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Abstract

Background: Currently, selection of patients for sequential versus concurrent chemotherapy and radiation regimens lacks
evidentiary support and it is based on locally optimal decisions for each step.

Objective: We aim to optimize the multistep treatment of patients with head and neck cancer and predict multiple patient
survival and toxicity outcomes, and we develop, apply, and evaluate a first application of deep Q-learning (DQL) and simulation
to this problem.

Methods: The treatment decision DQL digital twin and the patient’s digital twin were created, trained, and evaluated on a data
set of 536 patients with oropharyngeal squamous cell carcinoma with the goal of, respectively, determining the optimal treatment
decisions with respect to survival and toxicity metrics and predicting the outcomes of the optimal treatment on the patient. Of
the data set of 536 patients, the models were trained on a subset of 402 (75%) patients (split randomly) and evaluated on a separate
set of 134 (25%) patients. Training and evaluation of the digital twin dyad was completed in August 2020. The data set includes
3-step sequential treatment decisions and complete relevant history of the patient cohort treated at MD Anderson Cancer Center
between 2005 and 2013, with radiomics analysis performed for the segmented primary tumor volumes.

Results: On the test set, we found mean 87.35% (SD 11.15%) and median 90.85% (IQR 13.56%) accuracies in treatment
outcome prediction, matching the clinicians’ outcomes and improving the (predicted) survival rate by +3.73% (95% CI –0.75%
to 8.96%) and the dysphagia rate by +0.75% (95% CI –4.48% to 6.72%) when following DQL treatment decisions.

Conclusions: Given the prediction accuracy and predicted improvement regarding the medically relevant outcomes yielded by
this approach, this digital twin dyad of the patient-physician dynamic treatment problem has the potential of aiding physicians
in determining the optimal course of treatment and in assessing its outcomes.

(J Med Internet Res 2022;24(4):e29455) doi: 10.2196/29455
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Introduction

Background
Head and neck cancer, which includes cancers of the larynx,
throat, lips, mouth, nose, and salivary glands, is now an
epidemic, with 65,000 new cases in the United States annually
[1], whose treatment is, as in many other types of cancers, a
dynamic and complex process. This therapy process involves
making multiple, patient-specific treatment decisions to
maximize efficacy—for example, reduction in tumor size, time
of local region control, and survival time—while minimizing
side effects [2-4]. For example, a specific patient may undergo
radiotherapy (RT) alone, RT with concurrent chemotherapy
(CC), or induction chemotherapy (IC) [5]. After each round of
IC, a decision must be made whether to continue IC or start
either RT or CC. These decisions are currently taken by
clinicians or multidisciplinary tumor boards based on pretherapy
patient characteristics or crude heuristics. Notably, current

risk-prediction models (eg, American Joint Committee on
Cancer [AJCC] staging) incorporated in clinical decision support
systems do not by themselves systematically direct clinicians
to select an appropriate treatment that incorporates both
oncologic and toxicity end points.

Furthermore, disposition to initial IC is then followed by a
second responsive disposition to either RT or concurrent
chemoradiotherapy. Inferring the optimal treatment policies for
multistage decisions (eg, which treatment to administer initially
and then after observing treatment response; Figure 1) post hoc
is challenging because an optimal therapy sequence cannot be
readily pieced together from several single-stage decisions.

For this reason, in the absence of rigorous clinical trials
comparing adaptive IC permutations with concurrent RT, group
comparison is exceedingly difficult because simple models that
account for confounders at initial disposition (eg, propensity
scores) are unequipped to incorporate sequential decision
processes (eg, the choice of CC after IC).

Figure 1. Overview of the therapy selection process, which shows two distinct phases: initial therapeutic selection and subsequent therapeutic selection.

Digital Twinning
To address multistage models of therapy selection that
incorporate both relevant cancer and side-effect considerations,
we introduce an approach based on digital twinning, a new

concept adapted to health research from the industrial world,
where a digital replica (digital twin) of a physical entity or
process is virtually recreated, with similar elements and
dynamics, to perform real-time optimization and testing [6]. In
health care, coupled digital twins, that is, digital twin dyads,
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could be created for both patients and for the therapy process
and used to inform in a quantitative manner adaptive therapy
decision-making and allow personalization and optimization of
health outcomes, prediction and prevention of adverse events,
and planning interventions [7]. By leveraging a large number
of head and neck cancer cases collected at a single institutional
head and neck data tumor board at the MD Anderson Cancer
Center (MDACC), we propose a methodology approach to
leverage deep Q-learning (DQL) as a method to construct a
digital twin dyad for simulation of therapy outcomes and
potential implementation as a clinical decision aid. Q-learning
is a recently developed machine learning method for supervised
variable selection and weighting accounting for iterative
processes [8].

In this paper, we apply for the first time Q-learning methodology
to dynamically select treatment based on multiple clinically
relevant outcomes from data specific to patients with head and
neck cancer. We use these methods to construct and develop
optimal dynamic treatment strategies, that is, digital twins of
the therapy process. In conjunction with simulation models of
patient data, the treatment prescription models form a
patient-physician (prescriber) digital twin dyad in which the
treatment prescription models act as a physician avatar by
identifying the optimal treatment for the patient, whereas the
simulation models represent the patient by predicting the
outcome of the treatment sequence. We evaluate the results of
this digital twin dyad approach on a curated data set of patients
with head and neck cancer.

Methods

Overview
A state-of-the-art machine learning method applicable to the
optimal therapy process problem is reinforcement learning (RL),
in particular DQL [8-12]. DQL aims to solve problems in which
a model has to choose among a series of options to maximize
a certain goal in the given situation: the model observes a set
of actions and the outcome these actions have, thus learning

which choices are optimal and which are not. Q-learning is thus
a type of machine learning that enables systems to automatically
learn and improve from experience without being explicitly
programmed. Q-learning has been shown to lead to valid results
in a variety of medical problems, including the definition of a
sequential multiple-assignment randomized trial [8,9], the
optimal treatment of depression [8] and
Attention-Deficit/Hyperactivity Disorder [9], and the
breastfeeding habits that maximize child vocabulary
development [10].

We used DQL to find a treatment policy that maximizes a linear
combination of multiple patient outcomes; for example,
toxicological and survival outcomes. We considered a 3-step
Markov decision process (MDP), with 3 actions in each episode
corresponding to the three treatment decision points for each
patient:

1. Decision 1 (D1): IC or not
2. Decision 2 (D2): CC or RT alone
3. Decision 3 (D3): neck dissection (ND) or not

More details on the setup of the MDP are described in the
following sections, including the reward functions and state
variables.

Patient Data Set
We performed a retrospective review of 536 patients with
oropharyngeal squamous cell carcinoma who were treated at
the MDACC between 2005 and 2013 (Tables 1-3). Radiomics
analysis was performed [13,14] for the segmented [15,16]
primary tumor volumes. Only patients with a minimum
follow-up of 4 years or who died within 4 years were included
in the data set. The 536 examples were partitioned into 2 distinct
sets for training and testing using a 75% (n=402)-25% (n=134)
random split. To save space, in Table 1, the results of all binary
features are shown only for 1 outcome; the others can be derived
directly by subtracting from 100%. For example, the figures for
sex being female are 65 (12.1%), 47 (11.7%), and 18 (13.4%),
under the respective column headings.
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Table 1. Demographics of pretreatment features (before decision 1 [D1]: induction chemotherapy or not; N=536).

Testing set (n=134)Training set (n=402)All patients (N=536)Characteristics

Group 1: Pretreatment features (before D1)

60.2 (9.6)58.5 (9.4)58.9 (9.5)Age (years) at diagnosis, mean (SD)

Pathological grade, n (%)

4 (3)2 (0.5)6 (1.1)I

40 (29.9)114 (28.4)154 (28.7)II

88 (65.7)206 (51.2)274 (51.1)III

2 (1.5)1 (0.2)3 (0.6)IV

20 (14.9)79 (19.7)99 (18.5)Not available

116 (86.6)355 (88.3)471 (87.9)Sex (male), n (%)

HPVa or P16b status, n (%)

10 (7.5)33 (8.2)43 (8)Negative

77 (57.5)228 (56.7)305 (56.9)Positive

47 (35.1)141 (35.1)188 (35.1)Unknown

Tc category, n (%)

26 (19.4)87 (21.6)113 (21.1)T1

63 (47)156 (38.8)219 (40.9)T2

25 (18.7)91 (22.6)116 (21.6)T3

19 (14.2)67 (16.7)86 (16)T4

1 (0.7)1 (0.2)2 (0.4)Txd

Ne category (8th editionf), n (%)

6 (4.5)14 (3.5)20 (3.7)N0g

68 (50.7)181 (45)249 (46.5)N1

56 (41.8)194 (48.3)250 (46.6)N2

4 (3)13 (3.2)17 (3.2)N3

AJCCh (8th edition), n (%)

49 (36.6)137 (34.1)186 (34.7)I

18 (13.4)63 (15.7)81 (15.1)II

20 (14.9)44 (10.9)64 (11.9)III

46 (34.3)157 (39.1)203 (37.9)IV

1 (0.7)1 (0.2)2 (0.3)Not available

Smoking status at diagnosis, n (%)

30 (22.4)85 (21.1)115 (21.5)Current

52 (38.8)151 (37.6)203 (37.9)Former

52 (38.8)166 (41.3)218 (40.7)Never

Smoking status

20.5 (26)16.7 (22.9)17.7 (23.7)Packs per year, mean (SD)

7 (5.2)21 (5.2)28 (4.7)Not available, n (%)

2 (1.5)14 (3.5)16 (3)Aspiration rate before therapy (no), n (%)

1.8 (1)2.1 (1.3)2.0 (1.3)Number of affected lymph nodes, mean (SD)

Tumor laterality, n (%)

5 (3.7)16 (4)21 (3.9)Bilateral
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Testing set (n=134)Training set (n=402)All patients (N=536)Characteristics

54 (40.3)188 (46.8)242 (45.1)Left

75 (56)198 (49.3)273 (50.9)Right

Tumor subsite, n (%)

62 (46.3)204 (50.7)266 (49.6)Base of tongue

65 (48.5)158 (39.3)223 (41.6)Tonsil

7 (5.2)40 (10)47 (8.8)Other

Race, n (%)

6 (4.5)10 (2.5)16 (3)African American or Black

1 (0.7)3 (0.7)4 (0.7)Asian

4 (3)17 (4.2)21 (3.9)Hispanic or Latino

0 (0)1 (0.2)1 (0.2)Native American

123 (91.8)371 (92.3)494 (92.2)White or other

aHPV: human papillomavirus.
bP16: protein expression 16.
cT: primary tumor.
dTx: no information about the primary tumor or it cannot be measured.
eN: lymph nodes.
fAmerican Joint Committee on Cancer’s Cancer Staging Manual, 8th edition.
gN0: nearby lymph nodes do not contain cancer.
hAJCC: American Joint Committee on Cancer.
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Table 2. Feature demographics before and after decision junctions (N=536).

Testing set (n=134), n (%)Training set (n=402), n (%)All patients (N=536), n (%)Characteristics

Group 2: Post– induction chemotherapy– decision features (after D1a and before D2b)

Prescribed chemotherapy

92 (68.7)250 (62.2)342 (63.8)None

9 (6.7)32 (8)41 (7.6)Doublet

32 (23.9)111 (27.6)143 (26.7)Triplet

0 (0)7 (1.7)7 (1.3)Quadruplet

1 (0.7)2 (0.5)3 (0.6)Not otherwise specified

20 (14.9)65 (16.2)85 (15.9)Chemotherapy modification

Chemotherapy modification type

115 (85.8)336 (83.6)451 (84.1)No dose adjustment

5 (3.7)16 (4)21 (3.9)Dose modified

1 (0.7)9 (2.2)10 (1.9)Dose delayed

5 (3.7)13 (3.2)18 (3.4)Dose cancelled

1 (0.7)5 (1.2)6 (1.1)Dose delayed and modified

7 (5.2)22 (5.5)29 (5.4)Regimen modification

0 (0)1 (0.2)1 (0.2)Unknown

22 (16.4)73 (18.2)95 (17.7)Dose-limiting toxicity

Dose-limiting toxicity g rade (also included for dermatological, neurological, gastrointestinal, hematological, nephrological, vascular,
and infection [pneumonia])

112 (83.6)334 (83.1)446 (83.2)0

1 (0.7)6 (1.5)7 (1.3)1

7 (5.2)26 (6.5)33 (6.2)2

12 (9)29 (7.2)41 (7.6)3

2 (1.5)7 (1.7)9 (1.7)4

42 (31.3)152 (37.8)194 (36.2)Imaging (yes)

17 (12.7)67 (16.7)84 (15.7)Complete response, primary (1c, as opposed to 0d)

2 (1.5)14 (3.5)16 (3)Complete response, nodal (1)

19 (14.2)70 (17.4)89 (16.6)Parietal response, primary (1)

31 (23.1)125 (31.1)156 (29.1)Parietal response, nodal (1)

3 (2.2)8 (2)11 (2.1)Stable disease, primary (1)

4 (3)6 (1.5)10 (1.9)Stable disease, nodal (1)

Group 3: Post–concurrent chemotherapy –decision features (after D2 and before D3e)

Concurrent chemotherapy regimen

37 (27.6)89 (22.1)126 (23.5)None

59 (44)198 (49.3)257 (47.9)Platinum based

34 (25.4)95 (23.6)129 (24.1)Cetuximab based

4 (3)20 (5)24 (4.5)Other

22 (16.4)77 (19.2)99 (18.5)Concurrent chemotherapy modification (1)

114 (85.1)336 (83.8)450 (84.1)Complete response, primary 2 (1)

61 (45.5)186 (46.3)247 (46.1)Complete response, nodal 2 (1)

19 (14.2)58 (14.4)77 (14.4)Parietal response, primary 2 (1)

66 (49.3)191 (47.5)257 (47.9)Parietal response, nodal 2 (1)
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Testing set (n=134), n (%)Training set (n=402), n (%)All patients (N=536), n (%)Characteristics

0 (0)2 (0.5)2 (0.4)Stable disease, primary 2 (1)

4 (3)6 (1.5)10 (1.9)Stable disease, nodal 2 (1)

22 (16.4)80 (19.9)102 (19)Dose-limiting toxicity 2 (also included for dermatolog-
ical, neurological, gastrointestinal, hematological,
nephrological, vascular, and other)

Group 4: Primary outcomes after D3

113 (84.3)344 (85.6)457 (85.3)Four-year overall survival (alive)

21 (15.7)77 (19.2)98 (18.3)Feeding tube 6 months (yes)

19 (14.2)79 (19.7)98 (18.3)Aspiration rate after therapy (yes)

32 (23.9)122 (30.3)154 (28.7)Dysphagia (yes)

aD1: decision 1 (induction chemotherapy or not).
bD2: decision 2 (concurrent chemotherapy or radiotherapy alone).
cThe patient survived for at least four years after the treatment ended.
dAll other events.
eD3: decision 3 (neck dissection or not).

Table 3. Demographics of physicians’ decisions (N=536).

Testing set (n=134), n (%)Training set (n=402), n (%)All patients (N=536), n (%)Characteristics

Treatment decisions (made by physicians)

42 (31.3)152 (37.8)194 (36.2)D1a: yes

97 (72.4)313 (77.9)410 (76.5)D2b: yes

27 (20.1)84 (20.9)111 (20.7)D3c: yes

aD1: decision 1 (induction chemotherapy or not).
bD2: decision 2 (concurrent chemotherapy).
cD3: decision 3 (neck dissection or not).

Ethics Approval
The data were collected after approval from the MDACC
institutional review board (PA16-0303 and retrospective
RCR03-0800).

Modeling
We focused on two outcome measures: (1) four-year overall
survival (OS) as a single binary dichotomized outcome measure
(ie, the patient survived for at least four years after the treatment
ended, coded as 1, with all other events coded 0) and (2) the
combination of OS and dysphagia (DP) as a multi-outcome
measure. DP is defined as either feeding-tube dependence (FT)
or aspiration rate (AR) 6 months after the end of treatment
[17,18]. Note that although OS is encoded as a binary value,
the outcome of treatment depends on the external situation and
the treatment sequence applied; that is, both OS and DP are
influenced by the treatment sequence applied. As a result, the
whole problem is not a simple regression but bona fide RL with
unknown transition probability. The combined outcome measure
was computed only at the final step using the following formula:

OS–(FT+AR After Therapy–AR Before Therapy) (1)

Equation (1) was used as the total reward in training the DQL
models. For each of these scenarios, the models were trained

with and without the inclusion of radiomics features [19,20].
The reward is 0 for D1 and D2 and equal to equation (1) for
D3. As a result, there is no need for a discount factor (or,
equivalently, set it to 1), and the total reward is exactly equation
(1).

The state variables are illustrated in Tables 1 and 2, where all
the features are divided into four groups separated by the state
in which those features were used:

1. Group 1: pretreatment features (before D1)
2. Group 2: post–IC-decision features (after D1 and before

D2)
3. Group 3: post–CC-decision features (after D2 and before

D3)
4. Group 4: primary outcomes after ND decision (after D3)

The features in Table 1 were used for the initial state s0 of the
MDP and are denoted as group 1. In Table 2, the features in
group 2 combined with group 1 and a 1-hot vector of D1 were
used for state s1; the features in group 3 combined with groups
1-2 along with a 1-hot vector of D1 and D2 were used for state
s2. As a result, the features included at each decision point
represent the complete history of the patient up to the current
treatment decision. The features in group 4 were only used to
evaluate the reward as formulated in equation (1) and not used
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as learning features. A detailed description of all variables is
given in Table S1 in Multimedia Appendix 1, and we have
summarized the demographics of physicians’decisions in Table
3.

Preprocessing
The data set was randomly split into training (402/536, 75%)
and testing (134/536, 25%) sets. To reduce the radiomic feature
dimensionality (approximately 1000) [21], we applied principal
component analysis and kept the 6 top components, which
explain 90% of the overall feature variance. No blind assessment
of the decisions or outcomes was made. Unknown human
papillomavirus status was handled using a distinguished value
(0). Missing values for all other covariates were handled using
single imputation: median for numerical variables and mode
for categorical variables. The ordinal covariates pathological
grade, T (primary tumor) category, N (lymph nodes) category,
AJCC staging, and prescribed chemotherapy (none, single,
doublet, triplet, or quadruplet) were coded as numerical features.
After these preprocessing steps, all features were rescaled to
the (–1 to +1) range, as is standard in neural network (NN)
training.

DQL Neural Modeling
Figure 2 shows an overview of the training process. A separate
NN model was trained for each of the decision points D1-D3.
Each model was constructed recursively based on the previous
model results at the subsequent decision point or the outcome
(single or combined) in the case of D3. The models were trained
to optimize the total rewards without any discounting factor,
that is, the combined outcome of equation (1).

The first model to be trained was Q3, which represents ND
(D3), based on the final outcomes, the treatment decisions made
in D3, and the patient’s history before D3. We tuned the learning
rate so that the mean reward converged smoothly instead of
fluctuating drastically. The training for D3 was terminated when
the NN weights had converged. Next, the model for D2 was
trained based on the result of Q3 instead of the final outcomes,
and D1 was trained based on the result of Q2. The models were
constructed and trained using the PyTorch framework with
graphics processing unit acceleration. Once the models had been
trained, they were used in a forward order, as opposed to the
training order, to prescribe the optimal treatment at each decision
step. This is illustrated in Figure 3.

Figure 2. Overview of deep Q-learning model training. RL: reinforcement learning.

Figure 3. Overview of applying deep Q-learning model to make treatment prescriptions. RL: reinforcement learning.

We constructed multiple shallow-to-deep NNs with an
increasing number of layers until the deepest model showed
poor performance because of overfitting. We sampled 1000
separate training sets from the initial training data and trained
a separate model on each of these sets, thus obtaining
bootstrapped models with 95% CIs. Because of the high

computational cost of bootstrapping, we will report in the
Results section the performance of survival and toxicity under
all possible numbers of hidden layers from 1 to 8, instead of
performing the 5-fold cross-validation on all hyperparameters
such as the number of nodes in each layer.
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By prescribing an optimal treatment at each treatment junction,
the DQL models constructed a digital twin of the decision
process, with the goal of finding an optimal treatment plan that
may differ from the physician’s original decisions. The trained
models and the code to compute the treatment decisions have
been made available on GitHub [22].

Treatment Simulator for Evaluating DQL
As the DQL goal is not to replicate clinicians’ decisions but to
find an optimal, potentially different treatment, our evaluation
includes building a treatment simulator (TS) model that, given
a patient’s history and the prescribed treatment, predicts the
outcome of that treatment. The TS consists of a transition model
for each intermediate and final outcome measure, built using a
support vector classifier (SVC). For example, in the case of D1,
an SVC was trained for each group 2 feature in Table 2 to
predict, as output, that feature’s value resulting from D1, and
the input of these SVCs is all the Table 1 features, that is, group
1. For D2, SVC will predict for group 3 features in Table 2
using, as input, features from groups 1-2, along with a 1-hot

vector of D1. The architecture is demonstrated in Figure 4. D3
was treated similarly with input features from groups 1-3, along
with a 1-hot vector of D1 and D2. The full details of the SVC
are provided in Table S2 in Multimedia Appendix 1. The C, γ,
and class weights of each SVC were tuned through 5-fold
cross-validation over the F1 score on the training data because
different values are needed for optimally predicting different
features. Some features such as FT have quite imbalanced
values, and to address this, we set the weights of each training
example to be inversely proportional to the frequency of its
class, hence placing more emphasis on less-common classes.
The accuracy of the TS in predicting the next-stage feature value
(instead of the treatment decision) was assessed with 95% CIs
by using out-of-bag evaluation of 1000 models trained on
stratified bootstrapped samples.

The TS serves as an in silico digitaltwin of the patient treatment
because we can use it to dynamically simulate the patient’s in
vivo course as a function-given treatment policy, without having
to physically treat the patient.

Figure 4. Illustration of the treatment simulator for D2. Those for D1 and D3 are similar, and their input features are from group 1 and groups 1-3,
respectively. SVC: support vector classifier. D1: decision 1. D2: decision 2. D3: decision 3.

Protocol of Evaluating DQL
The DQL models were evaluated against the TS because our
goal is not to replicate physicians’ decisions but to learn from
the final reward and then quantitatively evaluate the treatment
decisions learned by the DQL model. Such what-if questions
are standard in off-policy evaluation in RL (in off-policy
evaluation, one evaluates a policy without being able to
implement it in the real environment). The state-of-the-art
approaches fall into three categories [23]: (1) direct approach
where a model of the environment is fit (same as what we do),
(2) importance sampling, and (3) a combination of the 2.
Importance sampling is known to suffer from high variance and
thus would require a large number of samples, whereas our test
set consisted of 134 patients. Similarly, Gottesman et al [24]
detailed this difficulty along with several possible scenarios,
but no conclusion was drawn regarding which metric to use.
Yauney and Shah [25] evaluated the learned policy through
simulated clinical trials, an approach identical to ours.

At the same time, to the best of our knowledge, there is no
existing rule-based approach (eg, decision trees) that is suitable
for this task. We note that although very generic methods such

as decision trees could be customized for a single-step
prediction, they do not account for the sequential nature of this
decision-making process. Furthermore, ultimately, evaluating
such rule-based approaches would encounter the same what-if
questions, that is, off-policy evaluation. Indeed, this has been
a long-standing open problem in RL, and we hope that our
digital twin approach may provide a new partial solution.

Although we tested the DQL models against the TS that allows
on-policy evaluation, we emphasize two important
considerations in the evaluation protocol:

1. TS was not used for training. Instead, we intentionally
trained DQL on a tabular observation data set of 402
patients. This is because if we did train on the TS, the
learned model would overfit the simulated environment,
thereby overestimating the test performance (which is also
measured from the TS). This deliberate decoupling of
training and testing strategy, which is also adopted by
Yauney and Shah [25], is aimed specifically to ensure the
fairness of the comparison. Again, note that although the
TS can be directly used to optimize the policy through any
model-based RL, we intentionally refrained from doing so
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and followed the model-free DQL. This ensures a fair
testing, noting that the TS is also used in generating the
testing trajectory.

2. The learned agent did not have access to the TS at test time,
and the decisions were based solely on the current state.
The TS was invoked only to simulate the environment, that
is, generating the consequent state arising from the proposed
decision and treatment, allowing the performance to be
evaluated. This was consistent with the model-free nature
of the DQL and ensured a fair evaluation by avoiding
peeking into the real dynamics under which the test was
conducted.

Incidentally, even if the TS were available for decision-making
(that is, the planning setting), there would still be significant
obstacles. In open-loop planning, a sequence of actions (3
treatment decisions in our application) is chosen before actually
performing any of them, that is, later actions neither await nor
respond to the outcome of the preceding actions. In this case,
one only needs to compute 8 scores and select the optimal one.
However, even in such an overly simplistic solution, one still
needs to compute the expected reward, which relies on
integration over the stochastic outcome of the actions, that is,
states s1-s3. Mathematically, it solves

Although sampling is a natural approach to it, the high
dimensionality of the state space demands a large amount of
samples from the TS to accurately compute the expected reward.

In practice, closed-loop planning is clearly preferred, where
later actions are chosen to best respond to the outcome of
preceding decisions and treatments, leading to the mathematical
optimization formulation as

As a result, we must compute the state value (V[s]-functions)
or the state-action value (Q[s,a]-functions). Because of the
complexity of state space, both of them are nontrivial, even
given the TS. Compared with open-loop planning, an additional
layer of difficulty is incurred here because one needs to estimate
8 functions instead of 8 real numbers.

To summarize, this patient treatment digital twin approach
enables us to simulate the results of applying the Q-learning
models to patients and to compare the outcomes with those
resulting from the clinicians’decisions. Fairness was also upheld
by not using the TS in either training or decision-making at
testing time.

Evaluation Metrics
The TS performance was evaluated by 2 accuracies without
running the DQL. The 1-step accuracy follows the trajectory
from the data set and, at each of the 3 decision junctions,
predicts the resulting feature value after practicing the
physician’s treatment and then compares it with the ground
truth outcome in the data set. In contrast, the start-to-finish

accuracy is only concerned with the final outcome features in
group 4 of Table 2. It uses the TS to generate a simulated 3-step
trajectory for each patient by following the 3 treatment decisions
from the physician and compares the final outcome with the
ground truth.

The DQL models were then evaluated by comparing the OS
and DP rates (as computed by the TS) resulting from the DQL
treatment decisions with the outcomes observed under physician
treatment on a separate test set. To facilitate interpretation, we
computed the similarity between each of the DQL model’s
decisions and the physicians’ decisions, considering each
decision point independently. This evaluation does not need the
TS. To further support interpretation, the policy followed by
each model was analyzed by computing the increase (or
decrease) in prescription rate for each treatment decision
compared with the physicians’ ad hoc prescriptions to express
whether the model was more (or less) likely to prescribe a
certain treatment when compared with actual physicians.

We also evaluated the DQL treatment decisions by examining
compliance with the National Comprehensive Cancer Network
guidelines of acceptable care [26], which state that eligible
patients with advanced-stage cancer (T3-4 or N1-3) must be
prescribed chemotherapy, either IC (D1) or CC (D2). These
guidelines or restrictions were not explicitly imposed during
model training.

We first report the performance of the TS and the simulation
performance of the DQL models and compare the DQL
recommendations with the physician decision process, both in
terms of per-decision similarity and overall similarity, that is,
averaging the similarity for each decision point for each model.
To report compliance, and to ensure quality and facilitate
reproducibility, we provide a formal presentation of the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis checklist, formalized in Table
S3 in Multimedia Appendix 1.

Results

Accuracy of TS Models
The complete 1-step prediction accuracy of each TS model (with
95% CIs) is presented in Table 4. The average bootstrapped
prediction accuracy of the individual TS models was 87.35%
(SD 11.15%), and the median accuracy was 92.07% (IQR
13.56%). At the whole trajectory level, the average
start-to-finish prediction accuracy on the test set outcomes was
83.21% (SD 1.54%), with 83.96% (SD 0.37%) accuracy for
OS, 82.46% (SD 1.87%) for DP, 88.43% (SD 1.87%) for FT
and 83.58% (SD 0.75%) for AR. Please note that these accuracy
values are neither in terms of treatment prediction nor
comparable with physician’s treatment D1, D2, and D3. Instead,
the TS predicts the patient’s feature or state (eg, complete
response or nodal) resulting from a treatment decision given in
the data and compares it with the ground truth outcome in the
data set. Therefore, this accuracy should not be compared with
the frequency of matching physician decisions (which is 70.4%,
as we will show in the Similarity to Physicians section).
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Table 4. One-step prediction accuracy of treatment simulation (with 95% CIs) based on out-of-bag evaluation of 1000 stratified bootstrapped samples.

Accuracy with radiomics (%; 95% CI)Accuracy without radiomics (%; 95% CI)Predicted outcome

78.95 (74.29-83.09) a78.23 (73.20-82.92)Overall survival (4 years)

74.74 (68.53-80)74.37 (68.81-79.40)Feeding tube (6 months)

73.96 (68.04-78.76)75 (69.38-80)Aspiration rate after therapy

82.77 (78.06-87.13)83 (77.32-87.57)Prescribed chemotherapy (single, doublet, triplet, quadruplet,
none, or not otherwise specified)

80.22 (75.98- 84.82)82.09 (76.96-86.34)Chemotherapy modification (yes or no)

94.50 (92.31-96.39)92.39 (89.23-94.95)Dose modified

92.35 (88.56-95.52)92.39 (89.12-95.17)Dose delayed

93.37 (90.05-96.15)91.58 (87.68-94.77)Dose cancelled

91.79 (54.7-95.05)93.54 (84.36-95.88)Regimen modification

81.77 (77.34-85.79)81.51 (77.25-85.42)DLTb (yes or no)

90.58 (87.05-93.3)92.77 (23.95-95.29)DLT: dermatological

92.27 (88.83-95.26)92.17 (88.66-95.1)DLT: neurological

90.36 (86.8-93.36)89.60 (85.86-92.96)DLT: gastrointestinal

91.84 (88.02-94.47)90.10 (86.17-93.23)DLT: hematological

98.50 (96.55-99.52)99.03 (98-100)DLT: nephrological

98.50 (96.86-100)98.45 (96.45-100)DLT: vascular

98.44 (96.37-99.50)98.98 (94.42-100)DLT: infection (pneumonia)

92.35 (83.17-96.98)95.08 (90.82-97.57)DLT: other

77.02 (72.55-81.48)73.85 (53.84-79.9)DLT: grade

100 (100-100)100 (100-100)No imaging (0=no and 1=yes)

84.02 (79.58-88.05)83.51 (78.82-87.56)Complete response, primary

94.82 (89.64-97.4)94.79 (90.5-97.03)Complete response, nodal

80.32 (75.89-84.85)81.47 (76.84-86.27)Parietal response, primary

92.93 (90.05-95.52)92.93 (90-95.65)Parietal response, nodal

96.35 (92.96-98.03)95.10 (91.96-97.84)Stable disease, primary

97.50 (96.08-98.55)96.58 (94.47-98.05)Stable disease, nodal

65.99 (59.91-71.8)70 (64.68-75.27)Concurrent chemotherapy regimen

71.43 (65.68-76.68)70.53 (64.92-76.06)Concurrent chemotherapy modification (yes or no)

77.35 (29.95-84.57)79.22 (23.03-85.22)Complete response, primary 2

56.25 (50-61.94)55.50 (49.01-61.54)Complete response, nodal 2

83.66 (79.90-86.60)78.92 (74.26-83.25)Parietal response, primary 2

52.85 (46.46-58.62)52.50 (46.19-58.03)Parietal response, nodal 2

99.48 (98.41-100)99.48 (98.46-100)Stable disease, primary 2

96.92 (94.36-98.45)96.50 (94.12-98.04)Stable disease, nodal 2

94.95 (91.53-97.07)91.99 (87.63-95.17)DLT: dermatological 2

91.97 (88.29-94.69)95.79 (5.96-97.46)DLT: neurological 2

91.13 (87.50-94.06)89.74 (85.22-93.65)DLT: gastrointestinal 2

93.23 (90.10-95.57)92.71 (89.42-95.16)DLT: hematological 2

96.53 (93.62-98.48)92.25 (88.17-97.94)DLT: nephrological 2

100 (99.02-100)100 (99.45-100)DLT: vascular 2

93.24 (89.23-96.14)93.97 (89.73-96.86)DLT: other 2
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aValues in italics indicate whether higher accuracy is achieved by including or excluding radiomics.
bDLT: dose-limiting toxicity.

Performance of DQL in OS and DP
Recall from group 4 in Table 2 that the baseline outcomes
observed under physician care are 85.57% (training set) and
84.33% (test set) OS rate of staying alive and 69.65% (training
set) and 76.12% (test set; absence of) DP rate.

The complete performance of all DQL models on simulated
patient outcomes is presented in Table S4 in Multimedia
Appendix 1. For models trained to predict both OS and DP, the
selected models were the ones with 2-3 hidden layers, which
outperformed physician outcomes for OS. For predicting OS
on the test data, the best model with radiomics had the highest
average predicted OS rate but had higher variance and a worse
lower bound of 95% CI (+5.22%, 95% CI –2.26% to 10.45%)
compared with the best model without radiomics (+4.48%, 95%
CI –1.49% to 9.7%). For DP, models without radiomics
outperformed models with radiomics in terms of both average
and lower bounds in terms of simulated patient outcomes.

For the purposes of this paper, we consider the best model to
be the 2-layer NNs without radiomic features because it had the
best lower bounds on predicted OS and DP for all models, while
still affording a good average performance. This model yielded
a median OS improvement, compared with physicians’ results,
of +2.74% (95% CI –0.25% to 6.47%; training set) and +3.73%
(95% CI –0.75% to 8.96%; test set), with an absolute highest

OS rate of 88.31% (95% CI 85.32%-92.04%; training set) and
88.06% (95% CI 83.58%-93.53%; test set). With respect to DP,
the same 2-layer model showed a +3.98% (95% CI –1.24% to
9.2%) improvement on training data, with 73.63% (95% CI
68.41%-78.86%) of simulated patients not exhibiting DP under
the model’s treatment decisions. This 2-layer model yielded a
+0.75% (95% CI –4.48% to 6.72%) improvement on the test
set, from the baseline 76.12% to 76.87% (95% CI
71.64%-82.84%).

To assess model parsimony (ie, the minimum number of layers
for maintaining equivalent predictive performance), Figure 5
shows a comparison of DQL models with different numbers of
layers on simulated test data for the combined outcome models
(OS and DP) and with and without radiomics features. Broadly,
neither simpler models with <2 layers nor models with >4 layers
performed as effectively as the 2-layer model. In Figure 5,
continuous lines show the average performance of the
bootstrapped models, whereas highlighted areas represent the
95% CIs. Dashed lines show the empirical patient outcomes
observed under the physicians’ decisions. Models with 1-4
layers had the highest performance and lower variance, whereas
models with >4 layers overfit the data. Furthermore, models
without radiomics had better overall performance for toxicity
outcomes. Models with radiomics had slightly higher
performance for OS outcomes but had higher variance and worse
lower bounds than models trained without radiomics.
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Figure 5. Model performance for the combined outcome (overall survival+dysphagia) models without (left) and with radiomics (right). The figure
shows the performance for overall survival (top) and toxicity (dysphagia; bottom), with varying numbers of layers showing treatment simulation results
on the test data.

Similarity to Physicians
The similar rates (with 95% CIs) with respect to physicians’
treatment twinning, both per-decision and overall similarity,
across all models are presented in Table S5 in Multimedia
Appendix 1. We reiterate that the goal of DQL is not to replicate
clinicians’ decisions but to find an optimal, albeit potentially
different, treatment. However, it is clearly of interest to measure
the similarity as a reference. In terms of overall similarity of
the in silico Q-learning treatment policies compared with those
actually delivered ad hoc in vivo by physicians, our best model
(OS+DP, 2 layers, and no radiomics) showed an overall 70.4%
(95% CI 65.34%-73.63%) similarity to the physician decisions
on the training set (ie, the model chooses the same treatment as
the physicians for 70.4% of the considered treatment decisions)
and 69.65% (95% CI 63.43%-73.38%) on the test set, although
another model (the 3-layer OS+DP model without radiomics,
which performed consistently worse in simulation for all
outcomes) did show higher similarity rates.

Compliance With National Comprehensive Cancer
Network Guidelines
The distributions (with 95% CIs) of the T and N stages of
patients in the test set, separated by chemotherapeutic treatment
prescribed by the best-performing model, are presented in Table
5.

The rates at which models choose a certain policy compared
with the physicians’ treatment rate at each decision point are
shown in Figure 6. Gray lines represent the 95% CIs. The
numbers on top of the bars show for how many patients (out of
134) the Q-learning model recommended that treatment. The
IC prescription rate varies in a similar way between OS and
OS+DP, CC is significantly more frequent in OS+DP models,
whereas ND is consistently less frequent in OS+DP. The
best-performing model in terms of simulated outcomes (OS+DP,
2 layers, and no radiomics) had a higher IC (D1) rate (2.99%
increase in prescription rate compared with physicians’
prescriptions for 46 patients, 95% CI –14.93% to 26.88%) and
one of the highest CC (D2) rates (21.64% increase, 126 patients,
95% CI –2.99% to 27.61%), as well as the lowest ND (D3) rate
(20.15% decrease, 0 patients, 95% CI –20.15% to –11.19%).
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Table 5. Tumor stage demographics of patients based on the chemotherapeutic treatment decisions of the best-performing model (n=134).

No chemotherapy, no induction chemotherapy,
radiotherapy alone (%; 95% CI)

ChemotherapyDemographics

No induction chemotherapy,
concurrent chemotherapy
(%; 95% CI)

Induction chemotherapy

Radiotherapy alone
(%; 95% CI)

Concurrent chemothera-
py (%; 95% CI)

Ta category

0 (0-23.08)69.23 (26.92- 96.15)3.85 (0-26.92)23.08 (0-65.38)T1

0 (0-20.63)66.67 (38.06-88.89)3.17 (0-22.22)25.40 (6.35-55.56)T2

0 (0-16)60 (28-88)4 (0-28)32 (8-64.1)T3

0 (0-15.79)52.63 (10.53-94.74)5.26 (0-31.58)36.84 (5.26-84.21)T4

0 (0-100)100 (0-100)0 (0-100)0 (0-100)Txb

Nc category

0 (0-40)60 (0-100)0 (0-40)20 (0-100)N0d

0 (0-21.74)73.91 (17.39-95.65)0 (0-30.43)17.39 (0-73.91)N1

0 (0-17.65)62.75 (36.27-81.37)3.92 (0-22.55)29.41 (9.80-56.89)N2

0 (0-25)50 (0-100)0 (0-50)25 (0-100)N3

N category (8th editione)

0 (0-33.33)66.67 (0-100)0 (0-33.33)16.67 (0-100)N0

0 (0-22.06)70.59 (30.88-92.65)2.94 (0-26.47)22.06 (2.94-60.29)N1

0 (0-14.29)58.93 (25-83.93)3.57 (0-26.79)33.93 (8.93-69.64)N2

0 (0-25)50 (0-100)0 (0-50)25 (0-100)N3

aT: primary tumor.
bTx: no information about the primary tumor or it cannot be measured.
cN: lymph nodes.
dN0: nearby lymph nodes do not contain cancer.
eAmerican Joint Committee on Cancer’s Cancer Staging Manual, 8th edition.
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Figure 6. Absolute increase (or decrease) of treatment decision rate compared with physicians’decisions. The plots refer to decisions 1 (top), 2 (middle),
and 3 (bottom) on the test set and for models considering only overall survival as an outcome measure (left) or overall survival+dysphagia (right) without
radiomics. Y: yes.

Computational Cost
The training time for a single DQL model did not significantly
vary between shallower and deeper NNs and was just a few
minutes on average for a complete model. With 1000-sample
bootstrapping, the training time was accordingly longer, costing
>24 hours to generate the results shown in Figure 5. However,
these models are computationally inexpensive and can be

deployed virtually in real time. Because of the computational
cost of bootstrapping, we only used 5-fold cross-validation to
tune the TS hyperparameters using SVCs, whereas for the other
backbone hyperparameters such as the number of layers, we
opted to report the performance of OS and DP under all possible
numbers of hidden layers from 1 to 8 instead of performing
cross-validation.
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Clinical Case Review
As there is no practical way of verifying counterfactual what-if
scenarios in actual patient care, we performed a post hoc case
review of selected divergence of the policy prediction from
delivered care. We herein report 2 case representative studies
of patient-specific DQL treatment decisions—one differed from,
whereas the other mostly concurred with, the original decisions
of the treatment team of physicians—with discussion and input
from oncologists at the MDACC. These 2 case studies were
selected by performing 1000 bootstrapped trials on the entire
data set (randomly partitioning it into training and testing), then
recording the frequency with which the DQL prediction agreed
with the physician’s (among the 1000 bootstrapped trials). We
used the smallest geometric mean value to select the first case
study. The second case study was selected for high values of
agreement rates in D2 and D3 but a low value of agreement
rates in D1.

The patient in the first case study differed in every decision:
the treatment sequence prescribed by their clinician team was
D1: IC, D2: RT, and D3: ND, whereas the DQL sequence was
D1: not IC, D2: CC, and D3: not ND. During our discussion,
upon retrieving and examining the medical records, the
oncologists described this case as having “a very unique and
strange presentation” with bilateral disease involving the
retropharyngeal lymph node (RPN). As the MDACC has
historically associated RPN involvement with increased
metastatic risk in published series [27,28], the patient was
prescribed IC in D1 as part of an informal local policy for cases
with perceived high risk of distant metastases or unsalvageable
nodal failure (eg, retropharyngeal recurrence). The patient
exhibited a substantive response with respect to the response
evaluation criteria in solid tumors, wherein the primary tumor
volume and index RPN had clinical complete response;
therefore, in D2, the physicians prescribed RT alone. The patient
exhibited a sizable response again, this time to the primary
tumor. After RT, there was a notation by the radiologist of a
negative positron emission tomography scan (eg, no evidence
of metabolic uptake); however, the nodal remnant was evident
and “malignancy could not be excluded.” Consequently, in D3,
the physicians prescribed, as a precaution, a completion ND on
the lymph node but found no cancer, only necrotic tissue. In
the oncologists’ assessment, the DQL sequence would
approximate typical standard of care more than the delivered
treatment in terms of general community practice. In this case,
the MDACC team altered the treatment based on additional
local information related to the RPN. However, in their
assessment, most other centers would not alter treatment based
on this typically not collected information because RPN status
is not a formal component of staging materials or risk categories
for oropharyngeal cancer [29,30] nor of AJCC staging systems
[31], and many, if not most, practices would treat this case as
concurrent chemoradiotherapy. In summary, this was an
extremely unusual, unique case where additional unannotated
local information made the difference between the DQL and
the prescriber’s sequence. Future work that includes nodal
involvement methodology [3,4] not currently reflected in the
AJCC 8th Edition could address this type of borderline case.

The patient we considered in the second case study featured
disagreement only in the first decision. The treatment sequence
prescribed by their clinician team was D1: not IC, D2: CC, and
D3: not ND, whereas the DQL sequence was D1: IC, D2: CC,
and D3: not ND. Upon examining the medical records, the
oncologists noted that the patient had only 1 functioning kidney;
therefore, in the first stage, the team decided to prescribe a
low-dose chemotherapy regimen treatment as a precaution to
prevent renal injury [32]. In their assessment, our dyad system
performed well, given the input specifications of this case, and
the difference in therapy selection was attributed to occult (but
clinically meaningful) comorbid disease variables not included
in the decision platform that influenced the physicians’process.

Overall, the physician review in both these instances that we
investigated in detail suggests that, in the absence of specific
local practices or occult clinical features not included in this
decision platform, the DQL recommendation would have been
a good strategy and that the dyad provided “clinically acceptable
recommendations.”

Discussion

Principal Findings
The high average, median, and overall accuracies provided by
the TS in predicting the outcomes of treatments indicate that
the TS is a valid digital twin for the treatment process when
predicting the outcome of a treatment sequence. Our results also
indicate that the Q-learning models indeed capture the nature
of the dynamic treatment problem and provide a valid solution.
Our models showed consistent improvements for all the outcome
features taken into account, as well as moderate similarity to
physicians’ decisions. Overall, these results indicate that DQL
modeling can serve as a digital twin of the treatment decision
process and TS modeling can serve as a digital twin of the
patient treatment. When combined, DQL and TS constitute a
valid patient-physician digital twin dyad for optimal policy
determination in sequential systemic and locoregional therapy
of oropharyngeal squamous carcinomas.

Furthermore, our results show that the DQL models that consider
OS+DP outperform models considering only OS in terms of
simulated survival rate. As the absence of DP (FT or AR)
symptoms is positively correlated with OS, maximizing these
indirectly helps maximize OS-model performance as well.

Moreover, OS+DP models show higher similarity to actual
physician decisions because they represent a finer-grained
approximation of the decision process than models that include
only OS as an outcome, including more of the features
considered by the physician when choosing an optimal
treatment.

Surprisingly, given the abundance of data on radiomics models
for head and neck cancer [13,33-40], Q-learning models without
radiomics yielded a better performance than models that
included radiomics, in terms of simulated outcomes and
variance, for both training and testing data. The most evident
example is given by the simulated DP: none of the models
trained with radiomics features managed to improve the outcome
observed after physicians’ treatment in the test set (Figure 5,
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bottom right). From these results, the addition of textural
features failed to improve model performance and instead
significantly increased the performance variance of the
bootstrapped models.

Our findings also justify the choice of a deep NN model instead
of a regular linear model: whereas by using DQL we reduce
model parsimony, we can see that the results of the linear models
(ie, the 0–hidden-layers NNs) are comparatively suboptimal to
deeper models in terms of simulated performance, CI variance,
and similarity.

Furthermore, per Table 5, the best-performing model did not
violate the standard of care regarding chemotherapeutic
treatment of patients because all patients with stages T3-4 or
N1-3 cancer were prescribed either IC (D1) or CC (D2), with
most of them being prescribed at least CC, showing that clinical
applicability was maintained.

When comparing OS-only models with OS+DP models, the
prescription rates presented in Figure 5 showed 2 separate trends
for the 2 categories: whereas the IC (D1) prescription rate varied
similarly for the OS and OS+DP models, the rates of CC (D2)
and ND (D3) were significantly different between the 2
categories. In general, OS+DP models tended to have a higher
rate of CC (D2) and a lower rate of ND (D3). In other words,
models that also consider toxicity as an outcome measure
balanced a more aggressive chemotherapeutic treatment with
a lower rate of ND, which is consistent with the known positive
correlation between surgery and DP symptoms such as FT and
AR.

Limitations
Although the proposed approach was shown to be effective in
dynamically selecting optimal treatment strategy for patients
with oropharyngeal squamous cell carcinoma, it is not without
limitations. Because of the retrospective nature of the data set,
our Q-learning models had to be evaluated through the TS, a
supervised learning model, which might be seen as

self-referential. However, the TS is a necessary approach before
prospective application because evaluating the models based
on physician similarity alone would not reflect the purpose of
DQL. Intuitively, the goal of DQL is not to replicate the
decisions taken by physicians in the data set but to learn from
these decisions and their effect to discern between optimal and
nonoptimal choices with respect to a given outcome measure.

Furthermore, because we train our digital twin dyad on a
representative cohort from a single cancer center (MDACC),
the physician decision or prescribing heuristics reflected may
not be fully generalizable to other facilities with other
practitioners. However, the physician prescriptions at the
MDACC are aligned with the state of the art in the field. In
particular, we note that whereas 2 studies [41,42] have
questioned the relevance of IC to treatment, both studies have
failed to accrue and thus are null. Our modeling approach could
conceivably be implemented and extended to generate similar
digital twin dyads across other or multiple institutions.

Conclusions
In conclusion, we constructed a DQL modeling approach to
make optimized sequential treatment decisions based on a set
of desired outcomes in head and neck cancer therapy and paired
it with a simulation of the treatment process for evaluation
purposes. This modeling approach represents, to our knowledge,
the first application of DQL with simulation as a digital twin
dyad to simultaneously represent both state-specific patient
data and physician or prescriber policies for head and neck
squamous carcinoma. Furthermore, this work is the first reported
implementation of DQL for DP and OS composite-outcome
modeling. Our approach further demonstrates the technical
feasibility of such a digital twin dyad and provides a
benchmarking data set and relevant code for model
dissemination, site-specific implementation, and iterative model
improvement. Carrying out a prospective clinical study
application could further confirm the validity of this approach
as part of the standard of care.
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