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Abstract

Background: The COVID-19 pandemic has created environments with increased risk factors for household violence, such as
unemployment and financial uncertainty. At the same time, it led to the introduction of policies to mitigate financial uncertainty.
Further, it hindered traditional measurements of household violence.

Objective: Using an infoveillance approach, our goal was to determine if there were excess Google searches related to exposure
to child abuse, intimate partner violence (IPV), and child-witnessed IPV during the COVID-19 pandemic and if any excesses are
temporally related to shelter-in-place and economic policies.

Methods: Data on relative search volume for each violence measure was extracted using the Google Health Trends application
programming interface for each week from 2017 to 2020 for the United States. Using linear regression with restricted cubic
splines, we analyzed data from 2017 to 2019 to characterize the seasonal variation shared across prepandemic years. Parameters
from prepandemic years were used to predict the expected number of Google searches and 95% prediction intervals (PI) for each
week in 2020. Weeks with searches above the upper bound of the PI are in excess of the model’s prediction.

Results: Relative search volume for exposure to child abuse was greater than expected in 2020, with 19% (10/52) of the weeks
falling above the upper bound of the PI. These excesses in searches began a month after the Pandemic Unemployment Compensation
program ended. Relative search volume was also heightened in 2020 for child-witnessed IPV, with 33% (17/52) of the weeks
falling above the upper bound of the PI. This increase occurred after the introduction of shelter-in-place policies.

Conclusions: Social and financial disruptions, which are common consequences of major disasters such as the COVID-19
pandemic, may increase risks for child abuse and child-witnessed IPV.

(J Med Internet Res 2022;24(6):e36445) doi: 10.2196/36445
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Introduction

Child abuse and intimate partner violence (IPV) are common.
In the United States, 37% of children will be involved in an

official investigation by Child Protective Services, whereas
25% of women and 11% of men experience IPV [1,2]. The
downstream effects of abuse are profound; compared to adults
not reporting histories of abuse, adults with histories of abuse
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are 60% more likely to abuse drugs, 60% more likely to develop
cardiovascular disease, and 3 times more likely to attempt
suicide, demonstrating the wide-ranging effects on health across
the life course [3,4]. These increased risks of adverse adult
health outcomes are hypothesized to be mediated through several
pathways such as increased high-risk behaviors (eg, substance
abuse, smoking, and exercise avoidance), dysregulated immune
functioning, and psychiatric disorders [5].

The risk factors for perpetrating child abuse and IPV include
(but are not limited to) undergoing economic stress, feelings of
isolation and disconnection, and parental stress (for child abuse)
[6,7]. These risk factors were magnified during the first year of
the COVID-19 pandemic through increased unemployment,
shelter-in-place (SIP) policies, and remote schooling. Previous
studies found that calls to the US hotline Childhelp increased
during the first year of the pandemic, as did arrests, calls, and
reports to police departments related to domestic violence [8,9].
At the same time, policy responses to mitigate financial
uncertainty in the United States were substantial. For example,
the Pandemic Unemployment Compensation (PUC) program
increased unemployment payments by US $600 per week for
4 months, which offered an opportunity to explore the potential
protective impacts of policies mitigating financial uncertainty.
A challenge, however, is that the pandemic hindered the
measurement of violence through traditional measures, for
example, by reducing interactions with mandated reporters of
child maltreatment [10]. A previous study found that during the
Great Recession, places with decreases in Child Protective
Services referrals had increases in both child mortality and
Google searches for child abuse [11]. The divergence of reports
from other measures of abuse suggests that abuse surveillance
based on referrals may be hindered during periods of economic
upheaval and that Google searches may help overcome this
limitation.

We considered a broad set of Google searches based on the
terms that individuals experiencing or witnessing child abuse
or IPV would use as a measure of the incidence of household
violence. This approach to monitoring epidemiologic trends
falls under the field of “infoveillance,” where user-generated
data collected from the internet and social media sites are used
for surveillance [12,13]. Peaks in Google searches related to
domestic violence were found to occur in the same months as
peaks in police calls for domestic violence, suggesting that
Google searches may offer a promising way to measure
household violence outcomes [14]. The use of Google searches
to measure epidemiologic outcomes has varied; searches related
to influenza did not track well with the incidence of
influenza-like illnesses [15-17], but searches related to the loss
of smell correlated strongly with COVID-19 cases and deaths
in the first months of the first wave of the pandemic [18]. Given
that the pandemic hindered the measurement of violence in
conjunction with similar trends of domestic violence with
Google searches, the infoveillance approach is well-suited to
study violence during a time of uncertainty.

The objective of this study was to establish whether Google
searches for child abuse and IPV, which are nontraditional
violence measures, increased during the pandemic and consider
the timing of the increases in relation to SIP and economic

policies that may affect violence risk factors. The findings will
have implications for future policy responses to major crises.

Methods

Data Collection
To measure exposure to child abuse, child-witnessed IPV, and
exposure to IPV using search data, we created 3 lists of queries
that individuals who experience or witness abuse may search
for on the internet (see Multimedia Appendix 1). Our
methodology has been used in a previous study (Neumann et
al, unpublished data, 2022). We conducted a review of the
literature to determine how children and adults discuss these
experiences (eg, Foster and Hagedorn [19]). We also considered
the language used in validated scales measuring violence. We
then tested the sensitivity and specificity of these search phrases
by searching for them using a Google Incognito browser to
ensure that the results were consistent with those experiencing
or witnessing abuse and discarded the search phrases that did
not appear relevant. We settled on 3 final search terms, each of
which combined phrases specific to an abuse subtype (ie,
exposure to child abuse, child-witnessed IPV, and exposure to
IPV).

The Google Health Trends application programming interface
(API) was used to obtain the Google search volume for 3
separate violence measures: exposure to child abuse,
child-witnessed IPV, and exposure to IPV. To obtain the search
data from the API, the researcher must first apply for an API
key. Search terms, geographic region, and the time period of
interest must be entered by the researcher, and the API will then
return the probability of the search terms for the specified
geo-time period. The returned results are based on a random
sample of all Google searches and then, for readability, scaled
by 10 million (2020 Google Health Trends API Getting Started
Guide, unpublished document provided with API key). The API
output must be interpreted as a relative search volume with an
unknown denominator as the total number of searches used to
calculate the returned probability is unknown to researchers.
For this study, we obtained national-level weekly search
volumes for each of our 3 search terms from 2017 to 2020 in
the United States. We chose this geo-temporal resolution so
that we could assess trends relative to important federal policy
changes. All data were retrieved from the API between July 6
and 24, 2021. Since the returned values are probabilities based
on a random sample of all Google searches, it is also important
to account for sampling variability. To obtain more stable search
volume estimates, 10 samples of each search were extracted.
We computed both the mean and median of the estimates; their
difference was very small, so we used the mean in the model.

Statistical Model
We first built a prediction model using data from 2017 to 2019.
Using a linear regression fit using ordinary least squares, we
modeled weekly Google search volume based on date, entered
with a main effect term (to control for linear increases [or
decreases] in Google search volume over the prediction period)
and a restricted cubic spline for the week of year (with interior
knots at the 10th, 50th, and 90th percentiles) to capture seasonal
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patterning. We report the adjusted r-squared value to quantify
the amount of outcome variation that is captured by the model.

We then used the model to predict the expected Google search
volume for each week in 2020 alongside its 95% prediction
intervals (PI). PIs place bounds on where observed individual
values are expected to fall [20]. Thus, observations from 5%
(2-3 weeks) of the 52 weeks in 2020 are expected to fall outside
of the bounds of the 95% PI, and any more than that is
considered a notable finding that is not predicted given the
previous trends in the search volume.

We plotted weekly search volume, overlayed with the predicted
searches and 95% PI. We annotated these plots with information
about policies and payments that may ameliorate or accentuate
risk factors for abuse, including the introduction of state-specific
SIP policies (starting March 19, 2020 [21,22]), the date when
individuals started receiving one-time Economic Impact
Payments (April 17, 2020 [23]), and the end date of the PUC
program (July 31, 2020 [23]), which provided an additional US
$600 per week to claimants on top of usual unemployment
benefits.

The R statistical software (version 4.1.0; R Foundation for
Statistical Computing) was used to conduct this analysis. All
code can be found in the GitHub repository [24].

Ethical Considerations
No personal information is available to researchers through the
Google Health Trends API (2020 Google Health Trends API
Getting Started Guide, unpublished document provided with
API key). Google search volumes below an unspecified lower
bound are suppressed by Google and not made available to
researchers.

Results

Google Search Volumes
Yearly average Google search volumes for the abuse outcomes
ranged between volumes of 58.3 (child-witnessed IPV in 2019)
and 87.0 (exposure to child abuse in 2020; Table 1 and Figures
S1-3 in Multimedia Appendix 2). All models met the
assumptions required for linear regression (Figures S4-6 in
Multimedia Appendix 2).

Table 1. Yearly average Google search volume and SD for exposure to child abuse, child-witnessed intimate partner violence (IPV), and exposure to
IPV.

Google search volume, mean (SD)Domain of abuse

2020201920182017

87.0 (8.2)83.8 (6.3)79.0 (7.5)85.0 (9.4)Exposure to child abuse

64.0 (8.7)58.3 (6.0)58.7 (6.4)60.0 (7.0)Child-witnessed IPV

80.1 (7.2)82.1 (7.3)85.6 (6.2)80.7 (5.9)Exposure to IPV

Exposure to Child Abuse
Over the time period from 2017 to 2019, the Google search
volume for child abuse was consistently highest in June and
lowest in January, and the search volume decreased slightly
year-to-year (Figure 1A). The model explained 15.3% of the
variation in child abuse searches. From 2017 to 2019 inclusive,

5 out of 157 (3.2%) weeks fell outside of the PI, as expected,
with 2 points above and 3 points below the upper and lower
bounds, respectively. In 2020, 10 out of 52 (19%) weeks fell
above the PI, all above the upper bound, suggesting an increase
in child abuse searches. These increases were detected beginning
August 30, 2020, about 4 weeks after the end of the PUC
program.
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Figure 1. Average weekly Google search volume (points) alongside predicted Google search volume (curve) and 95% prediction intervals (grey and
blue bands) for (A) exposure to child abuse, (B) child-witnessed intimate partner violence, and (C) exposure to intimate partner violence, United States,
2017-2020. State-specific shelter-in-place (SIP) policies began on March 19, 2020, with California’s SIP order, shortly after the national emergency
was declared on March 13, 2020. The Coronavirus Aid, Relief, and Economic Security (CARES) Act was enacted on March, 27, 2020, and one-time
Economic Impact Payments (EIP) were sent to nearly 90 million individuals by April 17, 2020, as part of the CARES Act. The Pandemic Unemployment
Compensation (PUC) program, which was also part of the CARES act and provided an additional US $600 per week to claimants on top of usual
unemployment benefits, expired on July 31, 2020.

Child-Witnessed IPV
From 2017 to 2019, the Google search volume was consistently
highest in December and lowest in October, and the search
volume declined slightly year-to-year (Figure 1B). The model
explained 11.4% of the variation in child-witnessed IPV
searches. From 2017 to 2019 inclusive, 6 out of 157 (3.8%)
weeks occurred outside of the PI (3 points each above and below
the upper and lower bounds), as expected, while in 2020, 17
out of 52 (33%) fell above the PI, suggesting an increase in
child-witnessed IPV searches. All increases occurred after SIP
policies began and continued after the end of the PUC program.

Exposure to IPV
From 2017 to 2019, IPV searches showed dips in November
and December, with an otherwise flat yearly trend (Figure 1C).

The model explained only 1.8% of the variation in the Google
search volume for exposure to IPV. The model detected 3 out
of 52 (6%) weeks with lower-than-expected search volumes in
2020, which was similar to prepandemic years (5%, 8/157).

Discussion

Principal Findings
Overall, we found that following the start of the COVID-19
pandemic, child abuse and child-witnessed IPV searches were
elevated beyond that predicted by search history (from 2017 to
2019) for a substantial fraction of months/weeks. Child abuse
searches increased a month after the PUC program ended. This
pattern would be consistent with the hypothesis that the
substantial loss in income from the end of the PUC program
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may have led to an increase in child abuse; this would be
valuable to examine in future research. These findings are
consistent with previous literature linking decreased family
income downstream of policy changes to increased reports to
Child Protective Services [25-27]. Child-witnessed IPV
searches, but not exposure to IPV searches, increased at the
time of SIP policies. This might suggest greater opportunities
for children to witness IPV rather than an increase in IPV itself,
although searches for IPV itself might have been impacted by
less privacy with household members spending more time
together. The findings of increases in child abuse and
child-witnessed IPV align with documented increases in calls
to ChildHelp and police reports for domestic violence [8,9]. In
the first study, calls to the hotline Childhelp increased 14%
during 2020 compared to 2019 [8]. In the second study,
increases between 10% to 27% were reported in the number of
arrests, calls, or reports to police departments related to domestic
violence [9]. This study is important because Google search
data are a promising alternative to traditional measures of child
abuse and IPV, which have well-documented reporting biases.
Surveys estimate that less than 10% of child abuse [28] and less
than half of domestic abuse is reported [29], implying that the
majority of abuse goes undetected using traditional measures.
The consistency of our findings with research that used hotline
and police report data adds to the limited evidence on the
impacts of the pandemic on child abuse and IPV and supports
the promise of this approach to measuring abuse. Google search
data may become particularly salient for this purpose at times
when traditional detection approaches may be disrupted.

Limitations
Our study has limitations. First, we did not directly measure
child abuse or IPV, and this study assumes that Google searches
for child abuse and IPV track with the underlying incidence of
the outcomes. A previous study found that Google searches for
domestic abuse were associated with police calls for domestic

violence in Finland [14], but no studies have examined this link
in the United States. A second limitation is that Google searches
can only be performed by individuals with access to the internet.
Thus, the results may not generalize to households with no
internet access, especially if the effect of the pandemic on abuse
was larger or smaller compared to households with internet
access. These results also do not reflect the experiences of
children who do not use the internet, and thus may correspond
more to the experiences of older children. Although some studies
have found that Google searches can be affected by mass media
related to the topic [30], we attempted to overcome this by
limiting searches to those made by individuals experiencing or
witnessing abuse, rather than focusing on broad searches like
“child abuse” that may track with high-profile cases of abuse.
We also removed terms that returned Google search results that
were not relevant to exposure to abuse or child-witnessed IPV
as part of a process we developed to use Google searches to
measure epidemiologic constructs (Neumann et al, unpublished
data, 2022). Lastly, the analytic approach we used can be
hindered by multiple testing, since we deemed that a week of
Google search volume was notable if it fell outside of the PI
and we do this for each week in 2020. However, we found that
multiple weeks—serially located in time—fall above the PI,
which does not seem to suggest that we were detecting a
“one-off” that happens to fall outside the PI. Thus, we do not
believe that multiple testing played a role in these findings.

Conclusions
Social and financial disruptions, which are common
consequences of major disasters, may increase the risks for child
abuse and child-witnessed IPV. The increase in child abuse
searches after the abrupt loss of income when PUC payments
ceased suggests that economic mitigation strategies may be
protective if sustained, though this study did not establish
causation. Public health responses to future disasters should
incorporate strategies to mitigate household violence.
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