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Abstract

Background: Machine learning algorithms are currently used in a wide array of clinical domains to produce models that can
predict clinical risk events. Most models are developed and evaluated with retrospective data, very few are evaluated in a clinical
workflow, and even fewer report performances in different hospitals. In this study, we provide detailed evaluations of clinical
risk prediction models in live clinical workflows for three different use cases in three different hospitals.

Objective: The main objective of this study was to evaluate clinical risk prediction models in live clinical workflows and
compare their performance in these setting with their performance when using retrospective data. We also aimed at generalizing
the results by applying our investigation to three different use cases in three different hospitals.

Methods: We trained clinical risk prediction models for three use cases (ie, delirium, sepsis, and acute kidney injury) in three
different hospitals with retrospective data. We used machine learning and, specifically, deep learning to train models that were
based on the Transformer model. The models were trained using a calibration tool that is common for all hospitals and use cases.
The models had a common design but were calibrated using each hospital’s specific data. The models were deployed in these
three hospitals and used in daily clinical practice. The predictions made by these models were logged and correlated with the
diagnosis at discharge. We compared their performance with evaluations on retrospective data and conducted cross-hospital
evaluations.

Results: The performance of the prediction models with data from live clinical workflows was similar to the performance with
retrospective data. The average value of the area under the receiver operating characteristic curve (AUROC) decreased slightly
by 0.6 percentage points (from 94.8% to 94.2% at discharge). The cross-hospital evaluations exhibited severely reduced
performance: the average AUROC decreased by 8 percentage points (from 94.2% to 86.3% at discharge), which indicates the
importance of model calibration with data from the deployment hospital.

Conclusions: Calibrating the prediction model with data from different deployment hospitals led to good performance in live
settings. The performance degradation in the cross-hospital evaluation identified limitations in developing a generic model for
different hospitals. Designing a generic process for model development to generate specialized prediction models for each hospital
guarantees model performance in different hospitals.

(J Med Internet Res 2022;24(6):e34295) doi: 10.2196/34295

J Med Internet Res 2022 | vol. 24 | iss. 6 | e34295 | p. 1https://www.jmir.org/2022/6/e34295
(page number not for citation purposes)

Sun et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:hong.sun@dedalus.com
http://dx.doi.org/10.2196/34295
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

machine learning; clinical risk prediction; prediction; model; model evaluation; scalability; risk; live clinical workflow; delirium;
sepsis; acute kidney injury; kidney; EHR; electronic health record; workflow; algorithm

Introduction

Machine learning algorithms for clinical risk predictions are
widely used in health care research and applications [1-5]. While
much work has been done on developing distinct clinical risk
prediction models, the scalability of the prediction models has
been much less explored (ie, the extensibility of the risk
prediction model for multiple diseases over different hospitals)
[6].

Rajkomar et al [6] designed a single data structure based on the
FHIR (Fast Healthcare Interoperability Resources) standard [7]
and developed different clinical scenarios over two hospitals
with this common data structure. That was the first study that
reported the performance of prediction models of multiple use
cases in different hospitals. Churpek et al [8] aggregated the
electronic health record (EHR) from five hospitals to train a
single model to make predictions on cardiac arrest, intensive
care unit (ICU) transfers, or death on wards. The performance
of the model outperforms the existing Modified Early Warning
Score. The limitation is that both studies [6,8] were validated
with retrospective data and have not yet been used in a live
clinical workflow.

In our previous publication [9], we discussed the scalability
issue in clinical risk prediction model development; we also
presented a scalable approach for prediction model development
that is applied to delirium, sepsis, and acute kidney injury (AKI)
covering four different hospitals. However, these prediction
models were only evaluated on retrospective data.

Evaluating the prediction models in live clinical settings is
crucial because factors such as interoperability across different
platforms or different prevalence can affect the performance of
an artificial intelligence (AI) algorithm [10,11]. However, very
few prediction models have been evaluated in a live clinical
workflow. For example, several delirium prediction models that
have been reported in recent years [9,12,13] have all been
evaluated on retrospective data. Jauk et al [14] claimed their
findings to be the only delirium prediction model that has been
evaluated in a live clinical workflow. In their study, 5530
predictions were analyzed, and 119 predictions were compared
with ratings of clinical experts during a period of 7 months. The
limitation of Jauk et al [14] is that their model only evaluated
in a single hospital. When a prediction model is evaluated in
different hospitals, the performance may degrade due to the
difference in EHRs and workflows between the training data
and the target hospital. Wong et al [15] reported large
performance degradation on sepsis prediction when a sepsis
prediction model was applied in a different hospital.

Wu et al [16] considered it important to evaluate AI-based
medical devices over different sites with live clinical settings
to address the shortcomings, such as overfitting to training data
and bias against underrepresented subgroups, among others.
They investigated 130 US Food and Drug
Administration–approved AI devices: 126 evaluations were

performed as retrospective studies and 93 devices did not have
multiple site evaluations.

In this paper, we evaluated clinical risk prediction models (ie,
delirium, sepsis, and AKI) in live clinical workflows in three
different hospitals in Germany. We compared the performance
of the models with their performance on retrospective data from
our previous work. By logging prediction requests in the
production EHR system, we ran cross-hospital evaluations
mimicking the performance of a prediction model in live clinical
workflows of different target hospitals. Domain experts executed
preliminary evaluations on clinical soundness and usefulness
of the predictions by following the use of the prediction service
in their daily practice.

To the best of our knowledge, we are the first to report the
evaluation of machine learning–based clinical risk prediction
models in the settings of production EHR systems, which
focuses on evaluating several diseases in different hospitals at
the same time. In addition, in the cross-hospital evaluation, we
simulated the performance of a prediction model in live clinical
workflows of different target hospitals.

Methods

Overview
We used a scalable approach, implemented in a calibration tool,
to generate clinical risk prediction models for different use cases
in three different German hospitals based on retrospective EHR
data: Marienhospital Stuttgart (from 2004 to 2020), Herz- und
Diabeteszentrum Nordrhein-Westfalen Bad Oeynhausen (from
2009 to 2020), and Medius Klinik Nürtingen (from 2009 to
2020). The evaluation in live systems was performed in the first
half of 2021; details of the evaluation period are provided in
Table S1 in Multimedia Appendix 1. The characteristics of the
training set are provided in Table S2 in Multimedia Appendix
1, and the characteristics of the evaluation samples, in live
systems, are provided in Table S3 in Multimedia Appendix 1.
We refer to these three hospitals as hospital M, hospital H, and
hospital N, respectively. The calibration process that generates
prediction models is described in our previous work [9]. Using
the calibration tool, models were trained independently on data
from each hospital and deployed in the prediction service of the
same hospital. Requests for predictions were generated from
the EHR system in the FHIR [7] “RiskAssessment” format and
were sent to the prediction service. The prediction service parsed
each prediction request into an observation, which was used to
generate a prediction. The predictions were returned and
displayed in the EHR system. The observation, together with
the corresponding risk score produced by the prediction model,
were stored for further evaluation of model performance.

Model Development and Deployment
Figure 1 shows the process of model development and
evaluation with retrospective data. The process to design the
prediction model, prepare data, and train models was defined
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following experiments performed on a development data set.
The resulting dedicated process and prediction model design
was implemented in an automated pipeline, named the
calibration tool. The calibration tool provided a user-friendly
approach to install, configure, and run the process of data
preparation, model training, and evaluation on a
customer-specific system. A command-line interface enabled
service engineers to install the required software, files, and
pretrained natural language processing (NLP) models and to
execute the training and evaluation of the hospital-specific
prediction models.

Figure 2 shows the components and interactions of the
calibration tool. The lower pane defines a fixed sequence of
tasks to perform in order to calibrate models for the supported
use cases with data from a target hospital. The upper pane
contains a set of components that execute these tasks.

We then ran the calibration tool independently in each hospital
to generate clinical risk prediction models for each hospital.
The models were trained based on the retrospective data that
were generated as part of the clinical workflow of each target
hospital. We thereby ensured that the model fit the clinical
practice of the hospital where the model was to be deployed.
The data checking process guaranteed that the source data were
represented in the expected format. The data preparation process
prepared the training and testing data. The labels of each use
case were assigned by the labeler component based on the
diagnosis codes assigned to each hospitalized patient at
discharge. A common set of features was prepared and used by
the different use cases, which included structured data, such as
lab results and history of diagnosis, as well as clinical entities
extracted from free-text clinical notes. Both a text search and a
BERT (bidirectional encoder representations from transformers)
[17] named entity recognition model were used in preparing
the NLP features. The following inclusion criteria were applied
during data preparation: age and gender had to be known,

patients had to be 18 years or older, only inpatients could be
included, and length of stay had to be limited to 90 days.

Prediction models were trained using a common model training
strategy: we used the Transformer model [18] to train a binary
classification model for clinical risk prediction. We concatenated
the features as inputs and used the labels as targets for the model
training process. The models were trained with patient data that
were collected at the time of discharge with leaking features
removed. In order to cope with the situation where the model
was requested to make predictions when less information was
available, we applied data augmentation in training sample
preparation: we generated partial records in combination with
the complete records to enhance the robustness of the clinical
risk prediction model. More details can be found in our previous
work [9]. The generated models were first examined with a
model checking process, where a set of minimum requirements
were assessed as unit tests. Models that passed the checks were
further evaluated on their performance using common metrics,
such as the area under the receiver operating characteristic curve
(AUROC), sensitivity, and specificity, among others.
Acceptance criteria were checked during the model evaluation
process. The acceptance criteria differed among use cases and
were checked for each department. Models that met the criteria
could be activated in the corresponding departments to trigger
alerts in the production EHR system. The acceptance criteria
were complex and are explained in detail in Table S4 in
Multimedia Appendix 1.

Risk prediction models evaluated in this paper were generated
by our calibration tool in the three aforementioned German
hospitals. The details of feature engineering and model training
were presented in a former publication [9]; examples of model
input features are provided in Table S5 in Multimedia Appendix
1. Preliminary cross-hospital evaluation was performed with
retrospective data in our previous study and performance
degradation was observed [9].

Figure 1. Model development and evaluation with retrospective data.
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Figure 2. Calibration tool.

Model Evaluation With Live Data From the Clinical
Workflow
Figure 3 shows the process of model evaluation with live data
from the clinical workflow. Prediction services were triggered
following clinical events in the EHR system (eg, when new lab
results for a patient were added to the system). The EHR system
sent the relevant patient record to the prediction service, where
the hospitals’ specialized prediction models for three different
use cases, trained on the hospital data, were deployed. For each
use case, the prediction model predicted the risk of developing
the related disease and returned the risk score in response. Based
on the defined thresholds, alerts were created in the EHR system
for those that were predicted as high risk. For each prediction
made by the prediction service, the corresponding request and
response were stored by a logging service. By comparing the
predictions made by the prediction service and the corresponding
real labels, we evaluated the model performance in a live clinical
workflow. Moreover, the prediction requests stored by the
logging service could be used to generate predictions with a
different model to simulate its performance in a live clinical
workflow. This alternate model could be a model that is trained
in the same hospital with a different training strategy, as well
as a model that is trained on the data from a different hospital.

For example, in Figure 3, the logging information stored in
hospital A (ie, the hospital where risk predictions in a live EHR
system are made) can be used to generate predictions with a
model trained at hospital B (ie, a different hospital where a
different risk prediction model is trained). By comparing those
predictions with the real labels, it is possible to estimate the
performance of the model of hospital B in the live clinical
workflow of hospital A.

To support the evaluation presented in this paper, the JSON file
logging driver (ie, the default Docker logging service) [19] was
used to log the request and response of prediction services to
separate JSON log files. Each prediction request log entry
contained the date and time and the input features for the
prediction. Each prediction response log entry contained the
used input features and risk score for the prediction. An excerpt
of a sample log of prediction requests is enclosed (Table S5 in
Multimedia Appendix 1). In the production EHR system, the
prediction service can process a patient’s records and instantly
make a corresponding prediction or explanation. Prediction
models for delirium, sepsis, and AKI were installed in three
hospitals. Prediction requests and responses were logged in
these three hospitals as input for the evaluations. The response
time for predictions was evaluated and provided (Figure S1 in
Multimedia Appendix 1).

Figure 3. Model evaluation with live data from the clinical workflow. Hospital A refers to the hospital where risk predictions in a live electronic health
record system are made. Hospital B refers to a different hospital where a different risk prediction model is trained.

Ethical Considerations
Our study to assess model performance involved the analysis
of unidentifiable patients, and data use was granted to us by the

pilot hospitals—hospital H, hospital M, and hospital N—for
this purpose, after appropriate review. Therefore, no ethics
approval by the Institutional Review Board was required. The
cohort study at hospital H was approved by the Ethics
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Committee of the Medical Faculty of the Ruhr-Universität
Bochum (file No. Az.2021-861).

Results

Evaluation of Model Performance in Live EHR
Systems
The models made predictions at different stages during a patient
stay with live data; however, the performance of the clinical
risk prediction models within a live clinical workflow was
evaluated at the end of the day of admission, as well as on the
day of discharge. The reason we checked the performance of
our prediction model at these two stages was to evaluate their
performance when there were limited data compared to when
sufficient data were available. Leaking information, such as
strong diagnostic data or textual references to the diseases to
be predicted, was excluded, following the settings we applied
when we evaluated the model performance on retrospective
data in our previous study [9]. Taking these same strategies
allowed a fair comparison between the performance achieved
on live data with that obtained on retrospective data. The model
performance was evaluated by the AUROC. We choose to
evaluate using the AUROC because the sensitivity, specificity,
and precision were dependent on the threshold (ie, defined by
the point chosen on the receiver operating characteristic curve).
The threshold is used by the hospitals to trigger an alert and
may differ among hospitals because some hospitals favor
sensitivity over specificity or vice versa. Using the AUROC
allowed us to compare the outcome of three use cases at three
different hospitals independently from this threshold. Sensitivity,
specificity, and precision were used to decide on the threshold

and are provided with the explanation of the model acceptance
criteria (Table S4 in Multimedia Appendix 1).

Figure 4 evaluates the model performance as assessed by the
AUROC on the live data versus the retrospective data (Table
S6 in Multimedia Appendix 1). Each row in the table indicates
the hospital in which the evaluation was performed. Each
column indicates the use case and the point in time of the model
evaluation (ie, either at the end of the admission day or at
discharge). Positive values (ie, shades of green) indicate that
the respective model performed better when evaluated on live
data as compared to retrospective data, whereas negative values
(ie, shades of red) indicate that models performed worse when
evaluated on live data as compared to retrospective data. For
example, the delirium model AUROC, evaluated at the end of
the day of admission at hospital N, was 4.36 percentage points
lower when the model was performed on the live data
(AUROC=80.9%) as compared to retrospective data
(AUROC=85.26%). On average, our delirium prediction model
had a lower AUROC when evaluated on live data as compared
to retrospective data. In contrast, our sepsis prediction model
performed better on live data as compared to retrospective data,
whereas the AKI prediction model performed equally well on
both. At the hospital level, evaluation on live data led to higher
model performance in hospital N (+0.1 percentage points) but
to lower performance in hospitals M and H (–1.8 and –0.7
percentage points, respectively). When averaged across all three
use cases and all three hospitals, the performance of our
prediction models declined slightly when evaluated on live data
(AUROC values: 83.1% at admission, 94.2% at discharge, and
88.6% on average) as compared to retrospective data (AUROC
values: 83.0% at admission, 94.8% at discharge, and 89.4% on
average).

Figure 4. Model performance: live data vs retrospective data. The table was generated using the AUROC values for the live and retrospective data
(Table S6 in Multimedia Appendix 1). adm: admission; AKI: acute kidney injury; AVG: average; AUROC: area under the receiver operating characteristic
curve; dis: discharge; H: Herz- und Diabeteszentrum Nordrhein-Westfalen Bad Oeynhausen; M: Marienhospital Stuttgart; N: Medius Klinik Nürtingen.
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Cross-Hospital Evaluation
Cross-hospital evaluation was performed by extracting the
observations from the prediction request in one hospital and
generating predictions using a model trained on data from a
different hospital. We evaluated our models in a live clinical
workflow based on the logging information stored in the
prediction service. The prediction requests made at different
stages of a medical stay were used to generate corresponding
predictions by prediction models of other hospitals. By using
the prediction models of other hospitals, we simulated the
performance of these models in a live clinical workflow, without
the model being installed on-site.

Figure 5 shows an example of simulating the performance of
models trained on data from hospitals M and N, but applied to
live data of the medical stay of a sample patient in hospital H.
The red vertical line indicates the point in time of the patient’s
surgery. The three colored lines reflect the simulated model
prediction over the course of the patient’s medical stay in
hospital H, using models trained separately on data from hospital
H, M, and N.

In the presented case, postoperative delirium was confirmed by
an independent evaluation—the Confusion Assessment Method
for the ICU (CAM-ICU) [20]—on the first postoperative day.
The CAM-ICU evaluation was not included as a feature of our
training model. Of the three models, the one trained at hospital
H predicted the risk of delirium before surgery and identified

an increased risk after surgery. The risk after surgery increased
gradually when lab results and clinical entities were added. The
models trained at the other hospitals both predicted the risk of
delirium before surgery, but both failed to properly identify the
severity of the risk after surgery.

The detailed outcome of cross-hospital evaluation on prediction
requests extracted from the live clinical workflow is provided
in Table S7 in Multimedia Appendix 1. Prediction models for
three different diseases (ie, delirium, sepsis, and AKI) were
evaluated by comparing the AUROCs of different models at
discharge. Figure 6 depicts the performance degradation of a
model when trained in a certain hospital and deployed in another
hospital. For each use case, AUROC values in a row are
compared to the white cell in the same row, which indicates
within-hospital performance. For example, when the delirium
model trained on data from hospital H was deployed in hospital
M (91.2%, column 2, row 1; Table S7 in Multimedia Appendix
1), the AUROC was 3.2 percentage points lower as compared
to its performance in hospital H (94.4%, column 1, row 1; Table
S7 in Multimedia Appendix 1). The largest performance
degradation (–20.5 percentage points) was observed when the
AKI model trained on data from hospital H was deployed in
hospital M.

On average, the AUROC was 8 percentage points lower when
a model was deployed in a hospital other than where it was
trained (from 94.2% to 86.3%).

Figure 5. Delirium risk prediction of a sample patient during his medical stay based on data from the live electronic health record system. H: Herz-
und Diabeteszentrum Nordrhein-Westfalen Bad Oeynhausen; M: Marienhospital Stuttgart; N: Medius Klinik Nürtingen.
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Figure 6. Performance degradation of a model trained in a certain hospital (rows) and deployed in another hospital (columns). The table was generated
from the AUROC values from cross-hospital evaluation on the live data (Table S6 in Multimedia Appendix 1). AKI: acute kidney injury; AUROC:
area under the receiver operating characteristic curve; H: Herz- und Diabeteszentrum Nordrhein-Westfalen Bad Oeynhausen; M: Marienhospital Stuttgart;
N: Medius Klinik Nürtingen.

Preliminary Evaluation of Clinical Soundness and
Usefulness
The prediction models were installed in the live EHR systems
of three different hospitals. These models generated predictions
and triggered alerts in a live clinical workflow. Those alerts
were displayed in the production EHR system and are currently
under the evaluation of domain experts. A quantitative
evaluation of the impact on clinical outcomes has not yet been
performed. Nevertheless, the preliminary evaluation made by
the domain experts assures the correctness and effectiveness of
the predictions. A case study has been conducted to evaluate
the performance of the delirium prediction models installed in
hospital H [21]. Predictions made by the delirium risk prediction
model following cardiac surgery were evaluated in the study.
A cohort study investigating a larger population is also ongoing
in the same hospital. The investigations identified that the
prediction service could have an influence on anesthesia
planning, as risk prediction is crucial for an early prevention
strategy. The machine learning approach also improved
postoperative care by enhanced screening efforts. In addition,
the rest of this section presents our analysis of calibration and
decision curves at hospital H, as well as our preliminary analysis
on user feedback at hospital M.

Calibration and Decision Curve Analysis
Figure 7 shows the calibration and decision curve analysis for
three use cases with the live data retrieved from hospital H. We

first applied probability calibration [22,23] to generate
calibration curves for each use case. The calibration curves plot
the true frequency of the positive cases against its averaged
predicted probability for each bin. We divided the probability
into 10 bins. Predictions on the live data before and after
probability calibration are shown. We used isotonic regression
to perform the probability calibration. The calibration process
used the first half of the live data, and the calibration curves
and decision curves were generated using the second half of the
live data. Due to the limited amount of available data, there are
a few spikes in the calibrated curves. After the probability
calibration, the decision curves [24,25] were generated to
evaluate the net benefit of using the prediction models. The net
benefits of the prediction models were compared with either
“alert all patients” or “no alerts.” It can be observed that the
prediction models were clinically useful when the threshold
probability was below 90% for the AKI and sepsis use cases.
For the delirium use case, the model had benefits when the
threshold probability was below 70%.

Figure 8 shows the decision curves for the prediction models
trained at hospitals H and M on the sepsis use case. Both curves
in Figure 8 were generated using the live data from hospital H,
and the predicated probabilities were both calibrated. It can be
observed that the model trained at hospital H was superior
compared with the model trained at hospital M.
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Figure 7. Calibration and decision curve analysis. The model and data were both from hospital H (Herz- und Diabeteszentrum Nordrhein-Westfalen
Bad Oeynhausen). AKI: acute kidney injury.

Figure 8. Decision curve analysis for the sepsis use case. Models trained at hospitals H and M, both using the live data from hospital H, are compared.
H: Herz- und Diabeteszentrum Nordrhein-Westfalen Bad Oeynhausen; M: Marienhospital Stuttgart.

Preliminary Analysis of User Feedback
When the prediction models were installed in the production
EHR system, the end user was able to provide their feedback
when they closed an alert. There were 134 feedback entries
collected for the AKI use case at hospital M. More than
one-third of the feedback entries (n=46, 34.3%) indicated that
the users found the predictions useful. Details of the user

feedback entries can be found in Figure S2 in Multimedia
Appendix 1.

A total of 27.6% (37/134) of the alerts were considered to be
false positives by the end users. This is a satisfactory result,
considering the low incidence of AKI (838/8861, 9.46% at
hospital M). Moreover, among 37 of those evaluated as false
positive cases, 20 (54%) were already discharged and coded.
Of these 20 discharged cases, 4 (20%) were actually coded as
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having AKI. This means that even if the physician disagrees
with a prediction of high risk, there seems to still be a high risk
that some patients will ultimately develop AKI, and our model
can identify that risk.

In 38.1% (51/134) of the cases, the end users were already aware
of the risk of AKI raised by the alert. There were two main
reasons for this. Firstly, there was a clear gap between the time
that the alert was created and the time that the feedback was
given when the alert was closed. Secondly, alerts were only
displayed in departments where the prediction service was
activated; if a patient was transferred from a department where
the prediction service was not activated, there would not be any
alert displayed there.

Discussion

Principal Findings
The state of the art of machine learning development is to either
design and train a single model and use it in different hospitals
or design and train a specific model for a single hospital. We
claim that defining a generic model design and training a
specific instance of the model with data from a specific hospital
has additional benefits for replicating the results. We observed
performance degradation when a model was deployed in another
hospital in our cross-hospital evaluation, a typical limitation of
developing a single model for different hospitals. In the
meantime, having a generic process and common model design
to generate hospital-specific prediction models is a more robust
solution. It resolves the intrinsic differences between different
hospitals and guarantees sound performance at target hospitals.
The evaluation of model performance in live clinical workflows
assured the feasibility of such a generic approach, by checking
the performance on three use cases at three different hospitals.
In addition, by storing the logging data from live clinical
workflows and having a common model design, the evaluation
presented in this paper allows one to simulate the performance
of a model in a live clinical workflow without it being installed
on-site.

Motivations
Machine learning–based prediction models are closely tied to
the data used in the training process. This dependency largely
restricts the reusability of a prediction model in other hospitals.
A generic model that delivers unbiased performance in different
hospitals is what machine learning scientists and clinicians
earnestly long for but also often fail to achieve.

The prerequisite to generate a generic model that can be used
in different hospitals is to achieve semantic interoperability that
guarantees a common understanding between different EHR
systems [26,27]. In order to achieve semantic interoperability,
clinical terminologies need to be mapped onto a standard
representation. However, a recent study [28] also showed safety
risks related to the use of standard terminologies, such as LOINC
(Logical Observation Identifiers Names and Codes), for
interoperability between organizations due to inaccurate
mappings.

In addition, a disease may have very different incidence rates
in different hospitals due to the type and specialties of a hospital.

Such a variety also results in different clinical workflows
performed in different hospitals that determine the data the
hospital records. A prediction model is, therefore, considered
an algorithm that captures the knowledge and practice of the
physicians of a hospital, by processing hospital-specific data
that are presented in their specific representation. It is
challenging to overcome the vulnerability of data shifts caused
by diverse clinical workflows in different hospitals. Therefore,
it is hard to maintain good performance when a model runs in
a different hospital than the one within which it was trained,
especially if the characteristics of the EHR data and the clinical
workflow differ significantly. For example, the sepsis prediction
of one particular vendor achieved satisfactory results in one
hospital [29], but it was substantially worse when evaluated in
another hospital [15].

We also observed performance degradation when a model was
deployed in other hospitals in our cross-hospital evaluation.
Therefore, instead of delivering a generic prediction model to
different hospitals, we designed a generic procedure for
prediction model development and applied it to different
hospitals. Having a generic process to generate hospital-specific
prediction models is a more robust solution; it resolves the
intrinsic differences between different hospitals.

Strengths
Evaluating prediction models in a live clinical workflow is
crucial for validating their performances. To the best of our
knowledge, we are the first to evaluate clinical prediction models
on such a large scale in live clinical workflows. Such a thorough
evaluation avoids overfitting to a certain disease or the settings
of a particular hospital, thus allowing a fair, unbiased evaluation.
The models deployed in the live clinical workflows delivered
similar performances compared with those reported in our
previous study [9], which were evaluated using retrospective
data.

Sharing the same feature processing approach allows us to reuse
the prediction requests by different prediction models. We,
therefore, performed cross-hospital evaluation on three use cases
in three different hospitals, mimicking the performance in a live
clinical workflow rather than on retrospective data. To the best
of our knowledge, this is the first study that performed
cross-hospital evaluations on multiple use cases and simulated
model performance in live clinical workflows.

Limitations
This study had some limitations. First, our model development
and evaluation on metrics reported in this paper lacked a
dynamic evaluation to predict the risk within a time window of
event onset. For example, the most widely used diagnostic
criterion for AKI is based on changes in serum creatinine, as
defined by the Kidney Disease: Improving Global Outcomes
(KDIGO) guidelines [30]. Tomašev et al [31] reported an AKI
prediction model that predicts the AKI risk 48 hours before the
KDIGO-defined event. In the three use cases presented in this
paper, delirium was considered a mental health disease that
normally does not have a precise time of onset. We have
developed an AKI prediction model based on retrospective data
at our development site using KDIGO events as labels. The
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models were not deployed in the production system; however,
their performance at two hospitals on retrospective data is
enclosed (Table S8 in Multimedia Appendix 1). The AKI risk
prediction curve of a sample patient during his medical stay is
also provided (Figure S3 in Multimedia Appendix 1). For the
sepsis prediction, we did not yet perform such a dynamic
evaluation due to the lack of both scalable and accurate
indicators of documented or suspected infection. Nevertheless,
the AUROC for sepsis at the end of the day of admission ranged
between 86.9% and 88.5% in the live system at the three
different hospitals, which assures a satisfactory performance.

Second, although the metrics of the prediction models in the
live clinical workflows were evaluated in different hospitals,
the corresponding clinical outcomes in clinical practice are yet
to be measured. Nevertheless, the preliminary clinical evaluation
in hospital H affirms that there was a positive impact in the live
clinical workflows, and a quantitative evaluation is scheduled
as our next step of this work. The decision curve analysis and
the preliminary analysis of user feedback also affirms the
usefulness of our prediction models.

Third, machine learning approaches that are used to generate
and validate prediction models are always data hungry [32].
Current external validation studies often suffer from small
sample sizes compared with the large amount of predictor

features [33]. The sample size presented in this paper was also
relatively small compared with the number of predictor features
used in our prediction model. Nevertheless, we also argue that
for diseases with low incidence, it is difficult to obtain a large
number of positive samples. The three use cases presented in
this paper were running in live EHR systems for more than half
a year, which we consider to be a reasonable amount of time.
In addition, we ran evaluations on three different use cases at
three different hospitals, which helps to justify the outcomes.

Future Directions
Our future work will focus on evaluating the detailed clinical
outcomes of prediction models in clinical practice. In addition,
we will also evaluate the impact of different labeling strategies,
such as defining AKI events with KDIGO criteria, in live
systems.

Conclusions
In this study, we found consistent performance of models when
evaluated on retrospective and live data, and performance
differences were observed in the cross-hospital evaluations.
This ensures that designing a generic process for model
development, implementing that design in a calibration tool,
and generating hospital-specific prediction models with a
common model design is a valid approach that guarantees model
performance in different hospitals.
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