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Abstract

Background: Although machine learning (ML) algorithms have been applied to point-of-care sepsis prognostication, ML has
not been used to predict sepsis mortality in an administrative database. Therefore, we examined the performance of common ML
algorithms in predicting sepsis mortality in adult patients with sepsis and compared it with that of the conventional context
knowledge–based logistic regression approach.

Objective: The aim of this study is to examine the performance of common ML algorithms in predicting sepsis mortality in
adult patients with sepsis and compare it with that of the conventional context knowledge–based logistic regression approach.

Methods: We examined inpatient admissions for sepsis in the US National Inpatient Sample using hospitalizations in 2010-2013
as the training data set. We developed four ML models to predict in-hospital mortality: logistic regression with least absolute
shrinkage and selection operator regularization, random forest, gradient-boosted decision tree, and deep neural network. To
estimate their performance, we compared our models with the Super Learner model. Using hospitalizations in 2014 as the testing
data set, we examined the models’ area under the receiver operating characteristic curve (AUC), confusion matrix results, and
net reclassification improvement.

Results: Hospitalizations of 923,759 adults were included in the analysis. Compared with the reference logistic regression
(AUC: 0.786, 95% CI 0.783-0.788), all ML models showed superior discriminative ability (P<.001), including logistic regression
with least absolute shrinkage and selection operator regularization (AUC: 0.878, 95% CI 0.876-0.879), random forest (AUC:
0.878, 95% CI 0.877-0.880), xgboost (AUC: 0.888, 95% CI 0.886-0.889), and neural network (AUC: 0.893, 95% CI 0.891-0.895).
All 4 ML models showed higher sensitivity, specificity, positive predictive value, and negative predictive value compared with
the reference logistic regression model (P<.001). We obtained similar results from the Super Learner model (AUC: 0.883, 95%
CI 0.881-0.885).

Conclusions: ML approaches can improve sensitivity, specificity, positive predictive value, negative predictive value,
discrimination, and calibration in predicting in-hospital mortality in patients hospitalized with sepsis in the United States. These
models need further validation and could be applied to develop more accurate models to compare risk-standardized mortality
rates across hospitals and geographic regions, paving the way for research and policy initiatives studying disparities in sepsis
care.
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Introduction

Background
Sepsis is a life-threatening condition caused by a dysregulated
response of the body to infection. Sepsis is associated with high
morbidity and mortality, increased health care expenditures,
and long-term consequences [1-4]. It is a leading cause of
hospitalization and death, with an estimated 850,000 emergency
department visits per year and 59.6 deaths per 100,000
individuals in the United States [2,3]. The annual medical costs
associated with sepsis are approximately US $24 billion in the
United States [4]. There are clinical and economic incentives
to improve and measure the quality of sepsis care in the United
States [5]. Given the significant geographic disparities in sepsis
outcomes, the development of robust severity adjustment tools
is essential for objective sepsis mortality comparisons between
hospitals.

Several tools to adjust for sepsis severity have been proposed
by consensus conferences [6-8] using traditional statistical
methods [9-11]. More recently, machine learning (ML)
algorithms have improved the accuracy of sepsis mortality
prediction models [12-16]. These tools were largely designed
to incorporate the point-of-care risk stratification of patients
into the clinical workflow [17-19]. Interhospital comparisons
of sepsis care quality and evaluation of risk-adjusted sepsis
outcomes have been difficult as the extraction of necessary data
from each electronic medical record (EMR) system is
time-consuming and not cost-effective [20,21]. Consequently,
hospital administrative databases have gradually played a more
prominent role and become more widely used by health service
researchers because of their easy accessibility and
inexpensiveness.

Existing efforts to test and refine sepsis mortality prediction
models using hospital administrative data [20-23] have largely
used logistic regression models and achieved satisfactory
discrimination and calibration. More recent models adjusting
for risk factors have made use of national administrative
databases to compare risk-adjusted sepsis mortality between
hospitals [24]. Although most of them achieved a good area
under the receiver operating characteristic curve (AUC) in the
range of 0.70-0.80, there is still room to improve their
performance. In addition, these studies have focused on select
academic centers with limited generalizability to other types of
hospitals. Among them, the Severe Sepsis Mortality Prediction
Model achieved the best performance with an AUC of 0.838
and was used to generate an integer-based score for risk
adjustment in administrative data [21].

Objectives
ML models have a better ability to automatically select
variables, handle large sets of variables, and detect complex
multi-way interactions as well as nonlinear relationships [25].
These features enable ML models to improve on conventional

regression models in predicting health-related outcomes [26].
In this study, we compare the outcomes of several ML
algorithms to predict sepsis mortality using the full range of
variables provided in the US Nationwide Inpatient Sample (NIS)
database [27,28]. We also determine the accuracy among
different derivation and validation models. Our objective is to
provide an accurate and reliable tool to compare sepsis-related
mortality between hospitals in the United States.

Methods

Identification of Cases
Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis was used in this study. The
sepsis cohort was identified using the Martin implementation
[29,30], which identifies cases with explicit codes from the
International Classification of Diseases, Ninth Revision, Clinical
Modification for sepsis or systemic fungal infection (038
septicemia, 020.0 septicemic, 790.7 bacteremia, 117.9
disseminated fungal infection, 112.5 disseminated Candida
infection, or 112.81 disseminated fungal endocarditis) and a
diagnosis of acute organ dysfunction. Seven acute organ or
system dysfunctions were evaluated in this study: cardiovascular
or shock, respiratory, central nervous system, hematologic,
hepatic, renal, and metabolic system dysfunction. To reduce
self-prophecy bias, we removed cases with cardiac arrest and
ventricular fibrillation, respiratory failure, and respiratory
insufficiency.

We split the data into a training set (NIS 2010-NIS 2013) and
a testing set (NIS 2014). As the random forest and neural
network models could not handle missing values, we removed
patients with any missing values from the predictor variables.
After removing patients with any missing values, the training
data set included 726,918 adult patients, and the validation
cohort included 196,841 adult patients.

Ethical Considerations
Our study involved analysis of de-identified patients from
publicly available data. Therefore, no ethics approval was
required by the Institutional Review Board (IRB).

Variables
We used 5-dimensional data as predictors (demographic
characteristics, pre-existing comorbidities, hospital
characteristics, diagnosis, and procedure performed on the first
day of admission). A total of 1331 variables were included in
the ML models. We compared our ML models with the reference
model using the conventional logistic regression model with
predictors reported in a previous study [21]. In the random forest
model, we used the Gini Impurity to compute variable
importance, where the improvement in the split criterion is the
importance attributed to the splitting variable, and identified
the top 50 variables based on the variable of importance values
[31]. In addition, we calculated the Shapley Additive
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Explanations (SHAP) values from the xgboost model. SHAP
is a popular model-agnostic, local explanation approach
designed to explain any given classifier. Lundberg and Lee [32]
proposed the SHAP value as a united approach to explaining
the output of any ML model. We calculated the SHAP values
of each feature for each sample and extracted the top 50
variables based on the mean SHAP values.

Model Development
We developed four models using ML approaches: (1) logistic
regression with least absolute shrinkage and selection operator
(LASSO) regularization (LASSO regression), (2) random forest,
(3) gradient-boosted decision tree, and (4) deep neural network.
In these ML models, we used several methods to minimize
potential overfitting in each model: (1) LASSO regularization,
(2) out-of-bag estimation, (3) cross-validation, (4) dropout, (5)
ridge regularization, and (6) batch normalization.

Finally, we compared our results with the Super Learner model,
which is an algorithm that uses cross-validation to estimate the
performance of multiple ML models and summarizes the
prediction of those models using the ensemble method [33]. In
addition, we trained a logistic regression model that used the
same features as the ML models. The main analytic script can
be found in Multimedia Appendix 1.

Conventional Logistic Regression (Severe Sepsis
Mortality Prediction Model)
Logistic regression uses a function ranging between 0 and 1 to
describe the probability that the outcome belongs to one of 2
particular categories. In contrast to linear regression, logistic
regression does not require predicted variables to have a linear
relationship with the outcome. Logistic regression is well suited
for classification problems, such as problems involving
describing the risk of developing a disease or the risk of
mortality. In this study, we used the previously published Severe
Sepsis Mortality Prediction Model as a reference for
benchmarking.

Logistic Regression Model With LASSO
Regularization
LASSO regularization is a model that shrinks regression
coefficients toward 0, thereby effectively selecting important

predictors and improving the interpretability of the model [34].
The coefficients of the LASSO regression are the values that
minimize the residual sum of squares plus shrinkage penalty.
The regularization was tuned by minimizing λ to minimize the
mean squared error. We used 10-fold cross-validation to yield
the optimal regularization parameter minimizing the sum of
least squares plus shrinkage penalty using the R glmnet package
(R Foundation for Statistical Computing).

Random Forest Models
Random forest is an ensemble of decision trees from
bootstrapped training samples. Random forests modify the
bagged tree procedure by only allowing a random number of
the predictor variables to be considered at each split of each
tree [26,35,36]. For this study, the Gini Impurity was used to
determine the optimal variable and location of the split at each
node in the tree. To optimize the AUC of the resulting tree, a
cost complexity parameter, which penalizes larger trees, was
used to control the size of the final tree. To improve the accuracy
and stability of the decision tree model, a procedure called
bagging was used to fit a bagged tree model [37]. This involved
taking random bootstrap samples of patient data with
replacement and fitting an unpruned tree model to each sample.
The number of bagged trees in the final model was determined
in the training data set using 10-fold cross-validation to
maximize the training set AUC. We considered from 100 to
2000 trees and performed a pairwise statistical test to choose
the best number of trees (Table 1). This results in trees that are
less correlated with each other compared with bagged trees,
thus potentially increasing accuracy. The optimal number of
trees and predictor variables to be considered at each split was
determined using 10-fold cross-validation, and the combination
with the highest training set AUC was denoted as the final
model. Table 2 shows the association between the number of
variables allowed to be considered at each split in the random
forest model with discrimination. The final random forest model
was fitted with 400 trees with 50 variables at each split. We
used the ranger package in R to construct the random forest
models.

Table 1. Sensitivity analysis of tree numbers in the random forest algorithm.

P valuePairwise significant comparison of AUCAUCa (95% CI)Number of trees allowed

<.001b100 trees versus 200 trees0.876 (0.874-0.878)100

<.001b200 trees versus 300 trees0.877 (0.876-0.879)200

<.001b300 trees versus 400 trees0.878 (0.877-0.880)300

.30400 trees versus 500 trees0.878 (0.877-0.880)400

aAUC: area under the curve.
bValues are significant at P<.001.
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Table 2. Association between the number of variables allowed to be considered at each split in the random forest model and model discrimination.

Pairwise significant comparison of AUC (P value)Number of variablesAUCa (95% CI)Number of variables allowed

<.001b3 variables versus 5 variables0.852 (0.850-0.854)3

<.001b5 variables versus 9 variables0.860 (0.858-0.862)5

<.001b9 variables versus 15 variables0.868 (0.866-0.869)9

<.001b15 variables versus 20 variables0.874 (0.872-0.875)15

<.001b20 variables versus 25 variables0.875 (0.874-0.877)20

<.001b25 variables versus 40 variables0.877 (0.875-0.879)25

.02c40 variables versus 50 variables0.878 (0.876-0.880)40

.5350 variables versus 70 variables0.878 (0.877-0.880)50

N/AN/Ad0.878 (0.877-0.880)70

aAUC: area under the curve.
bValues are significant at P<.001.
cValues are significant at P<.05.
dN/A: not applicable.

Xgboost
Gradient-boosted decision trees are also an ensemble method
that constructs new tree models predicting the errors and
residuals of previous models [38]. When adding the new models,
this model uses a gradient descent algorithm to minimize the
loss function. The final tree-based model fit was a
gradient-boosted machine. This algorithm fits one tree at a time,
first to all the outcomes in the training data and then to the
residuals of the previous models, thus creating a combination
of trees that increasingly weigh the difficult to predict events
to a greater degree. The optimal number of splits for each
individual tree, the total number of trees, and the learning rate
were determined using 10-fold cross-validation in a similar
method to that of the random forest model. In our final model,
we had 10 splits for each tree in a total of 400 trees with a
learning rate of 0.15. We stopped training if the validation AUC
did not improve in 3 epochs. We used the xgboost package in
R to construct the gradient-boosted decision tree models.

Deep Neural Networks Keras
Deep neural network models are composed of multiple
processing layers. Neural networks are nonlinear models that
involve creating a set of linear combinations of the original
predictor variables and then using them as inputs into a hidden
layer (or layers) of units, which then creates new combinations
of these inputs to finally output the probability of the event of
interest after a suitable transformation [39]. A feedforward
multilayer perceptron neural network was used for this study.
A penalty term, known as weight decay, and the number of
hidden units in the model were determined using 10-fold
cross-validation to maximize the training set AUC. We used a
4-layer feedforward model with an adaptive moment estimation
optimizer, the binary cross-entropy loss function, and tuned
hyperparameters using the R keras package. In the neural
network model, continuous predictors are normalized using the
mean and SDs. Binary variables encoding 0 and 1 are rescaled
to encode −1 and 1. Finally, categorical variables use rescaled
using effect encodings. The detailed architecture of the deep
neural network in this study is shown in Figure 1.
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Figure 1. The architecture of the 4-layered neural network to predict sepsis mortality. ReLu: Rectified Linear Unit.

Super Learner
Finally, we compared our results with the Super Learner
algorithm, which uses cross-validation to estimate the
performance of multiple ML models [33]. The Super Learner
takes all weighted combinations from a set of candidate
algorithms. After a set of algorithms is chosen, the meta-learning
algorithm performs cross-validation to estimate the maximum
likelihood of each selected algorithm on the data and selects
the convex combination with the smallest squared prediction
error on the test data set. In our case, we chose logistic
regression as our meta-model. Overall, the generalization
procedure learns the n-fold stratified predictions to maximize
the likelihood function rather than minimize the mean squared
error and to represent the meta-model in generating the best
prediction. This approach has been proven to be as accurate as
the best possible prediction algorithm. We used the 2 algorithms
(random forest and xgboost) that we considered in this
manuscript as candidate algorithms and compared the results
with the models discussed in this paper. Our Super Learner
scripts can be found in Multimedia Appendices 2-4.

Model Performance
In the test set (NIS 2014), we computed the prediction
performance of each model that was derived above. First, we
calculated the area under the receiver operating characteristic
curve (AUROC) and confusion matrix results. The Delong test
was used to compare the receiver operating characteristic curves
between models. Second, the confusion matrix results were
calculated. Third, given the imbalanced nature of our data set,
we also calculated the area under the precision-recall curve
(AUC-PR), recall, and precision of different ML models in
predicting sepsis mortality. Fourth, calibration curves were
constructed by plotting predicted probability versus actual
probability from the ML models. The Brier scores of all the
models considered were also calculated. The Brier score is a
quadratic scoring rule where the squared differences between
the actual binary outcomes and predicted probabilities are
calculated. Therefore, lower values indicate better calibration.
All analyses were performed using R (version 3.6.1).
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Web Application
To increase the reproducibility and usability of this research on
sepsis care and mortality, we generated a web-based application
[40] for peer investigators to generate predictions of 30-day
mortality for patients with sepsis and provide an introductory
video (Multimedia Appendix 2). The web application is based
on our Super Learner model and built using the Shiny package
in R (version 4.0.5). The submission interface offers an example
Microsoft Excel file with placeholder columns. Details of how

to generate the variables are described in Multimedia Appendix
5.

Results

Baseline Characteristics
Figure 2 shows the flowchart of the cohort used in this study,
and Table 3 provides descriptive statistics of survivors and
nonsurvivors of sepsis from the cohort used. Table 4 shows the
characteristics of patients with sepsis stratified by training and
validation cohort.

Figure 2. Flowchart depicting the construction of the study cohort from the Nationwide Inpatient Sample (NIS) database. LASSO: least absolute
shrinkage and selection operator.
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Table 3. Characteristics of patients with sepsis in the Nationwide Inpatient Sample stratified by in-hospital survival status (N=923,759).

TotalNonsurvivors of sepsis (n=196,841)Survivors of sepsis (n=726,918)Characteristics

67.94 (16.19)70.85 (14.88)67.15 (16.44)Age (years), mean (SE)

455,464 (49.3)96,708 (49.1)358,756 (49.4)Women, n (%)

Race, n (%)

649,386 (70.3)137,807 (70)511,579 (70.4)White

143,008 (15.5)30,207 (15.3)112,801 (15.5)Black

77,560 (8.4)16,386 (8.3)61,174 (8.4)Hispanic

53,805 (5.8)12,441 (6.3)41,364 (5.7)Others

Insurance, n (%)

282,161 (30.5)60,933 (31)221,228 (30.4)Medicare

234,596 (25.4)48,838 (24.8)185,758 (25.6)Medicaid

218,087 (23.6)45,437 (23.1)172,650 (23.8)Commercial

188,915 (20.5)41,633 (21.2)147,282 (20.3)Other

Measures of acute illness severity, n (%)

195,712 (21.2)76,773 (39)118,939 (16.4)Early mechanical ventilation

72,180 (7.8)35,531 (18.1)36,649 (5)Late mechanical ventilation

437,957 (47.4)132,582 (67.4)305,375 (42)Shock

87,653 (9.5)28,691 (14.6)58,962 (8.1)Hemodialysis

126,566 (13.7)58,756 (29.8)67,810 (9.3)ICUa care (at least one day)

Underlying comorbidity, n (%)

320,996 (34.7)55,632 (28.3)265,364 (36.5)Anemia

96,439 (10.4)14,612 (7.4)81,827 (11.3)Depression

314,241 (34)57,294 (29.1)256,947 (35.3)Diabetes

29,499 (3.2)4188 (2.1)25,311 (3.5)Drug and substance abuse

239,295 (25.9)50,749 (25.8)188,546 (25.9)Chronic lung disease

229,812 (24.9)56,036 (28.5)173,776 (23.9)Congestive heart failure

527,696 (57.1)102,862 (52.3)424,834 (58.4)Hypertension

124,112 (13.4)23,856 (12.1)100,256 (13.8)Hypothyroid disease

60,060 (6.5)17,995 (9.1)42,065 (5.8)Liver disease

267,542 (29)57,171 (29)210,371 (28.9)Renal failure, chronic

19,160 (2.1)5469 (2.8)13,691 (1.9)Lymphoma

47,898 (5.2)17,109 (8.7)30,789 (4.2)Metastatic carcinomas

144,925 (15.7)27,791 (14.1)117,134 (16.1)Neurological conditions

118,889 (12.9)18,173 (9.2)100,716 (13.9)Obesity

37,483 (4.1)10,057 (5.1)27,426 (3.8)Malignant solid tumors

33,618 (3.6)6324 (3.2)27,294 (3.8)Rheumatoid arthritis or collagen vascular diseases

64,710 (7)10,955 (5.6)53,755 (7.4)Paraplegia

91,494 (9.9)22,853 (11.6)68,641 (9.4)Perivascular conditions

51,184 (5.5)6902 (3.5)44,282 (6.1)Psychiatric diseases

59,024 (6.4)15,327 (7.8)43,697 (6)Pulmonary-circulatory

194,185 (21)47,320 (24)146,865 (20.2)Weight loss

System dysfunction, n (%)

563,688 (61)129,768 (65.9)433,920 (59.7)Renal dysfunction
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TotalNonsurvivors of sepsis (n=196,841)Survivors of sepsis (n=726,918)Characteristics

413,726 (44.8)132,079 (67.1)281,647 (38.7)Cardiovascular dysfunction or shock

278,327 (30.1)116,406 (59.1)161,921 (22.3)Acute respiratory failure

213,862 (23.2)51,146 (26)162,716 (22.4)CNSb dysfunction

39,140 (4.2)20,561 (10.4)18,579 (2.6)Hepatic dysfunction

Lifestyle factors, n (%)

90,437 (9.8)15,033 (7.6)75,404 (10.4)Smoking

43,553 (4.7)10,674 (5.4)32,879 (4.5)Alcoholism

aICU: intensive care unit.
bCNS: central nervous system.
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Table 4. Characteristics of patients with sepsis in the Nationwide Inpatient Sample stratified by training and validation cohort (N=923,759).

Testing (2014)Training (2010-2013)Characteristic

Nonsurvivors of sepsis
(n=41,525)

Survivors of sepsis
(n=177,988)

Nonsurvivors of sepsis
(n=155,316)

Survivors of sepsis
(n=548,930)

70.44 (14.68)66.84 (16.37)70.96 (14.93)67.25 (16.46)Age (years), mean (SE)

20,212 (48.7)87,445 (49.1)76,496 (49.3)271,311 (49.4)Women, n (%)

Race, n (%)

29,402 (70.8)126,249 (70.9)108,405 (69.8)385,330 (70.2)White

5912 (14.2)26,074 (14.6)24,295 (15.6)86,727 (15.8)Black

3432 (8.3)15,287 (8.6)12,954 (8.3)45,887 (8.4)Hispanic

2779 (6.7)10,378 (5.8)9662 (6.2)30,986 (5.6)Others

Insurance, n (%)

13,119 (31.6)55,205 (31)47,814 (30.8)166,023 (30.2)Medicare

11,211 (27)49,151 (27.6)37,627 (24.2)136,607 (24.9)Medicaid

9050 (21.8)40,222 (22.6)36,387 (23.4)132,428 (24.1)Commercial

8145 (19.6)33,410 (18.8)33,488 (21.6)113,872 (20.7)Other

Measures of acute illness severity, n (%)

15,951 (38.4)26,221 (14.7)60,822 (39.2)92,718 (16.9)Early mechanical ventilation

6999 (16.9)7757 (4.4)28,532 (18.4)28,892 (5.3)Late mechanical ventilation

29,038 (69.9)72,412 (40.7)103,544 (66.7)232,963 (42.4)Shock

5873 (14.1)12,782 (7.2)22,818 (14.7)46,180 (8.4)Hemodialysis

11,842 (28.5)14,664 (8.2)46,914 (30.2)53,146 (9.7)ICUa care (at least one day)

Underlying comorbidity, n (%)

12,252 (29.5)64,232 (36.1)43,380 (27.9)201,132 (36.6)Anemia

3373 (8.1)21,829 (12.3)11,239 (7.2)59,998 (10.9)Depression

12,696 (30.6)65,651 (36.9)44,598 (28.7)191,296 (34.8)Diabetes

1075 (2.6)7622 (4.3)3113 (2)17,689 (3.2)Drug and substance abuse

11,199 (27)48,270 (27.1)39,550 (25.5)140,276 (25.6)Chronic lung disease

12,320 (29.7)42,863 (24.1)43,716 (28.1)130,913 (23.8)Congestive heart failure

22,923 (55.2)108,533 (61)79,939 (51.5)316,301 (57.6)Hypertension

5508 (13.3)26,352 (14.8)18,348 (11.8)73,904 (13.5)Hypothyroid disease

4199 (10.1)11,312 (6.4)13,796 (8.9)30,753 (5.6)Liver disease

12,467 (30)52,293 (29.4)44,704 (28.8)158,078 (28.8)Renal failure, chronic

1188 (2.9)3320 (1.9)4281 (2.8)10,371 (1.9)Lymphoma

3757 (9)7702 (4.3)13,352 (8.6)23,087 (4.2)Metastatic carcinomas

6092 (14.7)29,140 (16.4)21,699 (14)87,994 (16)Neurological conditions

4781 (11.5)29,023 (16.3)13,392 (8.6)71,693 (13.1)Obesity

2243 (5.4)7009 (3.9)7814 (5)20,417 (3.7)Malignant solid tumors

1426 (3.4)6926 (3.9)4898 (3.2)20,368 (3.7)Rheumatoid arthritis or collagen vascular diseases

2467 (5.9)12,944 (7.3)8488 (5.5)40,811 (7.4)Paraplegia

5119 (12.3)17,788 (10)17,734 (11.4)50,853 (9.3)Perivascular conditions

1582 (3.8)11,584 (6.5)5320 (3.4)32,698 (6)Psychiatric diseases

3702 (8.9)11,483 (6.5)11,625 (7.5)32,214 (5.9)Pulmonary-circulatory

10,138 (24.4)33,837 (19)37,182 (23.9)113,028 (20.6)Weight loss
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Testing (2014)Training (2010-2013)Characteristic

Nonsurvivors of sepsis
(n=41,525)

Survivors of sepsis
(n=177,988)

Nonsurvivors of sepsis
(n=155,316)

Survivors of sepsis
(n=548,930)

System dysfunction, n (%)

28,348 (68.3)109,080 (61.3)101,420 (65.3)324,840 (59.2)Renal dysfunction

29,015 (69.9)66,102 (37.1)103,064 (66.4)215,545 (39.3)Cardiovascular dysfunction or shock

24,398 (58.8)36,215 (20.3)92,008 (59.2)125,706 (22.9)Acute respiratory failure

12,504 (30.1)43,879 (24.7)38,642 (24.9)118,837 (21.6)CNSb dysfunction

4809 (11.6)4488 (2.5)15,752 (10.1)14,091 (2.6)Hepatic dysfunction

Lifestyle factors, n (%)

3828 (9.2)21,366 (12)11,205 (7.2)54,038 (9.8)Smoking

2591 (6.2)8854 (5)8083 (5.2)24,025 (4.4)Alcoholism

aICU: intensive care unit.
bCNS: central nervous system.

Performance Comparison
Compared with the reference logistic regression model (0.786,
95% CI 0.783-0.788), all 4 ML methods showed superior
discriminative ability (P<.001; Table 5). Of all 4 ML methods,
the deep neural network showed the highest (P<.001)
discriminative ability (0.893, 95% CI 0.891-0.895) followed
by the gradient-boosting model (0.888, 95% CI 0.886-0.889).
The AUC of the deep neural network (0.893, 95% CI
0.891-0.895) was higher than that of the Super Learner model
(0.883, 95% CI 0.881-0.885). Both LASSO (0.878, 95% CI
0.876-0.879) and random forest (0.878, 95% CI 0.877-0.880)
had an AUC that was slightly lower among the ML models but
was nevertheless superior (P<.001) to the reference logistic
model (Figures 3 and 4).

Of the ML models, the deep neural network also demonstrated
higher specificity (0.794, 95% CI 0.793-0.796) and positive
predictive value (0.484, 95% CI 0.480-0.488) while resulting
in lower sensitivity (0.826, 95% CI 0.823-0.830) and negative
predictive value (0.951, 95% CI 0.950-0.953) compared with
the xgboost model, but these differences were statistically
insignificant. The Super Learner showed similar results to our
xgboost model, with statistically lower specificity (0.769, 95%
CI 0.768-0.771) and positive predictive value (0.458, 95% CI
0.455-0.460) compared with the neural network model.
However, the neural network model showed only marginally
lower sensitivity (0.826, 95% CI 0.823-0.830) and negative
predictive value (0.951, 95% CI 0.950-0.953) compared with
the Super Learner.

The AUC-PR, recall, and precision of different ML models in
predicting sepsis mortality are shown in Figure 4 and Table 6.
The ML models showed superior AUC-PR measures
(0.636-0.681) compared with the reference logistic regression
model (0.442). In addition, being paralleled with our finding
from the AUROC, the deep neural network model showed the
highest AUC-PR (0.681) followed by the xgboost model (0.673).

Most of the models showed great calibration from a visual
representation, which shows calibration plots characterized by
visual inspection and reporting of the intercept and slope (Figure
5). The intercept’s deviation from 0 indicates the extent to which
predictions are underpredicting or overpredicting the probability
of the event of interest—sepsis mortality. All of our models
showed small departures (intercept <0.1) except for the random
forest model, which overpredicted sepsis mortality (0.245). The
random forest and neural network models slightly overpredicted
sepsis mortality, whereas the reference logistic regression,
LASSO, and xgboost models slightly underpredicted sepsis
mortality. Compared with the reference logistic regression
model, which had a slope of 1.048, LASSO (1.044), xgboost
(1.087), and the neural network model (1.096) had similar slopes
that were all close to 1. However, the random forest model
showed the largest deviation from perfect calibration (1.458).

In addition, Table 7 shows the Brier scores of all the models.
The deep neural network model exhibited the lowest Brier score
of 0.954 followed by xgboost (0.102), which is in alignment
with their high discriminatory ability. The ML models exhibited
a good range of Brier scores (0.095-0.108), all of which were
higher than those of the reference logistic regression model
(0.129).
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Table 5. Measures of model discrimination and accuracy in the validation data set (Nationwide Inpatient Sample 2014), including area under the curve
(AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).

NPV (95% CI)PPV (95% CI)Specificity (95% CI)Sensitivity (95% CI)AUC (95% CI)Model

0.914 (0.912-0.915)0.373 (0.370-0.376)0.722 (0.720-0.774)0.708 (0.704-0.713)0.786 (0.783-0.788)Reference logistic regression
(Severe Sepsis Prediction score)

0.947 (0.946-0.948)0.468 (0.464-0.471)0.784 (0.782-0.786)0.812 (0.808-0.816)0.878 (0.876-0.879)LASSOa

0.948 (0.947-0.949)0.454 (0.451-0.458)0.771 (0.769-0.773)0.818 (0.814-0.821)0.878 (0.877-0.880)Random forest

0.952 (0.950-0.953)0.472 (0.468-0.475)0.781 (0.781-0.785)0.829 (0.826-0.833)0.888 (0.886-0.889)Xgboost

0.951 (0.950-0.953)0.484 (0.480-0.488)0.794 (0.793-0.796)0.826 (0.823-0.830)0.893 (0.891-0.895)Deep neural network

0.952 (0.951-0.953)0.458 (0.455-0.460)0.769 (0.768-0.771)0.833 (0.829-0.837)0.883 (0.881-0.885)Super Learner

aLASSO: least absolute shrinkage and selection operator.

Figure 3. Receiver operating characteristic curves of different machine learning models in predicting sepsis mortality. AUC: area under the curve;
LASSO: least absolute shrinkage and selection operator.
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Figure 4. Precision-recall curves of different machine learning models in predicting sepsis mortality. AUC: area under the curve; LASSO: least absolute
shrinkage and selection operator.

Table 6. The area under the precision-recall curve (AUC-PR), recall, and precision of different machine learning models in predicting sepsis mortality.

Precision (95% CI)Recall (95% CI)AUC-PR, mean (SD)

0.403 (0.401-0.405)0.587 (0.583-0.591)0.443 (0.003)Reference logistic regression

0.410 (0.410-0.411)0.806 (0.805-0.807)0.636 (0.001)LASSOa

0.415 (0.414-0.416)0.806 (0.805-0.807)0.653 (0.002)Random forest

0.420 (0.420-0.421)0.814 (0.813-0.816)0.673 (0.002)Xgboost

0.427 (0.426-0.428)0.815 (0.814-0.816)0.681 (0.002)Neural networks

aLASSO: least absolute shrinkage and selection operator.
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Figure 5. Calibration plots of observed versus predicted hospital mortality and associated mortality ratios by risk deciles in the development and
validation cohorts. LASSO: least absolute shrinkage and selection operator.

Table 7. Calibration measures of different machine learning models in predicting sepsis mortality.

InterceptSlopeBrier score

−0.0541.0480.129Reference logistic regression

−0.0281.0440.108LASSOa

0.2451.4580.103Random forest

−0.0921.0870.102Xgboost

0.0731.0960.0954Neural networks

aLASSO: least absolute shrinkage and selection operator.

Variable Importance of the Random Forest by Gini
Impurity and Xgboost Model by SHAP
The top 50 variables according to the variable importance of
the random forest algorithm by the Gini Impurity are shown in
Figure 6. The top 50 features with the highest mean SHAP

values of the xgboost algorithm are shown in Figure 7. SHAP
is a popular technique used to explain model predictions. SHAP
is model-agnostic, with the ability to explain any given classifier.
Lundberg and Lee [32] proposed SHAP as a united approach
to explaining the output of any ML model. Acute respiratory
failure and age were the 2 most important features from the
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random forest model as well as the xgboost model, and acute
respiratory failure was not a feature in the reference logistic
regression model. In addition, we found many diagnosis
(primary, secondary, and other) and procedure (primary and
secondary) variables to be important predictors for sepsis
mortality, which were not included in the reference logistic

regression model. To assess collinearity, variance inflation
factors of the final feature panel from SHAP were calculated
from a total cohort combining both the training and validation
cohorts. All 50 features showed variance inflation factor scores
<5 except for early mechanical ventilation and late mechanical
ventilation (Figure 8).

Figure 6. Variables of importance from random forest ranked by impurity-based variable importance. CNS: central nervous system; ICU: intensive
care unit.
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Figure 7. Variables of importance from xgboost ranked by mean Shapley Additive Explanations values (SHAP). ICU: intensive care unit.
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Figure 8. Variance inflation factor scores of top 50 variables by Shapley Additive Explanations (SHAP) values. ICU: intensive care unit; VIF: variance
inflation factor.

Logistic Regression Model Using the Same Features
as the ML Models
Moreover, Table 8 shows the performance of a logistic
regression model that used the same features as the ML models.
Overall, this logistic regression model with all features showed
a very comparable calibration performance assessed by the Brier

score (0.102) compared with those of the ML models (95% CI
0.0954-0.108). This model resulted in a slightly lower AUC-PR
(0.634) compared with the ML models (95% CI 0.636-0.681)
and a statistically lower (P<.001) AUROC of 0.857 (95% CI
0.855-0.859) compared with the ML models (95% CI
0.876-0.895).

Table 8. Performance comparison of the machine learning models with the logistic regression model with the same features.

AUC P valueAUCb (95% CI)AUC-PRa, mean (SD)Brier score

N/Ac0.857 (0.855-0.859)0.634 (0.003)0.102Logistic regression model—all features

<.001e0.878 (0.876-0.879)0.636 (0.001)0.108LASSOd

<.001e0.878 (0.877-0.880)0.653 (0.002)0.103Random forest

<.001e0.888 (0.886-0.889)0.673 (0.002)0.102Xgboost

<.001e0.893 (0.891-0.895)0.681 (0.002)0.0954Neural networks

aAUPRC: area under the precision-recall curve.
bAUC: area under the curve.
cN/A: not applicable.
dLASSO: least absolute shrinkage and selection operator.
eValues are significant at P<.001.

Later, we trained a reference logistic regression model and a
random forest model using this experiment and compared their
performance to that of our original study design. I Instead of
splitting our cohort by year, we split the training and testing
cohorts randomly to see if our findings hold true. Of the patients
from the entire data set, 75% (692,819) were assigned to the
training set, and the remaining 25% (230,940) of the samples
were assigned to the testing set. Using this approach, we

obtained AUROC of 0.765 (95% CI 0.763-0.768) from the
reference logistic regression model, whereas we observed
superior performance from a random forest model with AUROC
of 0.855 (95% CI 0.853-0.857). This finding is consistently
with the results with our original approach of splitting our cohort
by year where ML models showed superior discrimination
performance compared with the reference logistic model.
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Finally, we used the Gini Impurity to calculate the variable of
importance in our random forest model. In Table 9, we present
the results of an analysis of the top 50 most important predictive
features when a different train–test split method is used. When
our cohort was split randomly, Table 9 shows the top 50 most
important features from a random forest model. The third
column shows whether these features were also in the top 50
in the previous random forest model using the train–test
split-by-year approach (Figure 4). Of the 50 most important

features, 44 (88%) were also top features identified by the
previous random forest model using the train–test split-by-year
approach (Figure 4). Although 6 features have changed, we note
that 5 (83%) are low-ranking features with higher variability.
As a result, despite having used 2 different train–test split
approaches, the features identified and ranked in the top 50 most
important features by both models had relatively consistent
ranks (ie, the most important features were age and acute
respiratory failure).

J Med Internet Res 2022 | vol. 24 | iss. 4 | e29982 | p. 17https://www.jmir.org/2022/4/e29982
(page number not for citation purposes)

Park et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 9. Variables of importance from the random forest (random train–test split cohort).

Top 50 from previous cohortImportance rankVariable name

Yes1Acute respiratory failure

Yes2Age

Yes3Respiratory intubation and mechanical ventilation (primary procedure)

Yes4Combined comorbidity score

Yes5Shock (other diagnosis)

Yes6ICUa care (at least one day)

Yes7Cardiovascular dysfunction or shock

Yes8Other aftercare (other diagnosis)

Yes9Early mechanical ventilation

Yes10Respiratory intubation and mechanical ventilation (secondary procedure)

Yes11Shock

Yes12Late mechanical ventilation

Yes13Insurance

Yes14Hepatic dysfunction

Yes15Other liver diseases (other diagnosis)

Yes16Coma, stupor, and brain damage (other diagnosis)

No17Location or teaching status of hospital

Yes18Bacterial infection, unspecified site (other diagnosis)

Yes19Race

Yes20Urinary tract infections (other diagnosis)

Yes21Pneumonia (except that caused by tuberculosis or sexually transmitted disease; other diagnosis)

Yes22Other gastrointestinal disorders (other diagnosis)

Yes23Joint disorders and dislocations, trauma-related (secondary diagnosis)

Yes24Acute and unspecified renal failure (other diagnosis)

Yes25Residual codes, unclassified (other diagnosis)

Yes26Aspiration pneumonitis and food or vomitus (other diagnosis)

Yes27Secondary malignancies (other diagnosis)

Yes28Anemia

Yes29Renal dysfunction

Yes30Other nervous system disorders (other diagnosis)

Yes31Other nutritional, endocrine, and metabolic disorders (other diagnosis)

Yes32Coagulation and hemorrhagic disorders (other diagnosis)

Yes33Other injuries and conditions because of external causes (other diagnosis)

Yes34Cardiac dysrhythmias (other diagnosis)

Yes35Insertion, replacement, or removal of extracranial ventricular shunt (primary procedure)

Yes36CNSb dysfunction

Yes37Sex

Yes38Hemodialysis

Yes39Diabetes

Yes40Septicemia (except in labor; other diagnosis)

Yes41Nutritional deficiencies (other diagnosis)
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Top 50 from previous cohortImportance rankVariable name

Yes42Hypertension

Yes43Administrative or social admission (other diagnosis)

No44Allergic reactions (other diagnosis)

No45Pleurisy, pneumothorax, and pulmonary collapse (other diagnosis)

Yes46Metastatic cancer

Yes47Weight loss

No48Deficiency and other anemia (other diagnosis)

No49Delirium, dementia, and amnestic and other cognitive disorders (other diagnosis)

No50Coronary atherosclerosis and other heart disease (other)

aICU: intensive care unit.
bCNS: central nervous system.

Discussion

Principal Findings
In this study, we applied 5 ML algorithms (LASSO, random
forest, xgboost, deep neural network, and Super Learner) using
variables from a national administrative database to predict
in-hospital mortality in a sepsis cohort identified using the
previously validated Martin implementation. The AUROCs of
the ML models were in the excellent range (95% CI
0.877-0.895), supporting our ML models’ superior ability to
discriminate mortality of patients with sepsis compared with
the reference logistic regression model (95% CI 0.783-0.788).
The ML models also showed superior AUC-PR measures (95%
CI 0.636-0.681) compared with the reference logistic regression
model (0.442). Among them, the models based on deep neural
networks and xgboost outperformed the others in predicting
sepsis mortality. To our knowledge, this is the first study to
apply advanced ML models to predict sepsis mortality based
on an administrative database.

It is important to distinguish between the 2 complementary uses
of sepsis mortality risk prediction as they are distinct in their
design and overall goals. EMR-integrated sepsis mortality
prediction models are designed for use at the point of care to
risk-stratify patients for clinical decision-making in the intensive
care unit or emergency department [9-19]. However, unless
proprietary systems are purchased, legal, technical, and financial
barriers make it nearly impossible to extract the necessary
clinical data from different EMR systems to assess performance
across hospitals and states. In contrast, sepsis mortality
prediction models based on administrative claims databases,
which are available nationally, are designed to compare expected
and actual sepsis mortality [20-24]. The latter was the focus of
this study.

To date, traditional regression analyses have been applied to
administrative data sources. Logistic regression of data ranging
from single-center databases to regional and national databases
has been used to predict sepsis mortality based on administrative
data. Lagu et al [20] achieved an AUC of 0.78, Ford et al [21]
achieved an AUC of 0.838, König et al [22] achieved an AUC
>0.8, Schwarzkopf et al [24] achieved an AUC of 0.74, and
Rhee et al [23] achieved an AUC of 0.776. In contrast to our

approach, the aforementioned studies largely used traditional
statistical models and did not use a validated Martin or Angus
implementations approach to identify patients with sepsis.
Moreover, they did not use the national inpatient database of
the United States, which is the largest data set of US hospitalized
patients. Recently, ML models have been applied to predicting
sepsis mortality. Although some of them showed excellent
performance, most of them were designed for point-of-care
clinical application using the local EMR. In 2 previous studies
using support vector machines, Ribas et al [12] achieved an
AUC of 0.80, and Tsoukalas et al [13] obtained an AUC of 0.61.
Taylor et al [14] used 500 clinical variables with a random forest
model, which resulted in an AUC of 0.86. The study by Perng
et al [15] used a support vector machine, k-nearest neighbor,
random forest, and softmax with different extraction methods
and achieved an AUC of 0.94. Kwon and Baek [16] used
gradient boosting and random forests, achieving an AUC of
0.86. These ML algorithms were based on the local EMR
database and may not be generalizable to other hospitals because
of the case mix. By contrast, our ML models were based on a
national administrative database with maximal generalizability
[41].

As sepsis represents a major driver of cost and health care
burden in the United States [4], improvement in sepsis care
quality has been an important challenge. Considering the
heterogeneous nature of sepsis, the calculation of sepsis
risk-standardized mortality rates (RSMRs) is of great importance
in measuring sepsis care quality across hospitals. Few relevant
studies have been conducted based on a nationwide
administrative database [23], and there remains much room for
improved accuracy. Although hospital 30-day RSMRs for acute
myocardial infarction, heart failure, and pneumonia have been
reported by the Centers for Medicare and Medicaid Services
[42], RSMRs for sepsis have not been well-characterized.
Calculation of RSMR is important as identification of gaps
between a facility’s RSMR and those of the state or nation’s
highest-performing hospitals can lead hospital administrators,
government policy makers, and other stakeholders to identify
differences in practice and take action to improve sepsis care
quality [43,44]. Disclosing discrepancies in RSMR also serves
to reduce the asymmetry of information between consumers
and health care providers and may spur market forces toward
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a more efficient allocation and distribution of health care
resources to improve care [45]. To calculate RSMR across
hospitals, our ML models were the first step in developing
accurate models.

We believe that our mortality prediction model is an important
tool that can be applied in health care research, quality
improvement, and health policy making. However, our results
should be interpreted with several limitations. First, any
variation in the quality of coding in administrative data might
affect the reliability of our study, including payment-related
incentives for coding, over- or undercoding of conditions or
risk factors, inconsistencies in coding practices between
hospitals, and new technologies applied in sepsis care [46-48].
Second, the Martin implementation with which we extracted
the sepsis cohort has been criticized for the less stringent use
of septicemia and the omission of immunologic and
coagulopathic organ dysfunction [30]. Third, we used in-hospital
mortality as an outcome in our study and excluded patients who
were transferred between hospitals. Consequently, those
transferred against medical advice or to short-term hospitals
were not counted. Whether this focus on in-hospital mortality
could be biased by the hospital discharge policy warrants further
investigation [49]. Fourth, some sepsis-related local
characteristics such as local disease prevalence cannot be
captured in a nationwide claim-based database. Thus, these
variables could not be modeled and might influence our
comparison results. Fifth, despite the excellent performance of
the ML models, they suffer from varying degrees of
explainability issues, and the inferences about variables
(especially those that are clinically modifiable) tend to be more
challenging [50]. Sixth, our model cannot be continuously
updated because of the recent policy change of the NIS to
eliminate state and hospital identifiers. As there is a time lag of
>6 years, further research is needed to refine and update our
ML models. However, the results of our training and validating
analyses suggest that the accuracy of our model may not be
significantly affected by time. Seventh, despite strong
discrimination and performance, the data set used in this study
was highly imbalanced, consisting of many more surviving

patients. For future studies, one should consider down-sampling
the survivor group to have a balanced data set before training
the models and comparing the model performance. Eighth,
although the non-ML logistic regression model using the same
set of features as the ML models suffered from a statistically
lower (P<.001) AUROC of 0.857 (95% CI 0.855-0.859), as
documented in Table 8, some clinicians may prefer to use a
model with easier interpretability, a drawback of the
multilayered deep neural networks [51]. Ninth, the training and
testing cohorts were split by year in this study to better capture
the cyclic seasonal change in infection. The randomness of the
training and testing cohort splitting could be compromised.

Nevertheless, our study has multiple strengths. First, we
demonstrated the strength of ML models in predicting sepsis
mortality in an administrative database. Second, the data we
used were from a sepsis cohort extracted using a validated
approach from the NIS database, which is a large, standardized,
nationwide database representative of US community hospitals.
Third, the variables used in our models are easily accessible
across different hospitals, thus having great generalizability.
Fourth, our large sample size enabled our ML models to discover
complex multi-way interactions and nonlinear relationships
between the predictors and outcomes, prompting further
investigations for other clinical researchers. Fifth, to increase
the reproducibility and usability of this research on sepsis care
and mortality, we also generated a web-based application that
will allow peer investigators to obtain predicted 30-day sepsis
mortality calculations.

Conclusions
In conclusion, our study demonstrates the value of ML models
in predicting sepsis mortality in an administrative database as
they are able to achieve higher discrimination and calibration.
Knowledge of these ML models paves the way for the
development of more accurate models to compare RSMRs
across hospitals and geographic regions. This represents the
first study to use an ML approach to improve the prediction of
sepsis mortality in the NIS.
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