approximately 5000
individuals and is conducted regularly. The NHANES
questionnaire elicits information pertaining to
sociodemographic, dietary, physical, and health-related
characteristics. Details of the NHANES study design have been
described in previous studies [21,22]. To validate the C-Score,
we pooled the NHANES survey data from 2005 to 2014,
resulting in data from 28,078 participants.

As mortality data are not readily collected as part of the
NHANES, the National Center for Health Statistics has matched
1999 to 2014 data with death certificate records from the
National Death Index (NDI), which have been made available
for public use. Mortality ascertainment was based on a
probabilistic match between the NHANES and NDI death
certificate records. These data were, in turn, linked with NDI
mortality data using participants’ social security number, first
name, middle initial name, last name or father’s surname, month
of birth, day of birth, year of birth, state of birth, state of
residence, race, and sex, yielding a sample of 28,033 participants
with complete information on mortality. The methodology for
the data linkage has been described in detail by the National
Center for Health Statistics [23].

We linked the anonymized NHANES survey data with the
anonymized NDI mortality data, which included mortality
follow-up data from December 31, 2015. The matching yielded
a sample of 28,033 participants. This was the sample for which
the external validation of the C-Score was conducted. It was
also the sample for which the C-Score model was adapted and
expanded to improve its performance in the US population.

Following the development of the adapted model, we conducted
another round of validation as a sensitivity analysis, using data
obtained from NHANES III, a survey conducted from 1988 to
1994, which included the mortality data of 6591 participants.
The NHANES III data analysis missed 2 of the 7 variables
included in the risk model (sleep duration and alcohol

consumption); therefore, the C-Score was calculated in the
absence of these risk factors.

Predictor Variables
The explanatory variables in this study were extracted from the
questionnaire data and examination data from the 5 NHANES
waves. The questionnaire data included age (in years), cigarette
consumption (average number of cigarettes per day), alcohol
consumption (average number of alcoholic drinks per week),
and sleep duration (hours per day). Self-rated health was
transformed from a 5-point scale (from poor to excellent) into
a 4-point scale in which excellent and very good health were
merged into one category to better match with the UK Biobank
variable. The NHANES examination data were collected by
trained health technicians, and information was collected on
WtHR (waist circumference divided by height) and resting heart
rate (beats per minute). Reaction time was missing from the
2005 to 2014 NHANES data but was measured as part of a
computerized Neurobehavioral Evaluation System 2.

Expanding the Set of Variables for the Original
C-Score Model
We conducted a subsequent literature review of predictors of
all-cause mortality in the United States and identified a set of
clinical factors and sociodemographic variables for which there
is evidence of an association with mortality. As we wanted to
ensure the usability of the smartphone app, we sought to create
the most parsimonious model with maximal performance based
on the combination of the Akaike Information Criterion, AUC,
and goodness of fit. In addition to the variables used to construct
the original C-Score, we investigated the predictive value of
including sociodemographic characteristics such as gender, race
or ethnicity, marital status, and educational attainment, as well
as simple medical history variables shown to be associated with
mortality, such as binary variables ever diagnosis of high blood
pressure [24,25] and ever diagnosis with hypercholesterolemia
[26]. Finally, we included interaction terms (C-Score interacting
with each of the additional variables) to explore whether a
maximally complex model would perform better.

Statistical Analysis
To validate the original C-Score, we tested the model using the
pooled NHANES data. However, as NHANES lacks the reaction
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time variable, which is one of the variables used to compute the
C-Score, we conducted a sensitivity analysis using data from
NHANES III, a smaller survey that collected data on reaction
time, to measure the marginal effect of the reaction time
variable. Following the validation and sensitivity analysis, we
incorporated additional variables into the model and investigated
their internal and external validity.

Validating the Original C-Score
For all models, we used a complete case approach, whereby the
only participants included were those for whom a risk score
based on all risk factors could be computed (ie, for whom there
were no missing data on any of the included variables). We
pooled NHANES data from 2005 to 2014, which included 6
out of 7 variables included in the original C-Score model
(missing reaction time). As the NHANES survey did not have
the reaction time variable, all individuals were assumed to have
the maximum score for that variable in this validation exercise.

In the complete case analysis, there were 21,015 participants
(aged 18-85 years) with complete information on mortality, age,
and all metrics included in the C-Score. This population with
a wide age range was selected as one would expect to see greater
variability in the exposure variables, thus permitting better
exploration of the models. Furthermore, to produce estimates
with a population similar to that in the Clift et al [17] study,
participants aged 40 to 69 years were analyzed separately [17].
The complete case analysis for this age-restricted subsample
included 9994 participants. For each prediction model, we
assessed the model’s performance by investigating its
discrimination—the extent to which it can adequately
discriminate between those who will have the discrete event
and those who will not—and calibration—the extent to which
the observed and predicted probabilities agree [27,28]. The area
under the receiver operating characteristic curves (c-statistics)
and a design-based goodness-of-fit test for estimating the
F-adjusted mean residual test [29] were used to assess
discrimination and calibration, respectively [29]. Unlike the
original model, we could not use Cox regressions, given that
the NHANES data sets are repeated cross-sections and we did
not have the benefits of a longitudinal panel to use Cox.
Therefore, our model estimates mortality within a 10-year period
(time of follow-up for the NHANES mortality link) instead of
the survival time.

In all cases, we ran an additional analysis including both the
C-Score and the logarithm of age, as performed by Clift et al
[17].

Sensitivity Analysis of the Original C-Score
As the NHANES survey lacks one of the variables used for
validation—the reaction time variable—we performed a
sensitivity analysis with a different data set. We conducted a
sensitivity analysis using data from NHANES III, a survey
conducted from 1988 to 1994 containing data for 33,994 people
aged ≥2 months, including mortality data, to ascertain the
marginal effect of the reaction time variable from the analysis.
Owing to the limited number of people with neurobehavioral
indicators, we did not impose age limits in this sensitivity
analysis.

The NHANES III data set contains the reaction time variable
but lacks 2 of the 7 variables included in the risk model (sleep
duration and alcohol consumption). The lack of these variables
should drive the fit and calibration of the model downward, and
therefore, any results in this sensitivity analysis would be
conservative. In this sensitivity analysis, we tested the sensitivity
of the 5-variable model to the inclusion and exclusion of the
reaction time variable. The complete case analysis yielded data
from 1440 participants.

All data analyses were performed using Stata 15 (StataCorp),
using survey weights to specify the survey and sample design
characteristics. In addition, a dummy variable for the survey
round was included in the models with pooled data. For all
models, P values <.05 were regarded as statistically significant.

Adapting the C-Score to the US Population and
Measuring Its Internal and External Validity
We examined the impact of including additional variables on
calibration and discrimination [27,28]. We used the area under
the receiver operating characteristic curve (AUC), or the
c-statistic, to assess the discrimination of the adapted models.
We tested both internal and external validities. We used a k-fold
cross-validation procedure to assess within-study model validity
[30]. We estimated AUC based on 10 random samples (the test
samples) that were independent of the samples used to train the
model (the training sample), averaging the AUCs associated
with each individual fold and bootstrapping the cross-validated
AUCs to obtain 95% CIs. To assess calibration, we used a
design-based goodness-of-fit test of logistic regressions, as well
as calibration curves developed using locally weighted
scatterplot smoothing to compare fitted outcome probabilities
with observed outcome probabilities [31]. We also report the
Akaike Information Criterion. For the external validation, we
assessed the best-performing model using the NHANES III data
set.

This study follows the TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or
Diagnosis) guidelines for multivariable prediction models [32].

Ethics Approval
The NHANES survey is approved by the National Center for
Health Statistics Institutional Ethics Review Board. Written
informed consent was obtained from all adult participants.
Ethical approval to conduct this analysis was not required as
we used publicly available data. This study was approved by
the institutional review board of the Johns Hopkins Bloomberg
School of Public Health and was deemed nonhuman subject
research (13743).

Data Availability
The data sets analyzed in this study are publicly available on
the NHANES website. The C-Scores are proprietary information
but can be provided as restricted data to the reviewers.
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Results

Validating the Original C-Score
From 2005 to 2014, we obtained 28,078 records from the
NHANES. Of these, 99.84% (28,033/28,078) were matched

with mortality data and 74.84% (21,015/28,078) had complete
information on all variables. A flowchart of the sample sizes
for the main analysis, sensitivity analysis, and adaptation of the
model is shown in Figure 1. The basic characteristics of the
study sample are presented in Table 2.

Figure 1. Flowchart for sample sizes for National Health and Nutrition Examination Survey (NHANES) study samples.
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Table 2. Descriptive statistics for the different samples used in the study.a

NHANESb III subsample for the
sensitivity analysis (N=1440)

Age-restricted sample
(40-69 years; N=9994)

Full study sample
(N=21,015)

Variable

47.85 (5.80)53.78 (8.53)47.43 (17.97)Age (years), mean (SD)

Sex, n (%)

655 (45.49)4764 (47.67)10,094 (48.03)Male

785 (54.51)5230 (52.33)10,921 (51.97)Female

Ethnicity, n (%)

373 (25.9)1621 (16.22)3334 (15.86)Mexican American

36 (2.5)997 (9.98)1891 (9)Other Hispanic

615 (42.71)4215 (42.18)9519 (45.3)Non-Hispanic White

403 (27.99)2314 (23.15)4413 (21)Non-Hispanic Black

13 (0.9)847 (8.48)1858 (8.84)Other race—including multiracial

69.14 (10.80)72.42 (11.94)72.83 (12.11)Resting heart rate, mean (SD)

0.58 (0.09)0.60 (0.09)0.59 (0.10)Waist to height ratio, mean (SD)

N/Ac3.88 (9.07)3.63 (8.36)Weekly alcohol intake, mean (SD)

N/A6.73 (1.38)6.85 (1.40)Sleep duration, mean (SD)

Self-rated health, n (%)

558 (38.75)3515 (35.17)8169 (38.87)Excellent or very good

538 (37.36)4007 (40.09)8425 (40.09)Good

292 (20.28)2078 (20.79)3790 (18.03)Fair

52 (3.61)394 (3.94)631 (3)Poor

6.67 (11.71)3.94 (8.63)3.28 (7.60)Number of cigarettes per day, mean (SD)

183 (12.81)2217 (22.27)3790 (18.41)Comorbidities, n (%)

aSurvey weights are not included in this descriptive analysis.
bNHANES: National Health and Nutrition Examination Survey.
cN/A: not applicable.

There were 21,015 participants in the pooled data with complete
information on mortality, age, and other C-Score metrics. The
mean age of the sample was 47.43 (SD 17.97) years, the mean
resting heart rate was 72.83 (SD 12.11) beats per minute, the
mean WtHR was 0.59 (SD 0.10), mean weekly alcohol intake
was 3.63 (SD 8.63) drinks per week, and mean sleep duration
was 6.85 (SD 1.40) hours. For self-rated health, 38.87%
(8169/21,015) were excellent, 40.09% (8425/21,015) were good,
18.03% (3790/21,015) were fair, and 3% (631/21,015) were
poor. There were 48.03% (10,094/21,015) men and 51.97%
(10,921/21,015) women. In the study sample, 18.41%
(3790/21,015) had existing comorbidities such as diabetes,
stroke, coronary heart disease, angina, or heart attack. In terms
of the main study outcome, 6.07% (1276/21,015) of patients
had died as of December 31, 2015.

In the validation subsample (among participants aged 40-69
years), there were 9994 participants with a mean age of 53.78
(SD 8.53) years, mean resting heart rate of 72.42 (SD 11.94)
beats per minute, mean WtHR of 0.60 (SD 0.09), mean weekly

alcohol intake of 3.88 (SD 9.07) drinks per week, and mean
sleep duration of 6.73 (SD 1.38) hours. For self-rated health,
35.17% (3515/9994) were excellent, 40.09% (4007/9994) were
good, 20.79% (2078/9994) were fair, and 3.94% (394/9994)
were poor. There were 47.67% (4764/9994) of men and 52.33%
(5230/9994) of women. In terms of comorbidities, 22.27% (2217
or 22.27%) reported a diagnosis of diabetes, stroke, coronary
heart disease, angina, or heart attack. In terms of the study
outcome, 95.38% (9532/9994) of participants were alive, and
4.32% (462/9994) had died as of December 31, 2015.

Table 3 shows that in the study sample, higher C-Scores were
related to a reduction in the occurrence of all-cause mortality
(odds ratio 0.96, P<.001, 95% CI 0.95-0.96). The C-Score model
showed a good fit for all-cause mortality in this population,
with an AUC of approximately 0.72 (95% CI 0.70-0.73). After
adding the log of age as a covariate in this model, the calibration
test rejected the null hypothesis of good fit; however, the AUC
increased to 0.86 (95% CI 0.85-0.87).
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Table 3. Performance of the C-Score models for all-cause mortality by subsample.a

C-Score plus log (age)C-Score modelOutcome

AICAUC (95%
CI)

F-adjusted test
statistic

Score OR (P
value)

AICdAUCc

(95% CI)

F-adjusted test
statistic

Score ORb

(P value)

P value
(fit)

F test
(df)

P value
(fit)

F test
(df)

7272.500.86 (0.85-
0.87)

<.001
(poor)

7.25
(9,71)

.96 (<.001)8897.780.72 (0.70-
0.73)

.86 (good)0.52
(9,71)

0.96
(<.001)

Full study sample
(N=21,015)

3366.480.75 (0.73-
0.77)

.87 (good)0.50
(9,71)

.95 (<.001)3458.240.72 (0.70-
0.75)

0.34 (good)1.16
(9, 71)

0.95
(<.001)

Age-restricted sample
(40-69 years; N=9994)

aAll models include dummy variables for the survey rounds. Survey weights were included in all analyses.
bOR: odds ratio.
cAUC: area under the curve.
dAIC: Akaike Information Criterion.

Table 3 shows that in the full study sample, the model
demonstrated a good fit when not including the logarithm of
age. Among the participants aged between 40 to 69 years,
C-Score models, both with and without log age, had a good fit
for all-cause mortality. Values of AUC ranged between 0.72
(95% CI 0.70-0.75) to 0.75 (95% CI 0.73-0.77).

Sensitivity Analysis
In the sensitivity analysis, we obtained data from NHANES III
(1988-1994) on 6591 participants, of whom 21.85% (1440/6591)

had complete data to conduct the validation. Table 4 shows the
C-Score model had generally a good fit for all-cause mortality
and an AUC of 0.68 (95% CI 0.65-0.72). The addition of
reaction time worsened the model fit. The tables show that in
the predictive C-Score model without reaction time but with
age, all-cause mortality had a good fit, with an AUC of 0.72
(95% CI 0.69-0.75). After adding reaction time, the AUC for
all-cause mortality did not differ.

Table 4. Sensitivity analysis on all-cause mortality for the marginal effect of the reaction time variable using NHANESa III (N=1440).b

C-Score modelOutcome

AICeAUCd (95% CI)F-adjusted test statisticScore ORc (P value)

P value (fit)F test (df)

1556.570.68 (0.65-0.72).01 (poor)2.97 (9,41)0.92 (<.001)C-Score model performance with reaction time

1555.480.68 (0.65-0.72).09 (good)1.82 (9,41)0.91 (<.001)C-Score model performance without reaction time

1438.430.72 (0.69-0.75).56 (good)0.86 (9,41)0.92 (<.001)C-Score model plus log age performance with reaction time

1485.040.72 (0.69-0.75).48 (good)0.97 (9,41)0.92 (<.001)C-Score model plus log age performance without reaction time

aNHANES: National Health and Nutrition Examination Survey.
bAll models included a dummy variable for the survey rounds. Survey weights were included in all analyses. The C-Score was calculated using five
out of seven covariates: waist to height ratio, self-rated health, resting heart rate, smoking, and reaction time. The C-Score was calculated using 4 out
of 7 covariates.
cOR: odds ratio.
dAUC: area under the curve.
eAIC: Akaike Information Criterion.

Adapting the C-Score to the US Population and
Measuring Its Internal and External Validity

Overview
Of the 21,015 participants with complete information on the
C-Score metrics, 20,626 (98.15%) had information on
sociodemographic characteristics and of those, 16,671 (80.82%)
had complete information on medical history variables. Thus,
the final analytic sample in which the C-Score was adapted
comprised 16,671 participants. Table 5 outlines the
characteristics of this sample. The average age of the

respondents in this sample was 50.43 (SD 17.32) years, and a
little more than half (8831/16,671, 52.97%) were female. The
mean resting heart rate was 72.53 (SD 12.04) beats per minute,
mean WtHR was 0.59 (SD 0.10), mean weekly alcohol intake
was 3.32 (SD 7.37) drinks per week, and mean sleep duration
at night was 6.84 (SD 1.40) hours. For self-rated health, 39.48%
(6581/16,671) reported excellent health, 40.09% (6617/16,671)
reported good health, 18.03% (2948/16,671) reported fair health,
and 3% (525/16,671) reported poor health. Approximately
21.03% (3497/16,671) of the respondents had existing
comorbidities such as diabetes, stroke, coronary heart disease,
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angina, or heart attack. There were 6.3% (1062/16,671) deaths recorded in the analytic sample.

Table 5. Characteristics of the research sample (N=16,671).

Analytical sampleVariable

50.43 (17.32)Age (years), mean (SD)

Sex, n (%)

7840 (47.03)Male

8831 (52.97)Female

Ethnicity, n (%)

2142 (12.85)Mexican American

1447 (8.68)Other Hispanic

7944 (47.65)Non-Hispanic White

3543 (21.25)Non-Hispanic Black

1595 (9.57)Other race (including multiracial)

72.53 (12.04)Resting heart rate (beats per minute), mean (SD)

0.59 (0.096)Waist to height ratio, mean (SD)

3.32 (7.37)Weekly alcohol intake (drinks per week), mean (SD)

6.84 (1.39)Sleep duration (hours per night), mean (SD)

Self-rated health, n (%)

6581 (39.48)Excellent or very good

6617 (39.69)Good

2948 (17.68)Fair

525 (3.15)Poor

2.97 (7.25)Number of cigarettes per day, mean (SD)

3497 (21.03)Comorbidities, n (%)

1062 (6.3)Deaths, n (%)

The addition of sociodemographic variables and medical history
variables (model 3), in contrast, similarly increased the AUC
of the original C-Score model from 0.72 to an AUC of 0.87
(95% CI 0.86-0.88), although without a loss in the goodness of
fit.

Upon inclusion of interaction terms between each of the
covariates and the C-Score variable, we did not obtain
significant increases in AUC or fit, indicating that this more
complex model does not offer much improvement compared
with a more parsimonious model. In addition, the C-Score odds
ratio was not significant, implying no change in the odds of
all-cause mortality associated with the change in the C-Score.

Table 6 and Figures 2 and 3 compare the performance of the
expanded models with that of the basic C-Score model. The
addition of basic sociodemographic variables to the C-Score
model in model 2 increased discrimination considerably, as
evidenced by the c-statistic of 0.87 (95% CI 0.85-0.88)
compared with 0.72 (95% CI 0.71-0.73) yielded by the original
C-Score model. However, although the addition of
sociodemographic variables lowered the Akaike Information
Criterion, the model was not well calibrated as the calibration
test rejected the null hypothesis of good fit (P=.04).
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Table 6. Performance of original C-Score versus expanded models for all-cause mortality.a

AICdAUCc (95% CI)Goodness of fit
(P value)

Score ORb (P
value)

Participants, NIndependent variablesModel

8897.780.72 (0.70-0.73)Good fit (.86)0.96 (<.001)21,015C-Scoree1

6977.070.87 (0.85-0.88)Poor fit (.04)0.97 (<.001)20,626C-Scoree+sociodemographic variablesf2

5705.1340.87 (0.86-0.88)Good fit (.06)0.96 (<.001)16,671C-Scoree+sociodemographic variablesf+medical historyg3

5693.3190.87 (0.86-0.89)Good fit (.19)1.0 (.25)16,671C-Scoree+sociodemographic variablesf+medical historyg+in-

teractionsh

4

aAll models include dummy variables for the survey rounds. Survey weights were included in all analyses.
bOR: odds ratio.
cAUC: area under the curve.
dAIC: Akaike Information Criterion.
eC-Score included six variables: cigarette consumption, alcohol consumption, sleep duration, self-rated health, waist to height ratio, and resting heart
rate.
fSociodemographic variables included age, gender, race or ethnicity, marital status, and educational attainment.
gMedical history variables were ever diagnosis of high blood pressure and ever diagnosis with hypercholesterolemia.
hEach sociodemographic variable and medical history variable interacted with the C-Score.

Figure 2. Receiver operating characteristic curve for original C-Score versus expanded models for all-cause mortality. Model 1: C-Score; model 2:
C-Score+sociodemographic variables; model 3: C-Score+sociodemographic variables+medical variables; model 4: C-Score+sociodemographic
variables+medical history+interactions.
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Figure 3. Calibration plots of predicted versus observed probabilities for original C-Score versus expanded models for all-cause mortality. Model 1:
C-Score; model 2: C-Score+sociodemographic variables; model 3: C-Score+sociodemographic variables+medical variables; model 4:
C-Score+sociodemographic variables+medical history+interactions.

Internal Validation
The validity of our final model (model 3) was assessed using
k-fold cross-validation. We used 10 random samples to
determine the discrimination capability of the model in
predicting the future incidence of all-cause mortality. The AUCs

for these random samples ranged from 0.85 to 0.87, showing
high consistency in the discrimination of the model (Figure 4).
The mean cross-validation AUC was 0.869, indicating a strong
capability of the model to discriminate the incidence of all-cause
mortality.
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Figure 4. Internal validation using k-fold procedure (folds=10). cvAUC: cross-validation area under the curve; ROC: receiver operating characteristic.

External Validation
The best-performing model (model 3) of the main analysis was
used for external validation. Figure 5 shows a calibration plot
displaying the predicted versus observed probabilities of
all-cause mortality. A comparison between the model
performance in the research sample and the external validation
sample reveals that the C-score using NHANES 2005-2014 has

a good fit with P=.06, AUC of 0.87 (95% CI 0.86-0.88) and an
Akaike Information criteria of 5705.13. The C-score on the
NHANES III survey has a good fit with P=.45, AUC of 0.89
(95% CI 0.88-0.90) and an Akaike Information criteria of
3420.19. These results imply that the model performed very
well in the external validation sample. It was both
well-calibrated and had a high AUC, which is even higher than
that identified in the first sample.
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Figure 5. Calibration plot of predicted versus observed probabilities of all-cause mortality for model 3 for all-cause mortality. Model 3:
C-Score+sociodemographic variables+medical variables. NHANES: National Health and Nutrition Examination Survey.

Discussion

Principal Findings
In this study, we conducted external validation of the C-Score
in the US population and expanded the original score to improve
its predictive capabilities in the US population.

We found that the C-Score had generally good prediction and
calibration capabilities and that it is a promising model that
could provide fast and accurate information on all-cause
mortality through a digital health app. Our results reveal similar
AUCs compared with those found in the United Kingdom by
Clift et al [17].

Given the lack of the reaction time variable in the main
NHANES sample, we conducted a sensitivity analysis with
another survey (NHANES III), which contains the reaction time
variable, to assess its marginal effect in predicting all-cause
mortality. The results suggest that the absence of the reaction
time variable did not meaningfully change the calibration or
the discrimination attributes of the assessed model. We believe
that the marginal effect is likely to be low as part of the variance
explained by the reaction time variable might be captured by
other variables in the C-Score.

In addition, we showed that the incorporation of a set of basic
sociodemographic and medical history variables greatly boosted

the model’s predictive performance in the US general
population. The AUC for our final model greatly increased from
0.72 (95% CI 0.71-0.73) for the basic C-Score model to 0.87
(95% CI 0.86-0.88) in the expanded model. We further assessed
the internal and external validity of the expanded model and
found that the model performed equally well in the 10-fold
cross-validation sample and the external NHANES III data set.

The incorporation of this model into a user-friendly digital
health app can motivate users to predict their current and future
health status and take actions to modify their health, thus
potentially shaping their future trajectories. Consumer demand
for technological innovations that measure health status and
predict health outcomes is evidenced by the recent proliferation
in the use of commercial wearable technologies, ranging from
simple activity or exercise monitors to more sophisticated
home-based connected medical devices [4,5]. These devices
may function independently or leverage sophisticated back end
analytics to analyze user trends and provide feedback [33]. In
addition to catering to consumer demand for quick, robust, and
user-friendly health assessment, these digital health strategies
also engage health care providers by sending client-generated
data directly into electronic health records, enabling their
integration into care plans [34,35]. The past decade has seen a
clear increase in obesity and other chronic diseases worldwide,
especially in the US population, where cardiovascular disease,
cancer, chronic respiratory illness, and diabetes are leading
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causes of death and morbidity [36]. An increasing proportion
of adults and children worldwide are overweight or obese,
exacerbating the risk of future noncommunicable diseases
(NCDs) [37]. The availability of scores that can help individuals
reliably estimate current (and potentially future) risk of adverse
outcomes could be helpful in interventions to improve individual
and, thus, population health in the United States and worldwide.
Thus, our validation of the C-Score serves to validate a
promising predictive model that can be easily accessed by a lay
audience to predict individualized clinical risk and take action
to make beneficial lifestyle changes and consequently reduce
the risk of future adverse outcomes.

Recent evidence confirms the utility of wearable technology in
predicting clinical outcomes with high accuracy [4,38]. Previous
studies have capitalized on wearable technologies to provide
reliable and accurate measurements of established predictors
of mortality and adverse health outcomes [39-42]. For example,
Smirnova et al [42] found that wearable technologies provide
reproducible and unbiased measures of physical activity, which,
in turn, outperform traditional predictors of 5-year mortality
among older adults in the US population [42]. The adapted
C-Score model had the added strength of using variables that
are routinely captured in baseline data collected from users of
wearables or inpatient records maintained by health care
systems. In addition, such data are more uniformly measured
and available across different settings outside the United States
and the United Kingdom. Given the overall goal of increasing
the generalizability of this score, this is a step in the right
direction toward making this a more universally feasible model.
Previous models that leveraged complete blood counts and
metabolic profiles achieved similar performance (AUC
0.83-0.90) at a presumably much higher cost and logistical
complexity [43]. Other studies that integrated a wide range of
cognitive, demographic, lifestyle, and clinical factors also
achieved similar, if not lower, performance. For example,
Ajnakina et al [44] achieved an AUC of 0.74 for all-cause
mortality prediction in the general population using 13
prognostic factors. Models that apply increasingly more complex
methods such as machine learning are able to slightly improve
discrimination, yielding AUCs between 0.78 and 0.79 [45].

Our findings should be viewed in light of some limitations.
First, we used a cross-sectional survey that did not follow
individuals over time. NHANES is the only survey that is
nationally representative of the US general population, which
contains most of the variables present in the original C-Score
model. The NHANES survey contains 6 out of the 7 variables
included in the original UK population-based model, potentially

leading to a C-Score that artificially underperforms when
predicting all-cause mortality. However, our sensitivity analysis
showed that the reaction time variable did not marginally
provide additional value to the C-Score in this sample. Even if
the subsample in which we tested the reaction time variable did
not have the external validity to inform the results of the
NHANES subsample, the lack of the reaction time variable
would likely lead to an underperforming score, implying that
the ability of the score to predict all-cause mortality would be
higher, if the reaction time variable had been available in the
main NHANES data set. Moreover, although the association
between death and other covariates has been investigated using
Cox proportional hazards models in other publications, including
the original C-Score model [45,46]—we focused on a binary
all-cause mortality variable instead of time to death as (1) time
to event data was not available, (2) logistic models are easier
to communicate to a lay audience, and (3) they avoid the
assumptions made by Cox models that may not be met [42].
They have also been shown to perform as well as more complex
models [42,47]. Ideally, we would have preferred to use a data
set that provides longitudinal estimates; however, we used
NHANES, a cross-sectional survey, as it is the only US survey
that is nationally representative of the general population and
contains the variables present in the original C-Score model
(with the exception of reaction time). It also provides a large
data set with population-based data.

Conclusions
Limitations notwithstanding, the findings of this validation
indicate that the performance of the C-Score is fairly good for
predicting all-cause mortality in the US population. The adapted
risk score had even better prediction capabilities, as evidenced
by the finding that it predicted 87% of the mortality in the US
population.

In conclusion, our study findings validate and expand a novel
risk-scoring algorithm that can predict the risk of all-cause
mortality among adults in the general population with high
accuracy and which could be incorporated into a digital health
application. The use of high-performing risk scores could be
instrumental in clinical counseling, choice of care pathways,
and even patient-driven behavior change interventions targeting
modifying lifestyles and promoting behavioral change. Despite
known effective strategies to reduce NCD-related deaths
worldwide, chronic and preventable NCDs continue to drive
adult mortality. High-performing risk scores that trigger
behavior change could be instrumental in stemming this tide of
death and decreased global productivity.
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