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Abstract

Background: A growing amount of health research uses social media data. Those critical of social media research often cite
that it may be unrepresentative of the population; however, the suitability of social media data in digital epidemiology is more
nuanced. Identifying the demographics of social media users can help establish representativeness.

Objective: This study aims to identify the different approaches or combination of approaches to extract race or ethnicity from
social media and report on the challenges of using these methods.

Methods: We present a scoping review to identify methods used to extract the race or ethnicity of Twitter users from Twitter
data sets. We searched 17 electronic databases from the date of inception to May 15, 2021, and carried out reference checking
and hand searching to identify relevant studies. Sifting of each record was performed independently by at least two researchers,
with any disagreement discussed. Studies were required to extract the race or ethnicity of Twitter users using either manual or
computational methods or a combination of both.

Results: Of the 1249 records sifted, we identified 67 (5.36%) that met our inclusion criteria. Most studies (51/67, 76%) have
focused on US-based users and English language tweets (52/67, 78%). A range of data was used, including Twitter profile
metadata, such as names, pictures, information from bios (including self-declarations), or location or content of the tweets. A
range of methodologies was used, including manual inference, linkage to census data, commercial software, language or dialect
recognition, or machine learning or natural language processing. However, not all studies have evaluated these methods. Those
that evaluated these methods found accuracy to vary from 45% to 93% with significantly lower accuracy in identifying categories
of people of color. The inference of race or ethnicity raises important ethical questions, which can be exacerbated by the data and
methods used. The comparative accuracies of the different methods are also largely unknown.

Conclusions: There is no standard accepted approach or current guidelines for extracting or inferring the race or ethnicity of
Twitter users. Social media researchers must carefully interpret race or ethnicity and not overpromise what can be achieved, as
even manual screening is a subjective, imperfect method. Future research should establish the accuracy of methods to inform
evidence-based best practice guidelines for social media researchers and be guided by concerns of equity and social justice.

(J Med Internet Res 2022;24(4):e35788) doi: 10.2196/35788
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Introduction

Research Using Twitter Data
Twitter data are increasingly being used as a surveillance and
data collection tool in health research. When millions of users
post on Twitter, it translates into a vast amount of publicly
accessible, timely data about a variety of attitudes, behaviors,
and preferences in a given population. Although these data were
not originally intended as a repository of individual information,
Twitter data have been retrofitted in infodemiology to
investigate population-level health trends [1-15]. Researchers
often use Twitter data in consort with other sources to test the
relationship between web-based discourse and offline health
behavior, public opinion, and disease incidence.

The appeal of Twitter data is clear. Twitter is one of the largest
public-facing social media platforms, with an ethnically diverse
user base [16,17] of more than 68 million US Twitter users,
with Black users accounting for 26% of that base [18]. This
diverse user base gives researchers access to people they may
have difficulty reaching using more traditional approaches [19].
However, promising insights that can be derived from Twitter
data are often limited by what is missing, specifically the basic
sociodemographic information of each Twitter user. The
demographic attributes of users are often required in health
research for subpopulation analyses, to explore differences, and
to identify inequity. Without evidence of the distal and proximal
factors that lead to racial and ethnic health disparities, it is
impossible to address and correct these drivers. Insights from
social media data can be used to inform service provision as
well as to develop targeted health messaging by understanding
public perspectives from diverse populations.

Extracting Demographics From Twitter
However, to use social media and digital health research to
address disparities, we need to know not only what is said on
Twitter but also who is saying what [20]. Although others have
discussed extracting or estimating features, such as location,
age, gender, language, occupation, and class, no comprehensive
review of the methods used to extract race or ethnicity has been
conducted [20]. Extracting the race and ethnicity of Twitter
users is particularly important for identifying trends,
experiences, and attitudes of racially and ethnically diverse
populations [21]. As race is a social construction and not a
genetic categorization [22,23], the practice of defining race and
ethnicity in health research has been an ongoing, evolving
challenge. Traditional research has the advantage of identifying
the person in the study and allowing them to systematically
identify their racial and ethnic identities. In digital health
research [22,23], determining a user’s race or ethnicity by
extracting data from a user’s Twitter profile, metadata, or tweets
is a process that is inevitably challenging, complex, and not
without ethical questions.

Furthermore, although Twitter is used for international research,
an international comparative study of methods to determine
race or ethnicity is difficult, practically impossible, given that
societies use different standardized categories that describe their
own populations [24]. A common approach in the United States
is based on the US Census Bureau practice to allow participants

to identify with as many as 5-6 large racial groupings (Black,
White, Asian, Pacific Islander, Native, and other), while
separately choosing one ethnicity (Hispanic) [25]. However,
race and ethnicity variables continue to be misused in the study
design or when drawing conclusions. For example, race or
ethnicity is often incorrectly treated as a predictor of poor health
rather than as a proxy for the impact of being a particular race
or ethnicity has on that person’s experience with the health
system [26]. Simply put, health disparities are driven by racism,
not race [27-29]. Although race or ethnicity affiliation is an
important factor in understanding diverse populations, digital
research must tread lightly and thoughtfully both the collection
and assignment of race or ethnicity.

Objectives
The lack of basic sociodemographic data on Twitter users has
led researchers to apply a variety of approaches to better
understand the characteristics of the people behind each tweet.
The breadth of the landscape of approaches to extracting race
or ethnicity is currently unknown. Our overall aim was to
summarize and assess the range of computational and manual
methods used in research based on Twitter data to determine
the race or ethnicity of Twitter users.

Methods

Overview
We conducted a comprehensive scoping review of extraction
methods and offered recommendations and cautions related to
these approaches [30]. We selected Twitter, as it is currently
the most commonly used social media platform in health care
research, and it has some unique intrinsic characteristics that
drive the methods used for mining it. Thus, we felt that the
methods, type of data, and social media platforms used are
related in such a way that comparing methods for different social
media would add too many variables and would not be truly
comparing like with like. A detailed protocol was designed for
the methods to be used in our scoping review, but we were
unable to register scoping reviews on PROSPERO. We report
our methods according to the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) scoping
review statement [30].

Inclusion Criteria

Overview
We devised strict inclusion criteria for our review based on the
Population, Intervention, Comparators, Outcomes, and Study
design format. Although this was not a review of effectiveness,
we felt that the Population, Intervention, Comparators,
Outcomes, and Study design question breakdown [31] was still
the most appropriate one available for our question format [31].
The inclusion criteria are described in the following sections.

Population
We included only data sets of Twitter users. Studies were
eligible for inclusion if they collected information to extract or
infer race or ethnicity directly from the users’ tweets, their
profile details (such as the users’ photo or avatar, their name,
location, and biography [bio]), or their followers. We excluded
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studies that extracted race or ethnicity from social media
platforms other than Twitter, from unspecified social media
platforms, or those that used multiple social media platforms
that included Twitter, but the data relating to Twitter were not
presented separately.

Intervention
Studies were included where the methods to extract or infer the
race or ethnicity data of Twitter users were stated. Articles that
used machine learning (ML), natural language processing (NLP),
human-in-the-loop, or other computationally assisted methods
to predict race or ethnicity of users were included, as were
manual or noncomputational methods, including photo
recognition or linking to census data. We excluded studies for
which we were unable to determine the methods used or for
which we extracted data solely on other demographic
characteristics, such as age, gender, or geographic location.

Comparator
The use of a comparison of the methods used was not required.
A method could be compared with another (such as a gold
standard), or no comparison could be undertaken.

Outcome
The extraction or inference of the race or ethnicity of Twitter
users was the primary or secondary outcome of the study. As
this was a scoping review in which we aimed to demonstrate
the full landscape of the literature, no particular measurement
of the performance of the method used was required in our
included studies.

Study Design
Any type of research study design was considered relevant.
Discussion papers, commentaries, and letters were excluded.

Limits
No restrictions on date, language, or publication type were
applied to the inclusion criteria. However, no potentially relevant
studies were identified in any non-English language, and the
period by default was since 2006, the year of the inception of
Twitter.

Search Strategy
A database search strategy was derived by combining three
facets: facet 1 consisted of free-text terms related to Twitter

(Twitter OR Tweet* OR Tweeting OR Retweet* OR Tweep*);
facet 2 consisted of terms for race or ethnicity; and facet 3
consisted of terms for methods of prediction, such as ML, NLP,
and artificial intelligence–related terms (Table S1 in Multimedia
Appendix 1 [3,10,12,18,20,21,32-96]). All ethnology-related
subject terms were adapted for different database taxonomies
and syntax, with standard methods for predicting subject terms
in MEDLINE and other database indexing. The methods of
predicting term facets were expanded using a comprehensive
list of specific text analysis tools and software names extracted
from the study by Hinds and Joinson [97], which included a
comprehensive list of automated ML processes used in
predicting demographic markers in social media. Additional
terms have been added from a related study [98].

Sources Searched
A wide range of bibliographic and gray literature databases
were selected to search for topics on computer science, health,
and social sciences. The databases (Table 1) were last searched
on May 15, 2021, with no date or other filter applied.

Reference checking of all included studies and any related
systematic reviews identified by the searches were conducted.
We browsed the Journal of Medical Internet Research, as this
is a key journal in this field, and hand searched 2 relevant
conferences, the International Conference on Weblogs and
Social Media and Association for Computational Linguistics
proceedings.

Citations were exported to a shared Endnote library, and
duplicates were removed. The deduplicated records were then
imported into Rayyan to facilitate independent blinded screening
by the authors. Using the inclusion criteria, at least two screeners
(SG, RS, KO, or RJ) from the research team independently
screened each record, with disputes on inclusion discussed and
a consensus decision reached.

Only the first 50 records from ACL and the first 100 records
from a Google Scholar search were screened during two searches
(March 11, 2020, and May 24, 2021) as these records are
displayed in order of relevance, and it was felt that after this
number no relevant studies were being identified
[12,21,32-95,99].
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Table 1. Databases searched with number of records retrieved.

Total results, nDatabase

Screened first 50 records from 2 searchesACL Anthology

150ACM Digital Library

200CINAHL

84Conference Proceedings Citation Index—Science

7Conference Proceedings Citation Index—Social Science

41Emerging Sources Citation Index

Screened first 100 records from 2 searchesGoogle Scholar

186IEEE Xplore

120Library and Information Science Abstracts

79LISTA

0OpenGrey

195ProQuest dissertations and theses—United Kingdom and Ireland

72PsycINFO

84PubMed

56Science Citation Index

111Social Science Citation Index

50Zetoc

Data Extraction
For each included study, we extracted the following data on an
excel spreadsheet:

year of publication, study country and language, race or ethnicity
categories extracted (such as for race—Black, White, or Asian
or for ethnicity—Hispanic or European), and paper type (journal,
conference, or thesis). We also extracted details on extraction
methods (such as classification models or software used),
features and predictors used in extraction (tweets, profiles, and
pictures), number of Twitter users, number of tweets or images
used, performance measures to evaluate methods used
(validation), and results of any evaluation (such as accuracy).
All performance measure metrics were reported as stated in the
included studies. All the extracted data were checked by 2
reviewers.

Quality Assessment
There was no formally approved quality assessment tool for
this type of study. As this was a scoping review, we did not
carry out any formal assessment. However, we assessed any
validation performed and whether the methods were
reproducible.

Data Analysis
We have summarized the stated performance of the papers that
included validation. However, we could not compare approaches

using the stated performance, as the performance measures and
validation approaches varied considerably. In addition, there is
no recognized gold standard data set for comparison.

Results

Overview
A total of 1735 records were entered into an Endnote library
(Clarivate), and duplicates were removed, leaving 1249 (72%)
records for sifting (Figure 1). A total of 1080 records were
excluded based on the title and abstract screening alone. A total
of 169 references were deemed potentially relevant by one of
the independent sifters (RS, GG, RJ, SG, and KO). The full text
of these articles was screened independently, and 67 studies
[12,21,32-95,99] met our inclusion criteria and 102 references
were excluded [77,97,100-198]. The main reason for exclusion
was that although the abstract indicated that demographic data
were collected, it did not include race or ethnicity (most
commonly, other demographic attributes such as gender, age,
or location were collected). Other reasons for exclusion were
that the researchers collected demographic data through surveys
or questionnaires administered via Twitter (but not from data
posted on Twitter) or that the researchers used a social media
platform other than Twitter.
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Figure 1. Flow diagram for included studies.

Characteristics of the Included Studies
Most of the studies (51/67, 76%) stated or implied that they
were based solely or predominantly in the United States and
were limited to English language bios or tweets. A total of 6
studies were multinational [38,41,56,66,83,86]; 1 was UK based
(also in English) [59], another was based in Qatar [55], and 12%
(8/67) of studies extracted data from tweets in multiple
languages [32,38,52,55,56,66,83,86] (Table S2 in Multimedia
Appendix 1).

The most common race examined was White (58/67, 87%),
followed by Black or African American (56/67, 84%), Asian
(45/67, 67%), and the most common ethnicity examined was
Hispanic/Latino (43/67, 64%).

Some studies (12/67, 18%) treated race as a binary classification,
such as African American or not or African American or White,
whereas others created a multiclass classifier of 3 (15/67, 22%)
or 4 classes (33/67, 49%) or a combination of classes. A total
of 6 studies identified >4 classes; however, these often included

ethnicity or nationality classifiers as well as race [38,48,54,66,
83,95]. Wang and Chi [77] was a conference paper which did
not report the race types extracted.

The data objects from Twitter used to extract race or ethnicity
varied, with the use of profile pictures or Twitter users’ names
being the most common. Others have also used tweets in the
users’ timeline, information from Twitter bios, or Twitter users’
locations. Most studies (39/67, 58%) used more than one data
object from Twitter data. In addition, the data sets within the
studies varied in size between 392 and 168,000,000, with those
using manual methods having smaller data sets ranging from
just 392 [50] to 4900 [65].

Unfortunately, although performance has been measured in 67%
(45/67) of studies (this was inconsistently measured Table 2).
The metrics used to report results were particularly varied for
studies using ML or NLP and included the F1 score (which
combines precision and recall), accuracy, area under the curve,
or mean average precision. Table 2 lists the methods, features,
and reported performance of the top model from each study.
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Table 2. Top system performance within studies using machine learning or natural language processing (result metrics are reflected here as reported
in the original publications).

Results reportedFeaturesMLa modelClassifierStudy

Area under curveF1 scoreAccuracy

N/A0.66N/AcImages, text, topics,
and sentiment

GBDTbBinaryPennacchiotti and Popescu, 2011 [68]

N/A0.70N/AImages, text, topics,
sentiment, and net-
work

GBDTBinaryPennacchiotti and Popescu, 2011 [67]

N/AN/A0.85Names and name
clusters

SVMdBinaryBergsma et al, 2013 [38]

N/A0.95 (image); 0.92
(text)

N/AText and imagesDLLPeBinaryArdehaly and Culotta, 2017 [35]

0.97N/AN/AText, sentiment, and
emotion

LRfBinaryVolkova and Backrach, 2018 [76]

N/A0.720.73NameCNNgBinaryWood-Doughtry et al, 2018 [79]

NRNRNRhTextCNNTernarySaravanan, 2017 [72]

N/A0.84 (image); 0.83
(text)

N/AText and imagesDLLPTernaryArdehaly and Culotta, 2017 [33]

N/A0.88N/ATextCNNTernaryGunarathne et al, 2019 [94]

N/A0.430.62NameCNNTernaryWood-Doughtry et al, 2018 [79]

N/A0.86N/ANetwork and textRegressionQuaternaryCulotta et al, 2016 [47]

0.720.790.79n-grams, topics, self-
declarations, and
image

SVMQuaternaryChen et al, 2015 [46]

N/AN/A0.76Synonym expansion
and topics

CNNQuaternaryMarkson, 2017 [61]

N/AN/A0.84ImagesCNNQuaternaryWang et al, 2016 [189]

N/AN/A0.76Synonym expansion
and topics

SVMQuaternaryXu et al, 2016 [82]

N/AN/A0.83Census, name, net-
work, and tweet lan-
guage

Multinomial
logistic regres-
sion

QuaternaryArdehaly and Culotta, 2015 [34]

N/A0.810.82Census and image
tweets

LRQuaternaryArdehaly, 2014 [64]

N/AN/A0.81Tweets, emojis, and
network

LR with ENiQuaternaryBarbera, 2016 [37]

N/A0.460.83Name, profile meta-
data, and text

CNNQuaternaryWood-Doughty 2020 [81]

0.88 (African
American), 0.78

N/AN/AText, topics, senti-
ment, part-of-speech

LR with ENQuaternaryPreotiuc-Pietro and Ungar, 2018 [96]

(Latino), 0.83tagging, name, per-
(Asian), and 0.83
(White)

ceived race labels,
and ensemble

N/A0.25 (Asian), 0.63
(African American

N/AText and accounts
followed

CNNQuaternaryMueller et al, 2021 [91]

or Black), 0.28
(Hispanic), and
0.90 (White)

N/AN/A0.81Name and name
clusters

SVMMultinomial
(>4)

Bergsma et al, 2013 [38]

N/AN/A0.53ImagesNeural net-
work

Multinomial
(>4)

Nguyen et al, 2018 [66]
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aML: machine learning.
bGBDT: gradient-boosted decision tree.
cN/A: not applicable.
dSVM: support vector machine.
eDLLP: deep learning from label proportions.
fLR: logistic regression.
gCNN: convolutional neural network.
hNR: not reported.
iEN: elastic net.

Manual Screening
A total of 12 studies used manual techniques to classify Twitter
users into race or ethnicity categories [21,36,40,49-51,57,65,
87-90]. These studies generally combined qualitative
interpretations of recent tweets, information in user bios making
an affirmation of racial or ethnic identity, or photographs or
images in the user timeline or profile.

In most cases, tweets were first identified by text matching
based on terms of interest in the research topic, such as having
a baby with a birth defect [50], commenting on a controversial
topic [57,89], or using potentially gang- or drug-related language
[40]. Researchers then identified the tweet authors and, in most
cases, assigned race or ethnicity through hand coding based on
profile and timeline content. Some studies coded primarily based
on self-identifying statements of race used in a tweet or in users’
bios, such as people stating that they are a Black American
[49,50,88,90] or hashtags [36] (such as #BlackScientist). Others
coded exclusively based on the research team’s attribution of
racial identity through the examination of profile photographs
[21,57] or avatar [87]. Some authors coded primarily with
self-declarations, with secondary indicators, such as profile
pictures, language, usernames, or other content [40,51,65,88,89].
In most cases, it appears reasonable to infer that coding was
performed by the study authors or members of their research
teams, with the exception of those using the crowdsourcing
marketplace, Amazon Mechanical Turk [21,90].

The agreement among coders was sometimes measured, but
validity and accuracy measurements were not generally
included. A study [65], however, documented 78% reliability
for coding race compared with census demographics, with Black
and White users being coded accurately 90% of the time and
Hispanic or Asian users being accurately coded between 45%
and 60% of the time. The high accuracy of Black users was
based on the higher likelihood of Black users to self-identify.

Census-Driven Prediction
Another approach to predict race or ethnicity is to use
demographic information from the national census and
census-like data and transfer it to the social media cohort. The
US-based studies largely used census-based race and ethnicity
categories: Asian and Pacific Islander, Black or African
American, Latino or Hispanic, Native American, and White. A
UK-based study included the categories British and Irish, West
European, East European, Greek or Turkish, Southeast Asian,
other Asian, African and Caribbean, Jewish, Chinese, and other
minorities [83].

We identified 14 studies [39,48,52,54,60,63,70,71,74,77,83-85,
95] that used census geographic data, census surname
classification, or a combination of both. A total of 6 studies
incorporated geographic census data [39,52,63,74,83,84]. For
example, Blodgett et al [39] created a simple probabilistic model
to infer a user’s ethnicity by matching geotagged tweets with
census block information. They averaged the demographic
values of all tweets by the user and assumed this to be a rough
proxy for the user’s demographics. Stewart [74] collected tweets
tagged with geolocation information (longitude and latitude).
The ZIP code of the user was derived from this geolocation
information and matched with the demographic information
found in the ZIP Code Tabulation Area defined by the Census
Bureau. This information was used to find a correlation between
ethnicity and African American vernacular English syntax [74].

Other studies have used the census-derived name classification
system to determine race or ethnicity based on user names. We
identified 12 studies that predicted user race or ethnicity using
surnames [48,54,60,63,70,71,77,83-85,95,189]. Surnames were
used to assign race or ethnicity using either a US census-based
name classification system or, less commonly, an author
in-house generated classification system. Of these 12 studies,
7 (58%) relied solely on the user’s last names
[48,54,60,63,70,71,85]. Of those that reported validating the
system, validation methods of this name-based system alone
were not reported, but 4 (33%) of the 12 studies reported an
accuracy between 71.8% and 81.25% [63,70,71,83]. Of note, a
study reported vastly different accuracies in predicting whiteness
versus blackness (94% predicting White users vs 33% predicting
African American or Black users) [83]. The remaining 2 studies
augmented name-based predictions with aggregate demographic
data from the American Community Survey or equivalent
surveys. For example, statistical and text mining methods have
been used to extract surnames from Twitter profiles, combining
this information with census block information based on
geolocated tweets to assess the probability of the user’s race or
ethnicity [60]. However, these studies did not report validation
or accuracy.

Ad Hoc ML or NLP
A total of 24 papers [33-35,37,38,46,47,61,64,66-68,72,76,
78-82,91-94,99] used ML or NLP to automatically classify users
based on their race or ethnicity. ML and NLP methods were
used to process the data made available by Twitter users, such
as profile images, tweets, and location of residence. These
studies almost invariably consisted of larger cohorts, with
considerable variation in the specific methods used.
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Supervised ML models (in which some annotated data were
used to train the system) were used in 12 (50%) of the 24
studies. The models used include support vector machine
[38,46,61], gradient-boosted decision trees [67,68], and
regression models [33,34,37,76,96].

Semisupervised (where a large set of unannotated data is also
used for training the system, in addition to annotated data) or
fully unsupervised models using neural networks or regression
were used for classification in 10 (42%) of the 24 studies
[33,35,66,72,78,79,81,92-94].

A total of 2 studies used an ensemble of previously published
race or ethnicity classifiers by processing the data through 4
extant models and using a majority rule approach to classify
users based on the output of each classifier [80,91].

ML models use features or data inputs to predict desired outputs.
Features derived from textual information in the user’s profile
description, such as name or location, have been used in some
studies [34,35,38,60,67,68,79,81,92,93]. Other studies included
features related to images, including but not exclusively profile
images [46,67,68,189], and facial features in those images [66].
Some studies have used linguistic features to classify a user’s
race or ethnicity [37,38,46,47,61,67,68,72,76,78,81,92-94,96].
Specific linguistic features used in the models include n-grams
[38,46,72,91-94], topic modeling [46,61,78], sentiment and
emotion [76], and self-reports [67,68,81]. Information about a
user’s followers or network of friends was included as a feature
in some studies under the assumption that members of these
networks have similar traits [34,37,46,47,91].

Labeled data sets are used to train and test supervised and
semisupervised ML models and to validate the output of
unsupervised learning methods. Some of the studies used
previously created data sets that contained demographic
information, such as the MORPH longitudinal face database of
images [189], a database of mugshots [38], or manually
annotated data from previous studies [79,81]. Others created
ground truth data sets from surveys [96] or by semiautomatic
means, such as matching Twitter users to voter registrations
[37], using extracted self-identification from user profiles or
tweets [67,68,81], or using celebrities with known ethnicities
[66]. Manual annotation of Twitter users was also used based
on profile metadata [34,35,46,76], self-declarations in the
timeline [61,82], or user images [35,94]. Table 2 summarizes
the best performing ML approach, features used, and the
reported results for each study that used automatic classification
methods. In the table, the classifier is the number of race or
ethnicity classification groups, ML model is the top performing
algorithm reported, and features are the variables used in the
predictions.

Data from Twitter are inherently imbalanced in terms of race
and ethnicity. In ML, it is important to attempt to mitigate the
effects of the imbalance, as the models have difficulty learning
from a few examples and will tend to classify to the majority
class and ignore the minority class. Few studies (12/67, 18%)
have directly addressed this imbalance. Some opted to make
the task binary, focusing only on their group of interest versus
all others [67,68,94] or only on the majority classes [38,76].
Others choose modified performance metrics that account for

imbalance when reporting their results [33,61,82]. A group,
which was classified based on images, supplemented their
training set from an additional data source for the minority
classes [33,35]. Only 2 studies have experimented with
comparator models trained on balanced data sets. In a study by
Wood-Doughty et al [81], the majority class was undersampled
in their training sets and [96] the minority classes were
oversampled. In both cases, the overall performance of the
models decreased in accuracy from 0.83 to 0.41 (on their best
performing unbalanced model) and 0.84 to 0.68. [96], as the
performance boost from the models, the superior performance
on the majority class was eradicated.

Off-the-shelf Software
A total of 17 studies [12,32,41-45,53,55,56,58,59,62,69,73,
75,86] used off-the-shelf software packages to derive race or
ethnicity. Moreover, 10 studies [32,44,45,53,55,56,58,62,69,75]
used Face++ [199], 5 studies [12,41-43,73] used Demographics
Pro [200], and 2 studies used Onomap [201] software to
determine ethnicity [59,86]. Face++ is a validated ML face
detection service that analyzes features with confidence levels
for inferred race attributes. Specifically, it uses deep learning
to identify whether profile pictures contain a single face and
then the race of the face (limited to Asian, Black, and White)
and does not infer ethnicity (eg, Hispanic) [199]. Demographics
Pro estimates the demographic characteristics based on Twitter
behavior or use using NLP, entity identification, image analyses,
and network theory [200]. Onomap is a software tool used for
classifying names [201]. A total of 3 studies that used Face++
used the same baseline data set [45,62,75], and one used a partial
subset of the same data set [69].

In total, 2 studies that used Face++ [32,58] did not measure its
performance. Another study [44] stated that Face++ could
identify race with 99% confidence or higher for 9% of total
users. In addition, 2 studies [53,55] used Face++ along with
other methods. One of these studies used Face++ in conjunction
with demographics, using a given name or full name from a
database that contains US census data for demographics. This
study simply measured the percentage of Twitter users for which
race data could be extracted (46% college students and 92%
role models) but did not measure the performance of Face++
[53]. Another study [55] built a classifier model on top of using
Face++ and recorded an accuracy of 83.8% when compared
with users who stated their nationality.

A total of 4 studies [45,62,69,75] (with the same data set in full
or in part) used the average confidence level reported by Face++
for race which was 85.97 (SD 0.024%), 85.99 (SD 0.03%),
86.12 (SD 0.032%), respectively, with a CI of 95%. When one
of these studies [45] carried out its own accuracy assessment,
they found an accuracy score of 79% for race when compared
with 100 manually annotated pictures. Huang et al [56] also
carried out an accuracy assessment and found that Face++
achieved an averaged accuracy score of 88.4% for race when
compared with 250 manually annotated pictures.

A total of 5 studies [12,41-43,73] used Demographics Pro, and
although they reported on Demographics Pro success in general,
they did not directly report any metrics of its success. The 2
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studies using Onomap provided no validation of the software
[59,86].

In light of our results, we have compiled our recommendations
for best practice, which are summarized in Figure 2 and further
examined in the Discussion section.

Figure 2. Summary of our best practice recommendations.

Discussion

Principal Findings
As there are no currently published guidelines or even best
practice guidance, it is no surprise that researchers have used a
variety of methods for estimating the race or ethnicity of Twitter
users. We identified four categories for the methods used:
manual screening, census-based prediction, ad hoc ML or NLP,
and off-the-shelf software. All these methods exhibit particular
strengths, as well as inherent biases and limitations.

Comparing the validity of methods for the purpose of deriving
race or ethnicity is difficult as classification models differ not
only in approach but also in the definition of the classification
of race or ethnicity itself [112,202,203]. There is also a distinct
lack of evaluation or validation of the methods used. Those that
measured the performance of the methods used found accuracy
to vary from 45% to 93%, with significantly lower accuracy in
identifying categories of people of color.

This review sheds little light on the performance of commercial
software packages. Previous empirical comparisons of facial
recognition application programming interfaces have found that
Face++ achieves 93% accuracy [204] and works comparatively
better for men with lighter skins [205]. The studies included in
our review suggested a lower accuracy. However, data on
accuracy were not forthcoming in any of the included studies
using Demographics Pro [200]. Even when performance is
assessed, the methodology used may be biased if there are issues
with the gold standard used to train the model.

In addition to the 4 overarching methods used, the studies varied
in terms of the features used to determine or define race or
ethnicity. Furthermore, the reliability of the features used to
determine or define race or ethnicity for this purpose is
questionable. Specifically, the use of Twitter users’ profile
pictures, names, and locations, the use of unvalidated linguistic
features attributed to racial groups (such as slang words, African
American vernacular English, Spanglish, or Multicultural

London English), and the use of training data that are prone to
perpetuate biases (eg, police booking photos or mug shots) were
all of particular concern.

Issues Related to the Methods Used
Approaches that include or rely solely on profile pictures to
determine race or ethnicity can introduce bias. First, not all
users have a photograph as their profile picture, nor is it easy
to determine whether the picture used is that of the user. A study
on the feasibility of using Face++ found that only 30.8% of
Twitter users had a detectable single face in their profile. A
manual review of automatically detected faces determined that
80% could potentially be of the user (ie, not a celebrity) [206].
Human annotation may introduce additional bias, and studies
have found systematic biases in the classification of people into
racial or ethnic groups based on photographs [207,208].
Furthermore, humans tend to perceive their own race more
readily than others [209,210]. Thus, race or ethnicity in the
annotation team has an impact on the accuracy of their race or
ethnicity labels, potentially skewing the sample labels toward
the race or ethnicity of the annotators [211,212]. Given ML and
NLP methods are trained on these data sets, the human biases
transfer to automated methods, leading to poorly supervised
ML and training, which has been shown to result in
discrimination by the algorithm [213-215]. These concerns did
not appear to be interrogated by the study designers. Without
exception, they present categorization of persons into race or
ethnicity, assuming that a subjective reading of facial features
or idiomatic speech is the gold standard both for coding of race
or ethnicity and for training and evaluation of automated
methods.

Other methods, such as using geography or names as indicators
of race, may also be unreliable. One could argue that the
demographic profile for a geographic region is a better
representation of race or ethnicity in the demographic
environment than an individual’s race or ethnicity. Problems
in using postcodes or locations to decipher individual social
determinants are well documented [216]. The use of census data
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from an area that is too large may skew the results. Among the
studies reviewed, some used census block data, which are
granular, whereas others extrapolated from larger areas, such
as city- or county-level data. For example, Saravanan [72]
inferred the demographics of users in a city as a certain ethnic
group based on a city with a large population of that group;
however, no fine-grained analysis was performed either for the
city chosen or for geolocation of the Twitter user. Thus, the
validity of their assumption that a user in Los Angeles County
is of Mexican descent [72] is questionable. As these data were
then used to create a race or ethnicity dictionary of terms used
by that group to train their model, the questionable assumption
further taints downstream applications and results. The models
also do not consider the differences between the demographics
of Twitter users and the general demographics of the population.

In addition, census demographic data that uses names are also
questionable because of name-taking in marriage and
indiscernible names.

The practice of using a Twitter user’s self-reported race or
ethnicity would provide a label with high confidence but restrict
the amount of usable data and introduce a margin of error
depending on the method used to extract such self-reports. For
example, in a sample of 14 million users, >0.1% matched precise
regular expressions created to detect self-reported race or ethnic
identity [128]. Another study used mentions of keywords related
to race or ethnicity in a user’s bio; however, limited validation
was conducted to ensure that the mention was actually related
to the user’s race or ethnicity [67,68]. This lack of information
gathered from the profile information leads to sampling bias in
the training of the models [152].

Some models trained on manually annotated data did not have
high interannotator agreement; for example, Chen et al [46]
crowdsourced annotation agreement measured at 0.45. This can
be interpreted as weak agreement, with the percentage of reliable
data being 15% to 35% [217]. Training a model on such weakly
labeled data produces uncertain results.

It is not possible to assume the accuracy of black box proprietary
tools and algorithms. The only race or ethnicity measure that
seems empirically reliable is self-report, but this has
considerable limitations. Thus, faulty methods continue to
underpin digital health research, and researchers are likely to
become increasingly dependent on them. The gold standard
data required to know the demographic characteristics of the
Twitter user is difficult to ascertain.

The methods that we highlight as best practices include directly
asking the Twitter users. This can be achieved, for example, by
asking respondents of a traditional survey for both their
demographic data and their Twitter handles so that the data can
be linked [96]. This was undertaken in the NatCen Social
Research British Social Attitudes Survey 2015, which has the
added benefit of allowing the study of the accuracy of further
methods for deriving demographic data [20]. Contacting Twitter
users may also provide a gold standard but is impractical, given
the current terms of use of Twitter that might consider such
contact a form of spamming [72,204,205,216]. A limitation of
extracting race or ethnicity from social media is the necessity
to oversimplify the complexity of racial identity. The categories

were often limited to Black, White, Hispanic, or Asian. Note
that Hispanic is considered ethnicity by the US census, but most
studies in ML used it as a race category, more so than Asian
(because of low numbers in this category). Multiple racial
identities exist, particularly from an international perspective,
which overlooks multiracial or primary and secondary identities.
In addition, inferred identities may differ from self-identity,
raising further issues.

Given the sensitive nature of the data, it is important as a best
practice for the results of studies that derive race or ethnicity
from Twitter data to be reproducible for validation and future
use. The reproducibility of most of the studies in this review
would be difficult or impossible, as only 5 studies were linked
to available code or data [38,47,79,81,108]. Furthermore, there
is limited information regarding the coding of the training data.
None of the studies detailed their annotation schemas or made
available annotation guidelines. Detailed guidelines as a best
practice may allow recreation or extension of data sets in
situations where the original data may not be shared or where
there is data loss over time. This is particularly true of data
collected from Twitter, where the terms of use require that
shared data sets consist of only tweet IDs, not tweets, and that
best efforts to delete IDs from the data set if the original tweet
is removed or made private by the user be in place. Additional
restrictions are placed on special use cases for sensitive
information, prohibiting the storage of such sensitive
information if detected or inferred from the user. Twitter
explicitly states that information on racial or ethnic origin cannot
be derived or inferred for an individual Twitter user and allows
academic research studies to use only aggregate-level data for
analysis [218]. It may be argued that this policy is more likely
to be targeted at commercial activities.

Strengths and Limitations
We did not limit our database searches and other methods by
study design; however, we were unable to identify any previous
reviews on the subject. To the best of our knowledge, this is the
first review of methods used to extract race or ethnicity from
social media. We identified studies from a range of disciplines
and sources and categorized and summarized the methods used.
However, we were unable to obtain information on the
methodologies used by private-sector companies that created
software for this purpose. Marketing and targeted advertising
are common on social media and are likely to use race as a part
of their algorithms to derive target users.

We did not limit our included papers to those in which the
extraction of race or ethnicity was the primary focus. Although
this can be conceived as a strength, it also meant that reporting
of the methods used was often poor. The accurate recreation of
the data lost was hampered by not knowing how decisions were
made in the original studies, including what demographic
definitions of race or ethnicity were used, or how accuracy was
determined. This limited the assessment of the included studies.
Few studies have validated the methods or conducted an error
analysis to assess how often race is misapplied and those that
did, rarely used the most appropriate gold standard. This makes
it difficult to directly compare the results of the different
approaches.
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Future Directions
Future studies should investigate their methodological
approaches to estimate race or ethnicity, offering careful
interpretations that acknowledge the significant limits of these
approaches and their impact on the interpretation of the results.
This may include reporting the results as a range that
communicates the inherent uncertainty of the classification
model. Social media data may best be used in combination with
other information. In addition, we must always be mindful that
race is a proxy measure for the much larger impact of being a
particular race or ethnicity in a society. As a result, the
variability associated with race and ethnicity might reveal more
about the effects of racism and social stratification than about
individual user attributes. To conduct this study ethically and
rigorously, we recommend several practices that can help reduce
bias and increase reproducibility.

We recommend acknowledging the researchers’ bias that can
influence the conceptualization of the implementation of the
study. Incorporating this reflexivity, as is common in qualitative
research, allows for the identification of potential blind spots
that weaken the research. One way to address homogenous
research teams is through the inclusion of experts in race or
ethnicity or in those communities being examined. These biases
can also be reduced by including members of the study
population in the research process as experts and advisers [219].
Although big data from social media can be collected without
ever connecting with the people who contributed the data, it
does not eliminate the ethical need for researchers to include
representative perspectives in research processes. Examples of
patient-engaged research and patient-centered outcomes
research, community-based participatory research, and citizen
science (public participation in scientific research) within the
health and social sciences amply demonstrate the instrumental
value and ethical obligation of intentional efforts to involve
nonscientist partners in cocreation of research [219]. The quality
of data science can be improved by seriously heeding the

imperative, Nothing about us without us [219]. Documenting
and establishing the diverse competence attributes of a research
team should become a standard. Emphasizing the importance
of diverse teams within the research process will contribute to
social and racial justice in ways other than improving the
reliability of research.

In terms of the retrieved data, the most reliable (though
imperfect) method for ascertaining race was when users
self-identified their racial affiliation. Further research on
overcoming the limitations of availability and sample size may
be warranted. Indeed, a hybrid model with automated methods
and manual extraction may be preferred. For example,
automation methods could be developed to identify potential
self-declarations in a user profile or timeline, which can then
be manually interpreted.

Finally, we call for greater reporting of the validation by our
colleagues. Without error analysis, computational techniques
would not be able to detect bias. Further research is needed to
establish whether any bias is systematic or random, that is,
whether inaccuracies favor one direction or another.

Conclusions
We identified major concerns that affect the reliability of the
methods and bias the results. There are also ethical concerns
throughout the process, particularly regarding the inference of
race or ethnicity, as opposed to the extraction of self-identity.
However, the potential usefulness of social media research
requires thoughtful consideration of the best ways to estimate
demographic characteristics such as race and ethnicity [112].
This is particularly important, given the increased access to
Twitter data [202,203].

Therefore, we propose several approaches to improve the
extraction of race or ethnicity from social media, including
representative research teams and a mixture of manual and
computational methods, as well as future research on methods
to reduce bias.
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