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Abstract

Background: Monitoring glucose and other parameters in persons with type 1 diabetes (T1D) can enhance acute glycemic
management and the diagnosis of long-term complications of the disease. For most persons living with T1D, the determination
of insulin delivery is based on a single measured parameter—glucose. To date, wearable sensors exist that enable the seamless,
noninvasive, and low-cost monitoring of multiple physiological parameters.

Objective: The objective of this literature survey is to explore whether some of the physiological parameters that can be monitored
with noninvasive, wearable sensors may be used to enhance T1D management.

Methods: A list of physiological parameters, which can be monitored by using wearable sensors available in 2020, was compiled
by a thorough review of the devices available in the market. A literature survey was performed using search terms related to T1D
combined with the identified physiological parameters. The selected publications were restricted to human studies, which had at
least their abstracts available. The PubMed and Scopus databases were interrogated. In total, 77 articles were retained and analyzed
based on the following two axes: the reported relations between these parameters and T1D, which were found by comparing
persons with T1D and healthy control participants, and the potential areas for T1D enhancement via the further analysis of the
found relationships in studies working within T1D cohorts.

Results: On the basis of our search methodology, 626 articles were returned, and after applying our exclusion criteria, 77 (12.3%)
articles were retained. Physiological parameters with potential for monitoring by using noninvasive wearable devices in persons
with T1D included those related to cardiac autonomic function, cardiorespiratory control balance and fitness, sudomotor function,
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and skin temperature. Cardiac autonomic function measures, particularly the indices of heart rate and heart rate variability, have
been shown to be valuable in diagnosing and monitoring cardiac autonomic neuropathy and, potentially, predicting and detecting
hypoglycemia. All identified physiological parameters were shown to be associated with some aspects of diabetes complications,
such as retinopathy, neuropathy, and nephropathy, as well as macrovascular disease, with capacity for early risk prediction.
However, although they can be monitored by available wearable sensors, most studies have yet to adopt them, as opposed to
using more conventional devices.

Conclusions: Wearable sensors have the potential to augment T1D sensing with additional, informative biomarkers, which can
be monitored noninvasively, seamlessly, and continuously. However, significant challenges associated with measurement accuracy,
removal of noise and motion artifacts, and smart decision-making exist. Consequently, research should focus on harvesting the
information hidden in the complex data generated by wearable sensors and on developing models and smart decision strategies
to optimize the incorporation of these novel inputs into T1D interventions.

(J Med Internet Res 2022;24(4):e28901) doi: 10.2196/28901
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Introduction

Type 1 Diabetes
In healthy individuals, glucose levels are maintained within
tight upper and lower bounds because of a complex
physiological closed-loop regulatory process based on the
accurate and timely secretion of insulin and glucagon into the
portal vein by pancreatic islet cells [1]. To achieve this, the
human body contains numerous sensory mechanisms that track
and even anticipate fluctuations in glucose owing to meal intake,
exercise, and other factors. This information is used to estimate
the optimal secretion of insulin as well as other hormones, such
as incretins, glucagon, and adrenaline, which play important
modulating roles [2].

In persons with type 1 diabetes (T1D), insulin secretion by the
pancreas is absent because of the autoimmune destruction of
the pancreatic beta cells, breaking the normal closed-loop
regulation process [3]. The absence of insulin results in the
inability to metabolize glucose and an unregulated catabolic
state leading to hyperglycemia and ketoacidosis, a recognized
complication of diabetes [4]. Persons living with T1D are
dependent on exogenous insulin (usually by subcutaneous
administration) to regulate their glucose levels [5].

Poor glucose control leads to both acute and chronic
complications, which may be life-threatening [6]. One common
acute complication is hypoglycemia, a state of low blood glucose
(BG) concentration that results from excessive insulin
administration. Hypoglycemia can lead to loss of consciousness,
coma, and even death [7]. Those who develop impaired
awareness to hypoglycemia (IAH), a condition in which the
individual does not experience the usual early warning
symptoms of low BG, are at a much higher risk of severe
hypoglycemic events [8].

On the other hand, chronic hyperglycemia leads to long-term
complications, one of the most common being cardiac autonomic
neuropathy (CAN). The reported prevalence of CAN in persons
with T1D spans a very wide range, indicatively 17%-90%,
depending on the criteria used for its diagnosis and the
population studied [9]. CAN results in impaired cardiovascular
autonomic control as a consequence of autonomic nerve

neuronal metabolic and ischemic damage. Apart from CAN,
T1D is linked to other long-term complications such as
peripheral neuropathy, retinopathy, nephropathy, and
atherosclerotic vascular disease [6].

Maintaining glucose levels within a healthy range in T1D
represents a therapeutic challenge, and the accurate estimation
of an individual’s insulin requirements is key to achieving this
goal [10,11]. Daily glucose management places a significant
physical and cognitive burden on the persons living with T1D
and their families. As part of ambulatory care, long and rapid
acting insulins are administered using insulin injections (insulin
pens) or rapid acting insulin is administered continuously and
subcutaneously by insulin infusion pumps. Both insulin pumps
and injections may be used in combination with continuous
glucose monitors (CGMs). Insulin pumps integrated with CGMs
are referred to as sensor-augmented pumps and their use has
been shown to improve glycemic control [12,13]. More recently,
control algorithms have been incorporated to automate basal
insulin delivery; however, the user is still required to administer
a bolus before meals. This treatment scheme is referred to as a
hybrid closed-loop system. Hybrid closed-loop schemes have
been shown to improve glucose control in comparison with
insulin dosing entirely determined by the user [14] and have
paved the way for the holy grail of T1D management, which is
the development of fully closed-loop functionality or an artificial
pancreas (AP) [15,16].

For optimal T1D management, accurate real-time sensing of
key physiological parameters (ie, biomarkers) is essential.
Sensing is crucial for daily acute glycemic management to
ensure the correct estimation of insulin dose, as well as for the
early recognition of long-term complications. To date, T1D
sensing for acute glycemic management is focused on glucose
monitoring, measured either by finger pricking or CGMs, which
are associated with painful and sparse measurements or
significant sensing lags, respectively [17,18]. However,
monitoring of glucose alone has significant limitations in
informing optimal insulin delivery, whether in open or
closed-loop systems. In addition, monitoring of diabetes
complications such as CAN is predominantly performed through
infrequent assessments during clinic visits. Please refer to
Multimedia Appendix 1 [9,17-23] for a more detailed discussion
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on the current status and challenges of sensing biomarkers of
T1D. This survey, which reviewed 77 publications, investigated
novel physiological parameters with the potential to be
incorporated into T1D management systems and reduce the
impact of T1D on quality of life, specifically on parameters that
can be monitored with the wearable sensors available today.

Wearable Sensors
Wearable sensors or wearables are becoming increasingly
popular because they can provide seamless and continuous
monitoring at low cost. Wearable sensors are available in various
forms and shapes and can be worn at different body sites (Figure
1). Currently, wearables monitor physiological parameters, such
as heart rate (HR), respiratory rate, oxygen saturation (SpO2),
skin temperature (ST), electrochemical skin conductance (ESC),
and galvanic skin response (GSR). The most recent devices
provide electrocardiogram (ECG) monitoring, which carries
rich information about features of the cardiac state, such as HR
variability (HRV) and QT interval (time interval from the start
of the Q-wave to the end of the T-wave in an ECG).

This offers new potential for wearable devices to move beyond
their original purpose of fitness and wellness monitoring to that
of continuous health care monitoring. Although not yet
integrated into clinical practice, research community is currently

investing in the development of medical applications using
wearable sensors that can assist or complement routine medical
procedures and disease monitoring practices. These efforts
usually combine wearable sensors with advanced data processing
methods such as machine learning (ML) algorithms to address
the volume and complexity of the produced data (noise, motion
artifacts, and gaps) and to build smart decision support or
diagnostic systems (Multimedia Appendix 2 [24-37]).

Despite this recent move toward health care, the potential of
wearables in T1D management has not been investigated much
to date. The purpose of this survey was to explore the potential
of monitoring physiological parameters with wearable sensors
to assist in acute glycemic management and diagnosis and
monitoring of complications in T1D. We devised a search and
analysis framework to investigate the potential of wearable,
noninvasive sensors (hereafter referred to as wearable sensors
without explicitly repeating their noninvasive property). To the
authors’ knowledge, a similar survey has not been conducted
thus far. We hypothesized that the demonstration of strong links
between physiological parameters measurable with wearable
sensors and T1D, combined with their intrinsic advantages for
use, will support and inspire developments and research focused
on the enhancement of real-life T1D applications.

Figure 1. Different types of wearable technology by ForbesOste (license: CC BY-NC-ND 2.0).
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Methods

Research Question
The survey aimed to answer the following research question:
Do the existing wearable, noninvasive sensors have the potential
to improve how T1D is monitored and managed? We focused
only on noninvasive wearable sensors. Minimally invasive
wearables (eg, CGMs) or noninvasive portable sensors (eg,
breath sensors) were outside the scope of the survey. We did
not limit our search to studies that used wearable sensors but
rather formulated our research question toward exploring the
existence of clinical relationships between T1D and
physiological parameters that could be (but not necessarily)
monitored with the wearable, noninvasive technology available
in the market today.

Search Methodology
As a first step, a list of physiological parameters that could be
monitored with wearable, noninvasive sensors available in 2020
was compiled, based on a review of the wearable devices
available in the market today. These parameters were used in
the search query combined with keywords related to T1D
(Textboxes 1 and 2).

Figure 2 illustrates the methodological steps we took to select
the final set of articles, following the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines [38]. The details of the search and selection
methodology are described in Multimedia Appendix 3 [38].
Following these steps, 77 articles were retained for analysis.

Textbox 1. Search terms used for wearable-enabled physiological parameters.

Heart rate

• Heart rate

Heart rate variability

• Heart rate variability

Breath rate

• Breath* rate

• Respirat* rate

Breath rate variability

• Respirat* variability

• Breath* rate variability

Oxygen saturation

• Oxygen saturation

• SpO2

Body motion

• Accelerometer*

• Gyroscope

Skin properties

• Galvanic skin response

• Skin conductance

• Skin impedance

• Skin temperature

• Sweat

Textbox 2. The final search query used.

Search query

• Diabetes AND ("Type 1" OR "Type one" OR juvenile) AND ("heart rate" OR "heart rate variability" OR "respiration rate" OR "respiratory rate"
OR "breath rate" OR "breathing rate" OR "respiration variability" OR "galvanic skin response" OR "skin conductance" OR "skin impedance"
OR sweat OR accelerometer* OR gyroscope* OR "oxygen saturation" OR SpO2)
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Figure 2. Article selection methodology according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.
T1D: type 1 diabetes.

Results

Article Structure and Analysis
The 77 retained articles shared similar structures. Data were
collected through a clinical protocol whereby each study
collected two types of data: (1) phenotypic characteristics of
the participants with T1D (eg, age, sex, duration of diabetes,
and glucose and hemoglobin A1c [HbA1c] levels), with or
without the presence of nondiabetic control participants and (2)
physiological function of interest (eg, cardiac autonomic
function), with one or more physiological parameters measured
(eg, HRV for autonomic function and ESC for sudomotor
function). Through the extraction of features and data analysis,
every study explored the relationship between T1D phenotypic
characteristics and the physiological function of interest. All
articles referred to clinical studies involving human participants.
Although the articles did not necessarily use wearable devices
in their methods, they all measured physiological parameters
monitorable with commercially available wearable sensors, as
guaranteed by our exclusion criteria (please refer to Multimedia
Appendix 3).

Our analysis of the retained articles evolved along the axis of
this survey’s research question: Do the existing wearable,

noninvasive sensors have the potential to improve how T1D is
monitored and managed? The surveyed studies were clustered
into the following two broad categories: (1) those that performed
a comparison between a cohort of persons with T1D and a
matched group of healthy control participants and (2) those that
explored relations within a cohort of persons with T1D. The
first category informed about the physiological functions and
parameters that were altered in persons living with T1D. The
second category explored whether the monitoring of these
parameters could benefit the management of T1D and its
complications. All articles included in this survey are tabulated
in Multimedia Appendix 4 [39-114].

Comparison Between Persons With T1D and Healthy
Cohorts

Overview
The articles that compared people who were healthy and those
with T1D revealed a wide spectrum of physiological functions
or conditions that were affected by T1D (Figure 3). These
predominantly included aspects of cardiovascular autonomic
function, cardiorespiratory control balance, and thermal
homeostasis.
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Figure 3. Physiological functions found that are affected by type 1 diabetes (T1D) and the number of relevant studies. This graph refers only to the
studies that compared T1D with healthy cohorts. BP: blood pressure; BS: Baroreflex Sensitivity; ECG: electrocardiogram; ESC: electrochemical skin
conductance; HR: heart rate; HRV: heart rate variability; SpO2: oxygen saturation.

Cardiovascular Autonomic Function
Many studies demonstrated that T1D impacted cardiac
autonomic function by reducing parasympathetic activity
through increased HR [39,40], reduced average HRV, and
modified HRV features at rest or during cardiac autonomic
reflex tests. The most explored HRV features were the following
time- and frequency-domain features: SD of the
normal-to-normal intervals, root mean square of the difference
of successive intervals, high frequency (HF), low frequency
(LF), and their ratio (LF/HF) [41-43]. Nonlinear features related
to the complexity, dynamics, and chaotic components of HRV
have also shown to be altered in persons with T1D. These
include HRV randomness [44], symbolic indices [45], Katz
fractal dimension [46], and geometric indices, such as the
Poincare plot [47]. The effect of T1D on HRV was also
demonstrated during exercise [48]. The overall HRV entropy
during vigorous exercise was shown to be reduced in both
healthy and T1D cohorts, although the attenuation in the T1D
group was greater [49]. The impact on parasympathetic function
was additionally demonstrated through the reduction of the
cardiac vagal tone, which was shown to be associated with the
presence of neuropathy [50]. Cardiac depolarization and
repolarization time intervals were shown to increase in T1D
demonstrated through modified ECG features such as increased
HR-corrected QT (QT corrected [QTc]) interval [51,52] and
more asymmetrical and flatter T-wave [53]. Table S1 in

Multimedia Appendix 4 summarizes the methods and main
findings of the above articles.

Cardiorespiratory Control Balance and Fitness
The impact of T1D on the cardiorespiratory control balance
and fitness was assessed during cardiopulmonary exercise, as
well as by cardiovascular (baroreflex) and respiratory
(chemoreflex) response testing (Table S2 in Multimedia
Appendix 4). Moser et al [54] demonstrated that there were
clear differences in the HR response during cardiopulmonary
exercise between persons with T1D and those in the control
group. Cardiorespiratory control imbalance, with impaired
sensitivity to hypoxia as evidenced by lower resting SpO2 and
baroreflex sensitivity and increased chemoreflex sensitivity to
hypercapnia, was shown in persons with recent onset of T1D
compared with control participants [55]. With respect to
cardiorespiratory fitness, lower peak oxygen uptake (VO2) and
respiratory exchange ratios were reported in persons with T1D
compared with control participants [56]; however, Rohling et
al [57] showed that cardiorespiratory function was preserved
in T1D, whereas the maximum VO2 correlated with HRV time
indices. Several studies demonstrated that persons with T1D
who were well trained or well controlled could have similar
cardiorespiratory fitness as the control participants [58-61].

Thermal Homeostasis
The sudomotor function is an activation of the sympathetic
nervous system, controls the perspiration through sweat glands

J Med Internet Res 2022 | vol. 24 | iss. 4 | e28901 | p. 6https://www.jmir.org/2022/4/e28901
(page number not for citation purposes)

Daskalaki et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


and heat loss via skin, and is associated with increased blood
flow. This function, which is usually assessed by measuring the
ESC or GSR, was shown to be lower in persons with T1D
compared with healthy control participants [62]. Other aspects
of thermal homeostasis affected in persons with T1D included
the sweat profile, body temperature, and ST during exercise
[49,63,64]. The methods and findings of the aforementioned
studies are presented in Table S3 in Multimedia Appendix 4.

Summary
The aforementioned studies demonstrated that T1D affected
several physiological functions by comparing T1D cohorts with
healthy control participants under resting conditions or during
physical activity. Most of the studies focused on aspects of

cardiac autonomic function, which seems to be one of the first
nonmetabolic physiological functions affected by T1D.

Correlations Within a T1D Cohort

Overview
The potential to improve the life of persons living with T1D
using wearable sensors relies on not only the capability to detect
differences between persons with T1D and healthy individuals
but also on the intra- and interindividual differences within
populations with T1D. In this section, we present the studies
found in this survey that assessed physiological functions within
T1D cohorts and discuss the potential for monitoring these
functions with wearables to incorporate into T1D acute glycemic
management (Figure 4) and early recognition of long-term
complications (Figure 5).

Figure 4. Identified areas of potential impact of wearable devices on the acute glycemic management of type 1 diabetes. The numbers indicate the
number of relevant studies found for each physiological signal. ECG: electrocardiogram; ESC: electrochemical skin conductance; HR: heart rate; HRV:
heart rate variability; NIR: near-infrared; SpO2: oxygen saturation; ST: skin temperature.
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Figure 5. Identified areas of potential impact for wearable devices related to long-term type 1 diabetes complications. The numbers indicate the number
of relevant studies found for each physiological signal. BP: blood pressure; CAN: cardiac autonomic neuropathy; ECG: electrocardiogram; ESC:
electrochemical skin conductance; HR: heart rate; HRV: heart rate variability.

Acute T1D Glycemic Management

Noninvasive Hypoglycemia Detection

As discussed above, the presence of T1D influences cardiac
function and the presence of hypoglycemia exaggerates this
with stronger activation of sympathetic activity and inhibition
of parasympathetic activity as shown in modified time and
frequency indices of HRV [65-67] and QTc prolongation [68-70]
(Table S4 in Multimedia Appendix 4). The effect of
hypoglycemia on HRV was shown to be the same for people
with and without CAN [71]. The signature of hypoglycemia on
physiological features was leveraged in 5 studies to investigate
methods by which hypoglycemia could be detected
noninvasively. Of the 5 studies, 3 (60%) used cardiac features
from an ECG (HR and QTc interval) as inputs [72-74] and
ML-based techniques for developing relevant models. Elvebakk
et al [75] explored noninvasive hypoglycemia detection for
persons with and without IAH using cardiac and sudomotor
features. The study found that it was only possible to detect
hypoglycemia in the group of people without IAH, but it was
difficult to reliably detect hypoglycemia in persons with IAH.
However, from a second study focused only on persons with
IAH, the same group proposed the use of a probabilistic model
and the combined use of more cardiac and thermoregulatory
features, ECG-derived HR, QTc interval, sudomotor activity,
near-infrared and bioimpedance spectroscopy, and achieved a

detection F score of 88% [76]. Finally, Reddy et al [77], using
a wearable sensor and an ML algorithm, showed that the levels
of HR and BG before exercise were predictors of
exercise-induced hypoglycemia with 80% accuracy.

Near-Future Glucose Prediction

Of the 77 studies, 3 (4%) explored the potential of using
physiological features monitored with wearable sensors to
enhance the accuracy of near-future glucose prediction (Table
S5 in Multimedia Appendix 4). The study by Rodriguez et al
[78] presented a feature selection method for the estimation of
feature importance related to near-future BG prediction and
showed that HR and sleep were significant for this task (P=.03
and P=.04 respectively). This result was confirmed by Hobbs
et al [79], who explored the impact on the 30-minute ahead
glucose prediction of HR data collected from a commercial
wearable device in adults during physical activity. The study
showed that HR information led to better model prediction
accuracy, assessed over several metrics, such as root mean
square error and the Akaike information criterion, and reduced
the prediction delay by 2-3 minutes compared with the model
that did not consider HR. Mirshekarian et al [80] showed that
when ESC and HR were added as features to an ML model for
glucose prediction, the performance in terms of root mean square
error improved for horizons of 30 and 60 minutes, although the
improvement was only small.
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Glucose Sensing

Of the 77 studies, 3 (4%) explored methods to improve the
accuracy of glucose sensing (Table S5 in Multimedia Appendix
4). Here, we identified the work of Laguna et al [81], which
aimed to improve the known increase in CGM error during
exercise by coupling the CGM with wearable sensors. The study
found that when CGMs were coupled with energy expenditure
(metabolic equivalent of tasks) and ST information from the
wearable sensors, the glucose measurement error dropped from
17.5% to 13.6%. A study by Turksoy et al [82] followed a
similar approach whereby the objective was to model the glucose
changes during exercise as a function of biometric inputs
including HR, GSR, ST, and energy expenditure. The study
involved 26 participants who wore wearable sensors for 6 days.
The participants performed a series of exercises during the
regular clinic visits. The study results showed that ST was the
most significant feature describing glucose fluctuation during
exercise, followed by HR and energy expenditure. Finally,
Rothberg et al [83] explored links between HRV features and
absolute BG levels, which were confirmed for persons with
type 2 diabetes but not for those with T1D.

Integrated Systems Solutions

In view of the broad application range of wearable devices in
T1D management, one study identified in this survey focused
on the development of an integrated system solution for
home-based monitoring and explored the engagement of persons
living with T1D using this technology [115].

Summary

The aforementioned studies illustrate the potential of using
noninvasive biomarkers, which can be monitored with wearable
sensors, to improve many aspects in the daily management of
T1D (Figure 4). Noninvasive hypoglycemia detection could
enhance the recognition of hypoglycemic events in people with
IAH and for those who do not use CGMs and rely only on
sporadic BG measurements. Near-future glucose prediction is
crucial to compensate for the CGM and insulin action delays
for more accurate prediction of upcoming hypo- and
hyperglycemic events. All the above functionalities are also
indispensable for the enhancement of the current AP systems,
both for the development of more efficient control algorithms
and for the support of the general safety of APs. Although the
improvements demonstrated so far have limited clinical
significance, these studies are promising first steps. More studies
need to be conducted, including a thorough exploration of
prediction modeling techniques, as well as the collection of
comprehensive data sets that span representative real-life
scenarios.

Long-term Complications

Diagnosis and Monitoring of CAN

As demonstrated by many studies, among the cardiac features,
HRV plays a central role in the assessment of autonomic
function in general and of CAN in particular [84-88]. Silva et
al [89] showed that a high resting HR was associated with
reduced parasympathetic activity and lower HRV. Finally,
insulin resistance was shown to be associated with lower cardiac
output [90] and cardiovascular suppression [91] during and after

exercise or cardiac autonomic reflex tests. Anxiety [92] and
psychosocial stress [93] were shown to reduce HRV and induce
further parasympathetic suppression in persons with T1D,
indicating the need to consider confounding factors in assessing
CAN. Gender and race were also found to be associated with
autonomic function [94]. Finally, a study by Ang et al [95]
explored the potential of using ESC as a measure of sudomotor
function for the early recognition of CAN but found no
significant correlations. However, Riguetto et al [96] showed
that postprandial sweating, as well as hypertension, diastolic
blood pressure, retinopathy, and nephropathy were independent
predictors of CAN. The methods and findings of the above
studies are presented in Table S6 in Multimedia Appendix 4.

Early Recognition of Complications Other Than CAN

Of the 77 studies, 10 (13%) studies explored other long-term
complications of T1D and their relation to cardiovascular
autonomic function, including the presence of CAN (Table S7
in Multimedia Appendix 4). In a study by Duvnjak et al [97],
the coefficient of variation and spectral indices of HRV
correlated with diabetic retinopathy development and
progression in persons with T1D. In another study of persons
with T1D, correlations were demonstrated between HRV indices
and neuroretinal layer thickness [98]. A study by Mala et al [99]
demonstrated that CAN had a positive association with carotid
intima media thickness in T1D and suggested its potential role
in the pathogenesis of atherosclerosis. HRV is associated with
diabetic kidney disease as discussed by Sekercioglu et al [100],
who showed that, for adults with prolonged T1D duration, the
factors of older age at diagnosis and lower HRV might indicate
a risk for this complication. CAN in persons with T1D has also
been shown to be associated with reduced bone density [101],
renal function and albuminuria [102,103], and female sexual
dysfunction and urinary incontinence [104]. Finally, in a study
by da Silva et al [105], young persons with T1D and increased
risk for cardiovascular disease presented greater parasympathetic
autonomic dysfunction, whereas a study by Christensen et al
[106] suggested that sudomotor function was associated with
diabetic peripheral neuropathy and could be used as a diagnostic
tool for these complications.

Risk for Long-term Complications

The quality of glucose control is an uncontroversial marker of
the risk of long-term complications. Of the 77 studies, 8 (10%)
studies explored the relationship between features of the cardiac
and cardiorespiratory function and the quality of glucose control
such that their findings could be useful in developing tools for
complication risk assessment (Table S8 in Multimedia Appendix
4). Higher levels of HbA1c were shown to correlate with lower
HRV levels and higher CAN prevalence [107,108]. A study by
Guan et al [109] showed that people with higher HbA1c levels
displayed an impaired autonomic response to stress, including
a greater change in the HF component of their HRV, whereas
Stern et al [110] showed that the QTc interval in persons with
T1D correlated with HbA1c and autonomic function. Glucose
variability has been shown to correlate with CAN [111] but not
with the loss of nocturnal lowering (ie, nondipping) of blood
pressure [112]. Similarly, an association between HbA1c and
HR dynamics, including the HR-to-performance curve, was
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demonstrated during cardiopulmonary exercise tests [113], as
well as an association between HbA1c and cardiorespiratory
fitness as assessed by the time to exhaustion and peak VO2

[114]. Finally, the study by Zabeen et al [13] showed that
glucose variability, independent of HbA1c, plays a role in the
development of risk for long-term complications, such as
retinopathy and neuropathy.

Summary

The evidence presented in the aforementioned studies indicates
that autonomic function and CAN could be continuously
assessed through wearable devices that provide HRV
monitoring. In such a case, the effects of factors such as time
of day, meals, exercise, sleep, and glycemic level, as well as
therapies for CAN, can be assessed. Moreover, it was shown
that autonomic and sudomotor functions could flag risks or
onset for a range of T1D long-term complications. Monitoring
autonomic function has the potential to complement measures
of overall glycemic control and glucose variability in optimizing
management to mitigate the risk of long-term complications.
Figure 5 summarizes these findings. The relationship found
between physiological parameters and quality of glucose control,
such as HbA1c or glucose variability, could also be used in the
formulation of AP cost functions. In all cases, further studies
are needed to investigate how to use the information harvested
by wearable sensors toward supporting the early recognition of
chronic T1D complications.

Discussion

Survey Findings
The data from many studies in this survey showed that a variety
of physiological parameters (1) can differentiate persons with
T1D from healthy control participants and (2) are associated
with aspects of glycemic control, in particular hypoglycemia,
and the presence of diabetes complications within cohorts of
persons with T1D.

The most explored physiological functions were cardiac
autonomic, cardiorespiratory control balance, and thermal
homeostasis. The survey identified that monitoring of
physiological parameters, such as HR, HRV, QTc, ESC,
baroreflex sensitivity, and VO2, as well as the autonomic,
cardiorespiratory, and thermal homeostasis functions, can be
used to identify differences between persons with T1D and

healthy control participants. The most pronounced differences
between the 2 populations were shown in aspects of cardiac
autonomic function, including parasympathetic activity, vagal
tone, and cardiac repolarization and depolarization.

With respect to noninvasive hypoglycemia prediction and
detection, physiological parameters of the ECG, including HR,
HRV, and QTc, have considerable potential to be leveraged.
Apart from hypoglycemia detection, these physiological
parameters, as well as ESC and ST, can be monitored in
conjunction with glucose to compensate for the deficiencies in
CGM, such as signal lag, which is vital to the enhancement of
AP development.

The screening of long-term T1D complications can also be
enhanced. The demonstrated relationship between CAN and
HRV paves the way for its continuous, and at-home, assessment.
Other complications such as retinopathy and diabetic peripheral
neuropathy were shown to relate to cardiac autonomic function
and CAN and their onset could be predicted through monitoring
of these functions.

Most of the studies discussed in this survey followed
conventional statistical analysis methods to assess the existence
of correlations in their measured data. ML methods have been
used in some studies for the recognition of hypoglycemia and
near-future glucose prediction [72-74,77-80].

Most of the surveyed studies used conventional devices;
however, the measurement of the above physiological
parameters can be performed with the 2020 commercially
available wearable, noninvasive sensors. Table 1 lists the
identified physiological functions and parameters, together with
examples of commercially available wearable sensors that can
monitor them today. Only a few studies found in this survey
used wearable sensors [64,66,77-82]. These studies mostly
focused on the detection of hypoglycemia, glucose prediction,
or improvement of CGM glucose measurement accuracy.

The existence of wearable technology that can perform this type
of physiological parameter monitoring is a crucial first step in
the confirmation of our survey hypothesis that wearables have
the potential to enhance T1D sensing with richer information
seamlessly and continuously toward improved daily
management decisions, and mitigation of complications. In view
of this potential, the challenges and perspectives of this endeavor
are discussed further below.
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Table 1. Identified physiological functions and parameters and examples of corresponding commercially available, wearable, noninvasive sensors.

Existing wearable devicesPhysiological parametersPhysiological functions

QardioCore and Apple watchHRa, HRVb (ECGc)Cardiac autonomic function

QardioCore and Apple watchQTd, QTce, T-wave (ECG)Cardiac repolarization

BIOPACBioimpedanceCardiac output

Garmin Forerunner 935, Fitbit Charge 2VO2
fEnergy expenditure

QardioCore, Apple watchECG, BPgBaroreflex sensitivity

KuduSmart monitorSweat rateSweat rate

Withings Pulse Ox; Garmin Fenix 6xSpO2
hOxygen saturation

Shimmer3 GSRj+ unitESCiSudomotor function

Tempatilumi CEBrazil; TIDA-00824 Texas Instruments (prototype)STkSkin temperature

aHR: heart rate.
bHRV: heart rate variability.
cECG: electrocardiogram.
dQT: time interval from the start of the Q-wave to the end of the T-wave in an electrocardiogram.
eQTc: QT corrected.
fVO2: oxygen uptake.
gBP: blood pressure.
hSpO2: oxygen saturation.
iESC: electrochemical skin conductance.
jGSR: galvanic skin response.
kST: skin temperature.

Wearable Sensors Versus Medical Grade Devices
An important parameter when considering the potential of
wearables is the quality of the generated data and the ability to
extract the required information from them. A clinical ECG
setup offers much higher accuracy than a wearable bracelet.
Wearable sensors must compromise accuracy for small size,
low cost, and high autonomy. Moreover, their default use
involves people undertaking daily activities, which introduce
motion artifacts and data corruption. Although in most of the
studies reported in this survey, the involved participants
followed a specified protocol under the supervision of a clinical
staff member, this condition cannot be guaranteed or controlled
in a daily life setting. To this end, a one-to-one comparison
between a medical grade device and its wearable counterpart
would always be an uneven battle. However, the claim of
wearable sensors is not to substitute medical grade devices but
rather to take up the space where the latter cannot be used; that
is, the space of at-home, daily life routine. This different use
case offers the following critical advantage over medical grade
devices: the massive generation of data [24].

Compared with a clinical study, a wearable monitoring scenario
produces vastly larger volumes of data over much longer periods
and during various conditions, such as sleep, physical activity,
eating, resting, stress, and working. Although wearables
compromise accuracy, they can offer a significantly better and
more representative coverage of a human life’s spectrum. The
big data return can compensate for data noise by leveraging
redundancies and information fusion coming from different

wearable sources. Long-term information, such as seasonality,
might be revealed, which would not be feasible for
short-duration clinical protocols. Finally, the possibility of
monitoring a large number of participants opens the potential
for population studies that are currently very difficult or very
costly to perform. At the same time, efforts for disease
management personalization can be significantly boosted by
the increase in data availability per user. To this end, the
usability of wearable sensors in health care should be considered
in light of their space of function, the added value that this space
can encompass, and the additional knowledge extraction
possibilities that follow from their much larger volume of
generated data.

In view of their high data quantity and complexity, wearable
devices usually require advanced processing techniques for the
harvesting of their data. Although classical signal processing
techniques may be sufficient for the extraction of the HRV or
QT interval from a medical grade ECG signal, ML strategies
may need to be used to perform the same task on ECG data
collected from a wearable device. At the same time, there is a
requirement for increasingly complex solutions to support
clinical judgment and decision-making to meet the current
medical and user demands. To this end, wearable-based
applications require a postsensing stage of complex data
processing to drive usable and viable solutions. The development
of processing techniques for information extraction and
decision-making based on data generated by wearable sensors
is a field that currently receives intensive attention and research.
This manifests itself in most of the studies that propose the use
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of wearables in health care, as discussed in the Introduction and
Results sections.

Impact of Existing Wearable, Noninvasive Sensors on
T1D
Despite the depth of research dedicated to the exploration of
relations between T1D and other physiological functions, only
a few studies found in this survey used wearable sensors. These
studies, although still small in number, support the contention
that off-the-shelf wearable devices could be readily used in T1D
interventions. However, the adoption of this technology in the
field is very slow. In addition to the data quality–related
challenges, the complex relationships between these biomarkers
and glucose regulation provide an additional hurdle. Further
research is required for the development of models and
simulations, design of treatment strategies for the inclusion of
new inputs, and finally, conduction of further clinical trials to
demonstrate the added clinical impact of the methods. Finally,
the strict safety constraints that need to be guaranteed during
the daily management of T1D render the validation of new
methods very demanding. In view of these challenges, publicly
available data sets have been released to support the research
output toward the development of data analytics tools to
incorporate information received by wearable devices into T1D
interventions [116,117].

In summary, the major challenges in the adoption of wearable
technology in the management of T1D and its complications
are as follows:

1. Data coming from wearables tend to be noisy, corrupted
by motion artifacts, and have lower accuracy than those
originating from medical devices.

2. The relationship between the parameters monitored with
wearables and glucose regulation is complex.

3. The strict safety constraints in the management of T1D
impose hard boundaries on the testing and validation of
new decision tools.

Benefits and Future Directions
Despite the hurdles, this survey makes the case that wearable
sensors have a significant potential to enhance the life of those
living with T1D. The identified links between physiological
parameters that wearables can monitor and T1D can be used to
augment the T1D sensing space and develop better management
tools. The continuous monitoring potential and the abundance
of generated data per person can assist in the personalization of
interventions. At the same time, wearable sensors that provide
seamless and noninvasive monitoring are expected to add a
minimum sensing burden compared with other types of sensors,
whereas the automation of management processes that today
require the cognitive effort of the persons living with T1D (eg,
insulin bolus calculation) or induce stress (eg, fear of
hypoglycemia) is expected to lead to better quality of life and
lower daily burden.

To harvest this potential, 2 main directions for future research
can be identified. First, advanced data processing strategies
need to be developed to extract the information obtained from
the data collected through wearable sensors. This research
direction is not specific to T1D, and T1D can profit from the

research outcomes of every field (health care or other), which
opts to use wearable sensors. Second, further simulations,
models, and clinical studies need to be conducted to support
the development of decision tools for T1D based on the data
collected through wearables. This direction is T1D-specific and
involves multidisciplinary collaboration among data scientists,
engineers, clinicians in the field, and persons with lived
experience of T1D.

Comparison With Previous Work
This survey aims to bridge on one side the large volume of
research dedicated to identifying correlations between T1D
glycemic control and complications with measurable
physiological functions and on the other side, the novel potential
of wearable technology in medical applications. The bulk of
existing work dedicated to wearable technology and T1D is
related to glucose sensing and omits other biomarkers that can
be readily and noninvasively monitored with the available
wearable sensors. To the authors’ knowledge, a survey that
explores the potential of wearable sensors in T1D has not been
conducted till date. This is the first attempt to bring the fields
of T1D and wearables together to highlight the potential of these
sensors in the daily management of this disease and the
mitigation of its long-term complications.

Survey Limitations
The main limitation of the survey was that the search was
conducted based on a list of wearable-enabled biomarkers
(Textbox 1), which may not be exhaustive. Additional
knowledge models related to wearables and T1D may exist that
were not identified. Moreover, the focus was only on
noninvasive sensors and did not consider minimally invasive
wearable technology, which can be another pathway to further
enhance T1D diagnosis and management. Similarly, the survey
focused only on wearable sensors and did not discuss
noninvasive, nonwearable devices, such as breath or saliva
sensors, which can also be highly advantageous in T1D (eg,
breath acetone sensing).

Conclusions
Considering the wearable sensor boom and its gradual adoption
in the health care domain, this survey aimed to investigate their
potential impact on T1D, a chronic disease that affects millions
of people worldwide and requires daily and costly management
and care. The survey search strategy targeted the discovery of
studies that examined the relationship between physiological
functions or conditions measurable by wearable sensors and
T1D. Our analysis showed that T1D greatly affects cardiac,
cardiorespiratory, and thermoregulatory functions, and its impact
can be readily observed through features of the ECG, such as
HRV, QT interval, and T-wave, as well as skin properties such
as ESC, temperature, and sweat profile. The effects of T1D on
these functions manifest themselves at rest, overnight, during
and after exercise, and during daily life activities. Importantly,
they can be leveraged to improve the prompt detection of
hypoglycemia, the efficiency of the AP, and the diagnosis of
CAN and other complications.

Commercially available wearable technology exists for
continuous, noninvasive monitoring of the above parameters.
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For the successful adoption of this technology in health care in
general, and T1D in particular, several challenges still need to
be resolved, such as issues related to motion artifacts and noise
removal, accurate extraction of the features of interest, and
development of decision algorithms for improved and safe

disease management. Current research efforts are working
toward advanced algorithmic solutions for the efficient
processing of massive amounts of data produced by wearable
sensors. Their promising results can pave the way for similar
endeavors for T1D.
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