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Abstract

Background: Advances in biomedical research using deep learning techniques have generated a large volume of related literature.
However, there is a lack of scientometric studies that provide a bird’s-eye view of them. This absence has led to a partial and
fragmented understanding of the field and its progress.

Objective: This study aimed to gain a quantitative and qualitative understanding of the scientific domain by analyzing diverse
bibliographic entities that represent the research landscape from multiple perspectives and levels of granularity.

Methods: We searched and retrieved 978 deep learning studies in biomedicine from the PubMed database. A scientometric
analysis was performed by analyzing the metadata, content of influential works, and cited references.

Results: In the process, we identified the current leading fields, major research topics and techniques, knowledge diffusion, and
research collaboration. There was a predominant focus on applying deep learning, especially convolutional neural networks, to
radiology and medical imaging, whereas a few studies focused on protein or genome analysis. Radiology and medical imaging
also appeared to be the most significant knowledge sources and an important field in knowledge diffusion, followed by computer
science and electrical engineering. A coauthorship analysis revealed various collaborations among engineering-oriented and
biomedicine-oriented clusters of disciplines.

Conclusions: This study investigated the landscape of deep learning research in biomedicine and confirmed its interdisciplinary
nature. Although it has been successful, we believe that there is a need for diverse applications in certain areas to further boost
the contributions of deep learning in addressing biomedical research problems. We expect the results of this study to help
researchers and communities better align their present and future work.

(J Med Internet Res 2022;24(4):e28114) doi: 10.2196/28114
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Introduction

Deep learning is a class of machine learning techniques based
on neural networks with multiple processing layers that learn
representations of data [1,2]. Stemming from shallow neural
networks, many deep learning architectures, such as
convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), have been developed for various purposes

[3]. The exponentially growing amount of data in many fields
and recent advances in graphics processing units have further
expedited research progress in the field. Deep learning has been
actively applied to tasks, such as natural language processing
(NLP), speech recognition, and computer vision, in various
domains [1] and has shown promising results in diverse areas
of biomedicine, including radiology [4], neurology [2],
cardiology [5], cancer detection and diagnosis [6,7],
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radiotherapy [8], and genomics and structural biology [9-11].
Medical image analysis is a field that has actively used deep
learning. For example, successful applications have been made
in diagnosis [12], lesion classification or detection [13,14],
organ and other substructure localization or segmentation
[15,16], and image registration [17,18]. In addition, deep
learning has also made an impact on predicting protein structures
[19,20] and genomic sequencing [21-23] for biomarker
development and drug design.

Despite the increasing number of published biomedical studies
on deep learning techniques and applications, there has been a
lack of scientometric studies that both qualitatively and
quantitatively explore, analyze, and summarize the relevant
studies to provide a bird’s-eye view of them. Previous studies
have mostly provided qualitative reviews [2,9,10], and the few
available bibliometric analyses were limited in their scope in
that the researchers focused on a subarea such as public health
[24] or a particular journal [25]. The absence of a coherent lens
through which we can examine the field from multiple
perspectives and levels of granularity leads to a partial and
fragmented understanding of the field and its progress. To fill
this gap, the aim of this study is to perform a scientometric
analysis of metadata, content, and citations to investigate current
leading fields, research topics, and techniques, as well as
research collaboration and knowledge diffusion in deep learning
research in biomedicine. Specifically, we intend to examine (1)
biomedical journals that had frequently published deep learning
studies and their coverage of research areas, (2) diseases and
other biomedical entities that have been frequently studied with
deep learning and their relationships, (3) major deep learning
architectures in biomedicine and their specific applications, (4)
research collaborations among disciplines and organizations,
and (5) knowledge diffusion among different areas of study.

Methods

Data
Data were collected from PubMed, a citation and abstract
database that includes biomedical literature from MEDLINE
and other life science journals indexed with Medical Subject
Heading (MeSH) terms [26]. MeSH is a hierarchically structured
biomedical terminology with descriptors organized into 16
categories, with subcategories [27]. In this study, deep learning
[MeSH Major Topic] was used as the query to search and
download deep learning studies from PubMed. Limiting a MeSH
term as a major topic increases the precision of retrieval so that
only studies that are highly relevant to the topic are found [28].
As of January 1, 2020, a total of 978 PubMed records with
publication years ranging from 2016 to 2020 have been retrieved
using the National Center for Biotechnology Information Entrez
application programming interface. Entrez is a data retrieval
system that can be programmatically accessed through its
Biopython module to search and export records from the
National Center for Biotechnology Information’s databases,
including PubMed [26,29]. The metadata of the collected
bibliographic records included the PubMed identifier or PubMed
ID, publication year, journal title and its electronic ISSN, MeSH
descriptor terms, and author affiliations. We also downloaded

the citation counts and references of each bibliographic record
and considered data sources other than PubMed as well. We
collected citation counts of the downloaded bibliographic
records from Google Scholar (last updated on February 8, 2020)
and the subject categories of their publishing journals from the
Web of Science (WoS) Core Collection database using the
electronic ISSN.

Detailed Methods

Metadata Analysis

Journals

Journals are an important unit of analysis in scientometrics and
have been used to understand specific research areas and
disciplines [30]. In this study, biomedical journals that published
deep learning studies were grouped using the WoS Core
Collection subject categories and analyzed to identify widely
studied research areas and disciplines.

MeSH Terms

Disease-related MeSH terms were analyzed to identify major
diseases that have been studied using deep learning. We mapped
descriptors to their corresponding numbers in MeSH Tree
Structures to identify higher level concepts for descriptors that
were too specific and ensured that all the descriptors had the
same level of specificity. Ultimately, all descriptors were
mapped to 6-digit tree numbers (C00.000), and terms with >1
tree number were separately counted for all the categories they
belonged to. In addition, we visualized the co-occurrence
network of major MeSH descriptors using VOSviewer (version
1.6.15) [31,32] and its clustering technique [33] to understand
the relationships among the biomedical entities, as well as the
clusters they form together.

Author Affiliations

We analyzed author affiliations to understand the major
organizations and academic disciplines that were active in deep
learning research. The affiliations of 4908 authors extracted
from PubMed records were recorded in various formats and
manually standardized. We manually reviewed the affiliations
to extract organizations, universities, schools, colleges, and
departments. For authors with multiple affiliations, we selected
the first one listed, which is usually the primary. We also
analyzed coauthorships to investigate research collaboration
among organizations and disciplines. All the organizations were
grouped into one of the following categories: universities,
hospitals, companies, or research institutes and government
agencies to understand research collaboration among different
sectors. We classified medical schools under hospitals as they
are normally affiliated with each other. In the category of
research institutes or government agencies, we included
nonprofit private organizations or foundations and research
centers that do not belong to a university, hospital, or company.
We extracted academic disciplines from the department section
or the school or college section when department information
was unavailable. As the extracted disciplines were not coherent
with multiple levels and combinations, data were first cleaned
with OpenRefine (originally developed by Metaweb then
Google), an interactive data transformation tool for profiling
and cleaning messy data [34], and then manually grouped based
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on WoS categories and MeSH Tree Structures according to the
following rules. We treated interdisciplinary fields and fields
with high occurrence as separate disciplines from their broader
fields and aggregated multiple fields that frequently co-occurred
under a single department name into a single discipline after
reviewing their disciplinary similarities.

Content Analysis
We identified influential studies by examining their citation
counts in PubMed and Google Scholar. Citation counts from
Google Scholar were considered in addition to PubMed as
Google Scholar’s substantial citation data encompasses WoS
and Scopus citations [35]. After sorting the articles in
descending order of citations, the 2 sources showed a Spearman
rank correlation coefficient of 0.883. From the PubMed top 150
list (ie, citation count >7) and Google Scholar top 150 list (ie,
citation count >36), we selected the top 109 articles. Among
these, we selected the sources that met the criteria for applying
or developing deep learning models as the subjects of analysis
to understand the major deep learning architectures in
biomedicine and their applications. Specifically, we analyzed
the research topics of the studies, the data and architectures used
for those purposes, and how the black box problem was
addressed.

Cited Reference Analysis
We collected the references from downloaded articles that had
PubMed IDs. Citations represent the diffusion of knowledge
from cited to citing publications; therefore, analyzing the highly
cited references in deep learning studies in biomedicine allows
for the investigation of disciplines and studies that have greatly
influenced the field. Toward this end, we visualized networks
of knowledge diffusion among WoS subjects using Gephi

(v0.9.2) [36] and examined metrics such as modularity,
PageRank score, and weighted outdegree using modularity for
community detection [37]. PageRank indicates the importance
of a node by measuring the quantity and quality of its incoming
edges [38], and weighted outdegree measures the number of
outgoing edges of a node. We also reviewed the contents of the
10 most highly cited influential works.

Results

Metadata Analysis

Journals
On the basis of the data set, 315 biomedical journals have
published deep learning studies, and Table 1 lists the top 10
journals selected based on publication size. Different WoS
categories and MeSH terms are separated using semicolons.

From a total of 978 records, 96 (9.8%) were unindexed in the
WoS Core Collection and were excluded, following which, an
average of 2.02 (SD 1.19) categories were assigned per record.
The top ten subject categories, which mostly pertained to (1)
biomedicine, with 22.2% (196/882) articles published in
Radiology, Nuclear Medicine, and Medical Imaging (along with
Engineering, Biomedical: 121/882, 13.7%; Mathematical and
Computational Biology: 107/882, 12.1%; Biochemical Research
Methods: 103/882, 11.7%; Biotechnology and Applied
Microbiology: 76/882, 8.6%; Neurosciences: 74/882, 8.4%);
(2) computer science and engineering (Computer Science,
Interdisciplinary Applications: 112/882, 12.7%; Computer
Science, Artificial Intelligence: 75/882, 8.5%; Engineering,
Electrical and Electronic: 75/882, 8.5%); or (3)
Multidisciplinary Sciences (82/882, 9.3%).
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Table 1. Top 10 journals with the highest record counts.

Record
count, n

PublisherNational Library of Medicine
catalog Medical Subject Head-
ing term

Web of Science categoryJournal title

38BMCComputational BiologyBiochemical Research Methods; Mathe-
matical and Computational Biology;
Biotechnology and Applied Microbiolo-
gy

BMCa Bioinformatics

37Nature ResearchNatural Science DisciplinesMultidisciplinary SciencesScientific Reports

35ElsevierNerve Net; Nervous SystemNeurosciences; Computer Science, Arti-
ficial Intelligence

Neural Networks

31IEEEBiomedical EngineeringN/AcProceedings of the Annual
International Conference of

the IEEEb Engineering in
Medicine and Biology Society

30IEEEElectronics, Medical; Radiogra-
phy

Imaging Science and Photographic
Technology; Engineering, Electrical and
Electronic; Computer Science, Interdis-
ciplinary Applications; Radiology, Nu-
clear Medicine, and Medical Imaging;
Engineering, Biomedical

IEEE Transactions on Medi-
cal Imaging

26Multidisciplinary Digital
Publishing Institute

Biosensing TechniquesChemistry, Analytical; Electrochemistry;
Instruments and Instrumentation; Engi-
neering, Electrical and Electronic

Sensors

22Oxford University PressComputational Biology;
Genome

Biochemical Research Methods; Mathe-
matical and Computational Biology;
Biotechnology and Applied Microbiolo-
gy

Bioinformatics

21Nature ResearchBiomedical Research/methods;
Research Design

Biochemical Research MethodsNature Methods

20American Association of
Physicists in Medicine

BiophysicsRadiology, Nuclear Medicine, and
Medical Imaging

Medical Physics

20Public Library of ScienceMedicine; ScienceMultidisciplinary SciencesPloS one

aBMC: BioMed Central.
bIEEE: Institute of Electrical and Electronics Engineers.
cN/A: not applicable.

MeSH Terms
For the main MeSH term or descriptor, an average of 9 (SD
4.21) terms was assigned to each record as subjects. Among
them, we present in Figure 1 the diseases that were extracted
from the C category. In the figure, the area size is proportional
to the record count, and the terms are categorized by color. In
addition, terms under >1 category were counted multiple times.
For instance, the term Digestive System Neoplasms has two
parents in MeSH Tree Structures, Neoplasms and Digestive
System Diseases, and as such, we counted articles in this
category under Neoplasmsby Site as well as under Digestive
System Neoplasms. Owing to the limited space, 7 categories
whose total record counts were ≤10 (eg, Congenital, Hereditary,
and Neonatal Diseases and Abnormalities; Nutritional and
Metabolic Diseases; and Stomatognathic Diseases) were

combined under the Others category, and individual diseases
that had <10 record counts were summed up with each other in
the same category to show only their total count (or with one
of the diseases included as an example). In the process, we
identified Neoplasms as the most frequently studied disease
type, with a total of 199 studies.

We further constructed a co-occurrence network of the complete
set of major MeSH descriptors assigned to the records to
understand the relationships among the biomedical entities. To
enhance legibility, we filtered out terms with <5 occurrences.
Figure 2 presents the visualized network of nodes (100/966,
10.4% of the total terms) with 612 edges and 7 clusters. In the
figure, the sizes of the nodes and edges are proportional to the
number of occurrences, and the node color indicates the assigned
cluster (although the term deep learning was considered
nonexclusive to any cluster as it appeared in all records).
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Figure 1. Disease-related Medical Subject Heading descriptors studied with deep learning.

Figure 2. Co-occurrence network of the major Medical Subject Heading descriptors (number of nodes=100; number of edges=612; number of clusters=7).

As depicted in Figure 2, each cluster comprised descriptors
from two groups: (1) biomedical domains that deep learning
was applied to, including body regions, related diseases,
diagnostic imaging methods, and theoretical models, and (2)
the purposes of deep learning and techniques used for the tasks,
including diagnosis, analysis, and processing of biomedical
data. In the first cluster, computer neural networks and software
were studied for the purposes of computational biology,

specifically protein sequence analysis, drug discovery, and drug
design, to achieve precision medicine. These were relevant to
the biomedical domains of (1) proteins, related visualization
methods (microscopy), and biological models, and (2)
neoplasms, related drugs (antineoplastic agents), and diagnostic
imaging (radiology). In the second cluster, deep learning and
statistical models were used for RNA sequence analysis and
computer-assisted radiotherapy planning in relation to the

J Med Internet Res 2022 | vol. 24 | iss. 4 | e28114 | p. 5https://www.jmir.org/2022/4/e28114
(page number not for citation purposes)

Nam et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


domains of (1) genomics, RNA, and mutation, and (2) brain
neoplasms and liver neoplasms. The third cluster comprised (1)
heart structures (heart ventricles), cardiovascular diseases, and
ultrasonography and (2) eye structures (retina), diseases
(glaucoma), and ophthalmological diagnostic techniques. These
had been studied for computer-assisted image interpretation
using machine learning and deep learning algorithms. The
biomedical domain group of the fourth cluster involved specific
terms related to neoplasms such as type (adenocarcinoma),
different regions (breast neoplasms, lung neoplasms, and
colorectal neoplasms), and respective imaging methods
(mammography and X-ray computed tomography) to which
deep learning and support vector machines have been applied
for the purpose of computer-assisted radiographic image
interpretation and computer-assisted diagnosis. The fifth cluster
included (1) brain disorders (Alzheimer disease), neuroimaging,
and neurological models; (2) prostatic neoplasms; and (3)
diagnostic magnetic resonance imaging and 3D imaging.
Supervised machine learning had been used for
computer-assisted image processing of these data. In the sixth
cluster, automated pattern recognition and computer-assisted
signal processing were studied with (1) human activities (eg,
movement and face), (2) abnormal brain activities (epilepsy and
seizures) and monitoring methods (electroencephalography),
and (3) heart diseases and electrocardiography. In the last
cluster, medical informatics, specifically data mining and NLP,
including speech perception, had been applied to (1) electronic
health records, related information storage and retrieval, and
theoretical models and (2) skin diseases (skin neoplasms and
melanoma) and diagnostic dermoscopy.

Author Affiliations
To investigate research collaboration within the field, we
analyzed paper-based coauthorships using author affiliations
with different levels of granularity, including organization and
academic disciplines. We extracted organizations from 98.7%
(4844/4908) of the total affiliations and visualized the
collaboration of different organization types. The top 10
organizations with the largest publication records included
Harvard University (37/844, 4.4%), Chinese Academy of
Sciences (21/844, 2.5%; eg, Institute of Computing Technology,
Institute of Automation, and Shenzhen Institutes of Advanced
Technology), Seoul National University (21/844, 2.5%),
Stanford University (20/844, 2.4%), Sun Yat-sen University
(14/844, 1.7%; eg, Zhongshan Ophthalmic Center and
Collaborative Innovation Center of Cancer Medicine),
University of California San Diego (14/844, 1.7%; eg, Institute
for Genomic Medicine, Shiley Eye Institute, and Institute for
Brain and Mind), University of California San Francisco
(14/844, 1.7%), University of Michigan (14/844, 1.7%), Yonsei
University (14/844, 1.7%), and the University of Texas Health
Science Center at Houston (12/844, 1.4%). The extracted
organizations were assigned to one of the following four
categories according to their main purpose: universities,

hospitals, companies, or research institutes and government
agencies. Among these, universities participated in most papers
(567/844, 67.2%), followed by hospitals (429/844, 50.8%),
companies (139/844, 16.5%), and research institutes or
government agencies (88/844, 10.4%). We used a co-occurrence
matrix to visualize the degrees of organizational collaboration,
with the co-occurrence values log normalized to compare the
relative differences (Figure 3).

From Figure 3, we found that universities were the most active
in collaborative research, particularly with hospitals, followed
by companies and research institutes or government agencies.
Hospitals also frequently collaborated with companies; however,
research institutes or government agencies tended not to
collaborate much as they published relatively fewer studies.

We also examined the collaborations among academic
disciplines, which we could extract, as described in the Methods
section, from 76.24% (3742/4908) of the total affiliations.
Approximately half (ie, 386/756, 51.1%) of the papers were
completed under disciplinary collaboration. Figure 4 depicts
the network with 36 nodes (36/148, 24.3% of the total) and 267
edges after we filtered out disciplines with weighted degrees
<10, representing the number of times one collaborated with
the other disciplines. In the figure, the node and edge sizes are
proportional to the weighted degree and link strength,
respectively, and the node color indicates the assigned cluster.

As shown in the figure, the academic disciplines were assigned
to 1 of 6 clusters, including 1 engineering-oriented cluster
(cluster 1) and other clusters that encompassed biomedical fields.
We specifically looked at the degree of collaboration between
the biomedical and engineering disciplines. Figure 4 depicts
that the most prominent collaboration was among Radiology,
Medical Imaging, and Nuclear Medicine; Computer Science;
and Electronics and Electrical Engineering. There were also
strong links among Computer Science or Electronics and
Electrical Engineering and Biomedical Informatics, Biomedical
Engineering, and Pathology and Laboratory Medicine.

Among the top 10 disciplines in Figure 4, the following three
had published the most papers and had the highest weighted
degree and degree centralities: Computer Science (number of
papers=195, weighted degree=193, and degree centrality=32);
Radiology, Medical Imaging, and Nuclear Medicine (number
of papers=168, weighted degree=166, and degree centrality=30);
and Electronics and Electrical Engineering (number of
papers=161, weighted degree=160, and degree centrality=32).
Meanwhile, some disciplines had high weighted degrees
compared with their publication counts, indicating their
activeness in collaborative research. These included Pathology
and Laboratory Medicine (5th in link strength vs 8th in
publications) and Public Health and Preventive Medicine (9th
in link strength vs 15th in publications). A counterexample was
Computational Biology, which was 12th in link strength but 7th
in publications.
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Figure 3. Collaboration of organization types.

Figure 4. Collaboration network of academic disciplines (number of nodes=36; number of edges=267; number of clusters=6).
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Content Analysis

Overview
We analyzed the content of influential studies that had made
significant contributions to the field through the application or
development of deep learning architectures. We identified these
studies by examining the citation counts from PubMed and

Google Scholar, assigning the 109 most-cited records to one of
the following categories: (1) review, (2) application of existing
deep learning architectures to certain biomedical domains
(denoted by A), or (3) development of a novel deep learning
model (denoted by D). Table 2 summarizes the 92 papers
assigned to the application or development category according
to their research topic in descending order of citation count.
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Table 2. Top 92 studies with the highest citation count under the application or development category, according to the research topic.

Deep learning architecturesDataTask typeResearch topic and
number

(Diagnostic) image analysis

InceptionRetinal disease OCTa and chest x-ray with pneu-
monia

ClassificationA1 [39]

U-net and CNNbRetinal disease OCTSegmentation and classificationA2 [40]

InceptionMelanoma dermoscopic imagesClassificationA3 [41]

CNN_SBrain glioblastoma MRIcSurvival predictionA4 [42]

CNN with CAEe and DeconvNetWSId of 13 cancer typesClassification and segmentationA6 [43]

ResNetf basedBrain MRISegmentationD1 [44]

InceptionRetinal fundus images with cardiovascular diseasePredictionA7 [45]

ResNet-based DeeperCut subsetVideo of freely behaving animalTrackingD2 [46]

InceptionColonoscopy video of colorectal polypsClassificationA8 [47]

CNNLung cancer CTgClassificationA9 [48]

Encoder-decoder CNNRetinal OCT with macular diseaseClassification and segmentationA10 [49]

CNN basedBrain glioma MRISegmentationD3 [50]

SqueezeNet basedProtein-ligand complexes as voxelBinding affinities predictionD4 [51]

CNN and mCNNiBrain glioma MRI, functional MRI, and DTIhSurvival classificationA11 [52]

InceptionFundus images with glaucomatous optic neuropa-
thy

ClassificationA12 [53]

ResNet and CheXNetChest radiographs with pneumoniaClassificationA13 [54]

ResNet, U-net, and DeepLabCritical head abnormality CTClassification and segmentationA14 [55]

ResNetBrain glioma MRIClassificationA15 [56]

DenseNet basedThoracic disease radiographsClassificationD6 [57]

VGGNet and U-netEchocardiogram video with cardiac diseaseClassification and segmentationA16 [58]

InceptionBrain positron emission tomography with
Alzheimer

ClassificationA17 [59]

CNN basedBreast cancer histopathological imagesClassificationD7 [60]

ResNetSkin tumor imagesClassificationA18 [61]

CNNChest CT with chronic obstructive pulmonary
disease and acute respiratory disease

Classification and predictionA19 [62]

FCNNjBrain MRI with autism spectrum disorderSegmentationA20 [63]

Proposal network (P-Net) basedFetal MRI and brain tumor MRISegmentationD8 [16]

AlexNet and De-CNNNatural movies and functional MRI of watching
movies

Classification, prediction, and
reconstruction

A21 [64]

CNN basedFacial images with a genetic syndromeDetection and classificationD9 [65]

U-netMicroscopic images of cellsDetection and segmentationA22 [66]

Faster region-based CNN with VGGNetBreast cancer mammogramsClassification and localizationA23 [67]

Mask-RCNN, CNN with GoogLeNet and
RetinaNet

Lung cancer CTSegmentation and predictionA24 [68]

CNN; fully connected NN; SAEkLung cancer CTClassificationA26 [69]

CNNLung cancer CTSurvival classificationA27 [70]

CNNPolar maps of myocardial perfusion imaging with

CADl
PredictionA29 [71]
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Deep learning architecturesDataTask typeResearch topic and
number

CNNProstate cancer MRIClassificationA30 [72]

CNN basedLiver SWEm with chronic hepatitis BClassificationD12 [73]

DenseNet with U-net basedLiver cancer CTSegmentationD14 [74]

AlexNet, GoogLeNet, VGGNet, inception,
ResNet, and inception-ResNet

Fundus images with macular degenerationClassificationA31 [75]

cuda-convnetBladder cancer CTClassificationA32 [76]

MobileNetProstate cancer tissue microarray imagesClassificationA34 [77]

CNN basedHolographic microscopy of Bacillus speciesClassificationD19 [78]

CNNChest CTSurvival classificationA36 [79]

ResNet basedMalignant lung nodule radiographsClassification and localizationD20 [80]

ResNetShoulder radiographs with proximal humerus
fracture

ClassificationA37 [81]

VGG-FaceFacial images of hetero and homosexualClassificationA39 [82]

CNN and CAECAD CT angiographySegmentation and classificationA41 [83]

U-netRadiographs with fractureClassification and localizationA42 [84]

CNNPeptide major histocompatibility complex as im-
age-like array

Binding classificationA43 [85]

CNNLung nodule CTDetectionA44 [86]

LeNetConfocal endomicroscopy video of oral cancerClassificationA45 [87]

MILn with ResNet and RNNWSI of prostate, skin, and breast cancerClassificationA46 [88]

FCNN basedVideo of freely behaving animalTrackingD24 [89]

U-net basedFundus images with glaucomaSegmentationD25 [90]

U-net; M-Net; Dense U-net; SVF-Net;
Grid-Net; Dilated CNN

Cardiac disease cine MRISegmentation and classificationA47 [91]

AlexNet basedKnee abnormality MRIClassificationD27 [92]

CNN basedProtein-ligand complexes as gridBinding affinities predictionD28 [93]

FCNN with VGGNetAutosomal dominant polycystic kidney disease
CT

SegmentationA50 [94]

VGGNetKnee cartilage lesion MRISegmentation and classificationA51 [95]

ResNetMammogramsClassificationA52 [96]

FCNNCAD CT angiographyPredictionA54 [97]

Inception basedWSI of lymph nodes in metastatic breast cancerClassification and localizationD31 [98]

FFNNo basedFluorescence microscopic images of cellsClassificationD35 [99]

ResNet; GoogLeNetRetinal fundus images with diabetic retinopathy
and breast mass mammography

ClassificationA56 [100]

Image processing

U-netBrain and abdomen CT and radial MRp dataArtifact reductionA25 [101]

GANq with U-net and CNNFluorescence microscopic imagesResolution enhancementA28 [102]

GAN with U-net and VGGNet basedCompressed sensing brain lesion and cardiac MRIDealiasingD15 [103]

GAN with U-net–based pix2pix network
modified

Superresolution localization microscopic imagesResolution enhancementD16 [104]

GAN with FCNN and CNNBrain and pelvic MRI and CTReconstructionA33 [105]

CNN basedCTArtifact reductionD18 [106]

Encoder-decoder CNNContrast-enhanced brain MRIReconstructionA38 [107]
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Deep learning architecturesDataTask typeResearch topic and
number

FFNN basedBrain MR fingerprinting dataReconstructionD22 [108]

CNN basedHi-C matrix of chromosomesResolution enhancementD23 [109]

U-netBrain tumor MRIResolution enhancementA48 [110]

CNN basedLung vessels CTReconstructionD26 [111]

CNN basedKnee MRIResolution enhancementD32 [112]

CNN basedCTReconstructionD33 [113]

CNN basedCardiac cine MRI and chest CTRegistrationD34 [18]

Sequence analysis

Stack-RNNs with GRUt- and LSTMu

based
SMILESrNovel structures generation and

property prediction
D17 [114]

variational AEv; CNN- and RNN with

GRU-based AAEw

SMILESNovel structures generationA40 [115]

CNN basedGenomic sequenceGene expression (variant effects)
prediction

D21 [116]

GAN with differentiable neural computer
and CNN based

SMILESNovel structures generation and
classification

D30 [117]

LSTMSMILESNovel structures generationA53 [118]

CNN with LSTMAntimicrobial peptide sequenceClassificationA57 [119]

Sequence and image analysis

ResNet basedProtein sequence to contact matrixContact predictionD13 [120]

(Diagnostic) pattern analysis

AEMulti-omics data from liver cancerSubtype identification (survival
classification)

A5 [121]

GoogLeNet and deeply supervised net
based

GenotypePhenotype predictionD5 [122]

FFNN basedGenomic profiles from cancerSurvival predictionD10 [123]

FFNN basedGene expression profiles of cancer cell line and
chemical descriptors of drugs

Drug synergies predictionD11 [124]

Attention-based BLSTMyElectronic health record with pediatric diseaseNLPx (classification)A35 [125]

SAEProtein sequence as matrix and drug molecular
fingerprint

Binding classificationA49 [126]

BLSTM basedElectrocardiogram signalClassificationD29 [127]
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Deep learning architecturesDataTask typeResearch topic and
number

CNNPolysomnogram signalClassificationA55 [128]

aOCT: optical coherence tomography.
bCNN: convolutional neural network.
cMRI: magnetic resonance imaging.
dWSI: whole slide image.
eCAE: convolutional autoencoder.
fResNet: residual networks.
gCT: computed tomography.
hDTI: diffusion tensor imaging.
imCNN: multicolumn convolutional neural network.
jFCNN: fully convolutional neural network.
kSAE: stacked autoencoder.
lCAD: coronary artery disease.
mSWE: shear wave elastography.
nMIL: multiple instance learning.
oFFNN: feedforward neural network.
pMR: magnetic resonance.
qGAN: generative adversarial network.
rSMILES: simplified molecular input line-entry system.
sRNN: recurrent neural network.
tGRU: gated recurrent unit.
uLSTM: long short-term memory.
vAE: autoencoder.
wAAE: adversarial autoencoder.
xNLP: natural language processing.
yBLSTM: bidirectional long short-term memory.

Research Topics
In these studies, researchers applied or developed deep learning
architectures mainly for the following purposes: image analysis,
especially for diagnostic purposes, including the classification
or prediction of diseases or survival, and the detection,
localization, or segmentation of certain areas or abnormalities.
These 3 tasks, which aim to identify the location of an object
of interest, are different in that detection involves a single
reference point, whereas localization involves an area identified
through a bounding box, saliency map, or heatmap, segmentation
involves a precise area with clear outlines identified through
pixel-wise analysis. Meanwhile, in some studies, models for
image analysis unrelated to diagnosis were proposed, such as
classifying or segmenting cells in microscopic images and
tracking moving animals in videos through pose estimation.
Another major objective involved image processing for
reconstructing or registering medical images. This included
enhancing low-resolution images to high resolution,
reconstructing images with different modalities or synthesized
targets, reducing artifacts, dealiasing, and aligning medical
images.

Meanwhile, several researchers used deep learning architectures
to analyze molecules, proteins, and genomes for various
purposes. These included drug design or discovery, specifically
for generating novel molecular structures through sequence
analysis and for predicting binding affinities through image

analysis of complexes; understanding protein structure through
image analysis of contact matrix; and predicting phenotypes,
cancer survival, drug synergies, and genomic variant effects
from genes or genomes. Finally, in some studies, deep learning
was applied to the diagnostic classification of sequential data,
including electrocardiogram or polysomnogram signals and
electronic health records. In summary, in the reviewed literature,
we identified a predominant focus on applying or developing
deep learning models for image analysis regarding localization
or diagnosis and image processing, with a few studies focusing
on protein or genome analysis.

Deep Learning Architectures
Regarding the main architectures, most of them were
predominantly CNNs and based on ≥1 CNN architecture such
as a fully CNN (FCNN) and its variants, including U-net;
residual neural network (ResNet) and its variants; GoogLeNet
(Inception v1) or Inception and VGGNet and its variants; and
other architectures. Meanwhile, a few researchers based their
models on feedforward neural networks that were not CNNs,
including autoencoders (AEs) such as convolutional AE and
stacked AE. Others adapted RNNs, including (bidirectional)
long short-term memory and gated recurrent unit. Furthermore,
models that combined RNNs or AEs with CNNs were also
proposed.

Content analysis of the reviewed literature showed that different
deep learning architectures were used for different research
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tasks. Models for classification or prediction tasks using images
were predominantly CNN based, with most being ResNet and
GoogLeNet or Inception. ResNet with shortcut connections
[129] and GoogLeNet or Inception with 1×1 convolutions,
factorized convolutions, and regularizations [130,131] allow
networks of increased depth and width by solving problems
such as vanishing gradients and computational costs. These
mostly analyzed medical images from magnetic resonance
imaging or computed tomography, with cancer-related images
often used as input data for diagnostic classification, in addition
to image-like representations of protein complexes. Meanwhile,
when applying these tasks to data other than images, such as
genomic or gene expression profiles and protein sequence
matrices, researchers used feedforward neural networks,
including AEs, that enabled semi- or unsupervised learning and
dimensionality reduction.

Image analysis for segmentation and image processing were
achieved through CNN-based architectures as well, with most
of them being FCNNs, especially U-net. FCNNs produce an
input-sized pixel-wise prediction by replacing the last fully
connected layers to convolution layers, making them
advantageous for the abovementioned tasks [132], and U-net

enhances these performances through long skip connections
that concatenate feature maps from the encoder path to the
decoder path [133]. In particular, for medical image processing
tasks, a few researchers combined FCNNs (U-net) with other
CNNs by adopting the generative adversarial network structure,
which generates new instances that mimic the real data through
an adversarial process between the generator and discriminator
[134]. We found that images of the brain were often used as
input data for these studies.

On the other hand, RNNs were applied to sequence analysis of
the string representation of molecules (simplified molecular
input line-entry system) and pattern analysis of sequential data
such as signals. A few of these models, especially those
generating novel molecular structures, combined RNNs with
CNNs by adopting generative adversarial networks, including
adversarial AE. In summary, the findings showed that the current
deep learning models were predominantly CNN based, with
most of them focusing on analyzing medical image data and
different architectures that are preferred for the specific tasks.

Among these studies, Table 3 shows, in detail, the objectives
and the proposed methods of the 35 studies with novel model
development.
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Table 3. Content analysis of the top 35 records in the development category.

Methods (proposed model)Development objectivesNumber

Voxelwise Residual Network: trained through residual learning of volumetric feature
representation and integrated with contextual information of different modalities and
levels

Segment brain anatomical structures in 3D MRIaD1

DeeperCut’s subset DeepLabCut: network fine-tuned on labeled body parts, with de-
convolutional layers producing spatial probability densities to predict locations

Estimate poses to track body parts in various ani-
mal behaviors

D2

Deep learning–based radiomics: segment tumor regions and directly extract radiomics
image features from the last convolutional layer, which is encoded for feature selection
and prediction

Predict isocitrate dehydrogenase 1 mutation in
low-grade glioma with MRI radiomics analysis

D3

KDEEP: 3D network to predict binding affinity using voxel representation of protein-
ligand complex with assigned property according to its atom type

Predict protein-ligand binding affinities represent-
ed by 3D descriptors

D4

DCell: visible neural network with structure following cellular subsystem hierarchy
to predict cell growth phenotype and genetic interaction from genotype

Predict phenotype from genotype through the bi-
ological hierarchy of cellular subsystems

D5

DenseNet-based CheXNeXt: networks trained for each pathology to predict its presence
and ensemble and localize indicative parts using class activation mappings

Classify and localize thoracic diseases in chest
radiographs

D6

CSDCNNb: trained through end-to-end learning of hierarchical feature representation
and optimized feature space distance between breast cancer classes

Multi-classification of breast cancer from
histopathological images

D7

Bounding box and image-specific fine-tuning–based segmentation: trained for interac-
tive image segmentation using bounding box and fine-tuned for specific image with
or without scribble and weighted loss function

Interactive segmentation of 2D and 3D medical
images fine-tuned on a specific image

D8

DeepGestalt: preprocessed for face detection and multiple regions and extracts pheno-
type to predict syndromes per region and aggregate probabilities for classification

Facial image analysis for identifying phenotypes
of genetic syndromes

D9

SurvivalNet: deep survival model with high-dimensional genomic input and Bayesian
hyperparameter optimization, interpreted using risk backpropagation

Predict cancer outcomes with genomic profiles
through survival models optimization

D10

DeepSynergy: predicts drug synergy value using cancer cell line gene expressions and
chemical descriptors, which are normalized and combined through conic layers

Predict synergy effect of novel drug combinations
for cancer treatment

D11

DLREd: predict the probability of liver fibrosis stages with quantitative radiomics
approach through automatic feature extraction from SWE images

Classify liver fibrosis stages in chronic hepatitis

B using radiomics of SWEc
D12

RaptorX-Contact: combined networks to learn contact occurrence patterns from se-
quential and pairwise protein features to predict contacts simultaneously at pixel level

Predict protein residue contact map at pixel level
with protein features

D13

Hybrid Densely connected U-net: 2D and 3D networks to extract intra- and interslice
features with volumetric contexts, optimized through hybrid feature fusion layer

Segment liver and tumor in abdominal CTe scansD14

DAGANf: conditional GANg stabilized by refinement learning, with the content loss
combined adversarial loss incorporating frequency domain data

Reconstruct compressed sensing MRI to dealiased
image

D15

Artificial Neural Network Accelerated–Photoactivated Localization Microscopy:

trained with superresolution PALMh as the target, compares reconstructed and target
with loss functions containing conditional GAN

Reconstruct sparse localization microscopy to
superresolution image

D16

Reinforcement Learning for Structural Evolution: generate chemically feasible molecule
as strings and predict its property, which is integrated with reinforcement learning to
bias the design

Generate novel chemical compound design with
desired properties

D17

CNNi-based Metal Artifact Reduction: trained on images processed by other Metal
Artifact Reduction methods and generates prior images through tissue processing and
replaces metal-affected projections

Reduce metal artifacts in reconstructed x-ray CT
images

D18

HoloConvNet: trained with raw holographic images to directly recognize interspecies
difference through representation learning using error backpropagation

Predict Bacillus species to identify anthrax spores
in single cell holographic images

D19

Deep learning–based automatic detection: predict the probability of nodules per radio-
graph for classification and detect nodule location per nodule from activation value

Classify and detect malignant pulmonary nodules
in chest radiographs

D20

ExPecto: predict regulatory features from sequences and transform to spatial features
and use linear models to predict tissue-specific expression and variant effects

Predict tissue-specific gene expression and genom-
ic variant effects on the expression

D21

Deep reconstruction network: trained with a sparse dictionary that maps magnitude
image to quantitative tissue parameter values for MRF reconstruction

Reconstruct MRFj to obtain tissue parameter mapsD22

HiCPlus: predict high-resolution matrix through mapping regional interaction features
of low-resolution to high-resolution submatrices using neighboring regions

Generate high-resolution Hi-C interaction matrix
of chromosomes from a low-resolution matrix

D23

J Med Internet Res 2022 | vol. 24 | iss. 4 | e28114 | p. 14https://www.jmir.org/2022/4/e28114
(page number not for citation purposes)

Nam et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Methods (proposed model)Development objectivesNumber

LEAPk: videos preprocessed for egocentric alignment and body parts labeled using

GUIl and predicts each location by confidence maps with probability distributions

Estimate poses to track body parts of freely mov-
ing animals

D24

M-Net: multi-scale network for generating multi-label segmentation prediction maps
of disc and cup regions using polar transformation

Jointly segment optic disc and cup in fundus im-
ages for glaucoma screening

D25

Deep gradient descent: learned iterative image reconstruction, incorporated with gra-
dient information of the data fit separately computed from training

Reconstruct limited-view PATm to high-resolution
3D images

D26

MRNet: networks trained for each diagnosis according to a series to predict its presence
and combine probabilities for classification using logistic regression

Predict classifications of and localize knee injuries
from MRI

D27

Pafnucy: structure-based prediction using 3D grid representation of molecular com-
plexes with different orientations as having same atom types

Predict binding affinities between 3D structures
of protein-ligand complexes

D28

Deep bidirectional LSTMn network–based wavelet sequences: generate decomposed
frequency subbands of electrocardiogram signal as sequences by wavelet-based layer
and use as input for classification

Classify electrocardiogram signals based on
wavelet transform

D29

Reinforced Adversarial Neural Computer: combined with GAN and reinforcement
learning, generates sequences matching the key feature distributions in the training
molecule data

Generate novel small molecule structures with
possible biological activity

D30

LYmph Node Assistant: predict the likelihood of tumor in tissue area and generate a
heat map for slides identifying likely areas

Detect and localize breast cancer metastasis in
digitized lymph nodes slides

D31

DeepResolve: trained to compute residual images, which are added to low-resolution
images to generate their high-resolution images

Transform low-resolution thick slice knee MRI
to high-resolution thin slices

D32

Learned Experts’Assessment–Based Reconstruction Network: iterative reconstruction
using previous compressive sensing methods, with fields of expert-applied regulariza-
tion terms learned iteration dependently

Reconstruct sparse-view CT to suppress artifact
and preserve feature

D33

Deep Learning Image Registration: multistage registration network and unsupervised
training to predict transformation parameters using image similarity and create warped
moving images

Unsupervised affine and deformable aligning of
medical images

D34

Localization Cellular Annotation Tool: predict localization per cell for image-based
classification of multi-localizing proteins, combined with gamer annotations for
transfer learning

Classify subcellular localization patterns of pro-
teins in microscopy images

D35

aMRI: magnetic resonance imaging.
bCSDCNN: class structure-based deep convolutional neural network.
cSWE: shear wave elastography.
dDLRE: deep learning radiomics of elastography.
eCT: computed tomography.
fDAGAN: Dealiasing Generative Adversarial Networks.
gGAN: generative adversarial network.
hPALM: photoactivated localization microscopy.
iCNN: convolutional neural network.
jMRF: magnetic resonance fingerprinting.
kLEAP: LEAP Estimates Animal Pose.
lGUI: graphical user interface.
mPAT: photoacoustic tomography.
nLSTM: long short-term memory.

Black Box Problem
In quite a few of the reviewed studies, the black box problem
of deep learning was partly addressed, as researchers
implemented various methods to improve model interpretability.
To understand the prediction results of image analysis models,
most used one of the following two techniques to visualize the
important regions: (1) activation-based heatmaps [45,54,65,70],
especially class activation maps [57,61,77,92], and saliency
maps [59] and (2) occlusion testing [39,75,82,94]. For models

analyzing data other than images, there were no generally
accepted techniques for model interpretation, and researchers
suggested some methods, including adopting an interpretable
hierarchical structure such as the cellular subsystem [122] or
anatomical division [125], using backpropagation [123],
observing gate activations of cells in the neural network [114],
or investigating how corrupted input data affect the prediction
and how identical predictions are made for different inputs [93].
As such, various methods were found to be used to tackle this
well-known limitation of deep learning.
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Cited Reference Analysis
On average, each examined deep learning study with at least
one PubMed indexed citation (429/978, 43.9%) had 25.8 (SD
20.0) citations. These cited references comprised 9373 unique
records that were cited 1.27 times on average (SD 2.16).
Excluding the ones that were unindexed in the WoS Core
Collection (8618/9373, 8.06% of the unique records), an average
of 1.77 (SD 1.07) categories were assigned to a record. The top
ten WoS categories, which were assigned to the greatest number
of total cited references, pertained to the following three major
groups: (1) biomedicine (Radiology, Nuclear Medicine, and
Medical Imaging: 2025/11,033, 18.35%; Biochemical Research
Methods: 1118/11,033, 10.13%; Mathematical and
Computational Biology: 1066/11,033, 9.66%; Biochemistry and
Molecular Biology: 1043/11,033, 9.45%; Engineering,
Biomedical: 981/11,033, 8.89%; Biotechnology and Applied
Microbiology: 916/11,033, 8.3%; Neurosciences: 844/11,033,
7.65%), (2) computer science and engineering (Computer
Science, Interdisciplinary Applications: 1041/11,033, 9.44%;
Engineering, Electrical and Electronic: 645/11,033, 5.85%),
and (3) Multidisciplinary Sciences (with 1411/11,033, 12.79%
records).

To understand the intellectual structure of how knowledge is
transferred among different areas of study through citations, we
visualized the citation network of WoS subject categories. In
the directed citation network shown in Figure 5, the edges were
directed clockwise with the source nodes as the WoS categories
of the deep learning studies we examined and the target nodes
as the WoS categories of the cited references from which
knowledge was obtained. To enhance legibility, we filtered out
categories with <100 weighted degrees, excluding self-loops,
to form a network of 20 nodes (20/158, 12.7% of the total) and
59 edges (59/2380, 2.48% of the total). In the figure, the node
color and size are proportional to the PageRank score
(probability 0.85; ε=0.001; Figure 5A) and weighted-out degree
(Figure 5B), and the edge size and color are proportional to the
link strength. PageRank considers not only the quantity but also
the quality of incoming edges, identifying important exporters
for knowledge diffusion based on how often and by which fields
a node is cited. On the other hand, the weighted outdegree
measures outgoing edges and identifies major knowledge
importers that frequently cite other fields.

Figure 5. Citation network of the Web of Science subject categories assigned to the reviewed publications and their cited references according to (A)
PageRank and (B) weighted outdegree (number of nodes=20; number of edges=59).

As depicted in Figure 5A, categories with high PageRank scores
mostly coincided with the frequently cited fields identified
above and were grouped into two communities through
modularity (upper half and lower half). The upper half region
centered on Radiology, Nuclear Medicine, and Medical Imaging,
which had the highest PageRank score (0.191) and proved to
be a field with a significant influence on deep learning studies
in biomedicine. Meanwhile, important knowledge exporters to
this field included Engineering, Biomedical (0.134);

Engineering, Electrical and Electronic (0.110); and Computer
Science, Interdisciplinary Applications (0.091). The lower half
region mainly comprised categories with comparable PageRank
scores in which knowledge was frequently exchanged between
one another, including Biochemical Research Methods (0.053),
Multidisciplinary Sciences (0.053), Biochemistry and Molecular
Biology (0.052), Biotechnology and Applied Microbiology
(0.050), and Mathematical and Computational Biology (0.048).
Specifically, in Figure 5B, Mathematical and Computational
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Biology (1992), Biotechnology and Applied Microbiology
(1836), and Biochemical Research Methods (1807) were
identified as major knowledge importers with the highest
weighted outdegrees, whereas Biochemistry and Molecular
Biology (344) had a relatively low weighted outdegree,
indicating their role as a source of knowledge for these fields.

We analyzed the 10 most frequently cited studies to gain an
in-depth understanding of the most influential works and
assigned these papers to one of the three categories: review,
application, or development. Review articles provided
comprehensive overviews of the development and applications
of deep learning [1,3], with 1 focusing on applications to
medical image analysis [4]. We summarize the 7 application

(denoted by A) or development (denoted by D) studies in Table
4.

In these studies, excluding the study by Hochreiter and
Schmidhuber [135], whose research topic pertained to computer
science, deep learning was used for diagnostic image analysis
of various areas [12-14,136] and for sequence analysis of
proteins [21] or genomes [22]. The main architectures
implemented to achieve the different research objectives mostly
comprised CNNs [12-14,136] or CNN-based novel models
[21,22] and RNNs [135]. The findings indicated that these deep
neural networks either outperformed previous methods or
achieved a performance comparable with that of human experts.

Table 4. Content analysis matrix of the highly cited references in the application or development category.

Methods (deep learning architectures)ObjectivesResearch topic: task typeCitation
count, n

Category

Inception version 3 fine-tuned end to end with
images; tested against dermatologists on 2 bi-
nary classifications

Apply CNNa to classifying skin lesions
from clinical images

Diagnostic image analysis:
classification

53A1 [12]

Inception version 3 trained and validated using
2 data sets of images graded by ophthalmolo-
gists

Apply CNN to detecting referrable diabetic
retinopathy on retinal fundus images

Diagnostic image analysis:
classification

51A2 [13]

LSTMc achieved constant error flow through
memory cells regulated by gate units; tested
numerous times against other methods

Develop a new gradient-based RNNb to
solve error backflow problems

Computer science34D1 [135]

CNN-based DeepBind trained fully automati-
cally through parallel implementation to predict
and visualize binding specificities and variation
effects

Propose a predictive model for sequence
specificities of DNA- and RNA-binding
proteins

Sequence analysis: binding
(variant effects) prediction

33D2 [21]

Compare performances of AlexNet, CifarNet,
and GoogLeNet trained with transfer learning
and different data set characteristics

Evaluate factors of using CNNs for thora-
coabdominal lymph node detection and in-
terstitial lung disease classification

Diagnostic image analysis:
classification

27A3 [14]

CNN-based DeepSEA trained for chromatin
profile prediction to estimate variant effects
with single nucleotide sensitivity and prioritize
functional variants

Propose a model for predicting noncoding
variant effects from genomic sequence

Sequence analysis: chro-
matin profiles (variant ef-
fects) prediction

23D3 [22]

Compare performances of AlexNet and
GoogLeNet and ensemble of 2 trained with
transfer learning, augmented data set, and radi-
ologist-augmented approach

Evaluate CNNs for tuberculosis detection
on chest radiographs

Diagnostic image analysis:
classification

23A4 [136]

aCNN: convolutional neural network.
bRNN: recurrent neural network.
cLSTM: long short-term memory.

Discussion

Principal Findings
With the increase in biomedical research using deep learning
techniques, we aimed to gain a quantitative and qualitative
understanding of the scientific domain, as reflected in the
published literature. For this purpose, we conducted a
scientometric analysis of deep learning studies in biomedicine.

Through the metadata and content analyses of bibliographic
records, we identified the current leading fields and research
topics, the most prominent being radiology and medical imaging.
Other biomedical fields that have led this domain included

biomedical engineering, mathematical and computational
biology, and biochemical research methods. As part of
interdisciplinary research, computer science and electrical
engineering were important fields as well. The major research
topics that were studied included computer-assisted image
interpretation and diagnosis (which involved localizing or
segmenting certain areas for classifying or predicting diseases),
image processing such as medical image reconstruction or
registration, and sequence analysis of proteins or RNA to
understand protein structure and discover or design drugs. These
topics were particularly prevalent in their application to
neoplasms.
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Furthermore, although deep learning techniques that had been
proposed for these themes were predominantly CNN based,
different architectures are preferred for different research tasks.
The findings showed that CNN-based models mostly focused
on analyzing medical image data, with RNN architectures for
sequential data analysis and AEs for unsupervised
dimensionality reduction yet to be actively explored. Other deep
learning methods, such as deep belief networks [137,138], deep
Q network [139], and dictionary learning [140], have also been
applied to biomedical research but were excluded from the
content analysis because of low citation count. As deep learning
is a rapidly evolving field, future biomedical researchers should
pay attention to the emerging trends and keep aware of
state-of-the-art models for enhanced performance, such as
transformer-based models, including bidirectional encoder
representations from transformers for NLP [141]; wav2vec for
speech recognition [142]; and the Swin transformer for computer
vision tasks of image classification, segmentation, and object
detection [143].

The findings from the analysis of the cited references revealed
patterns of knowledge diffusion. In the analysis, radiology and
medical imaging appeared to be the most significant knowledge
source and an important field in the knowledge diffusion
network. Relatedly, we identified knowledge exporters to this
field, including biomedical engineering, electrical engineering,
and computer science, as important, despite their relatively low
citation counts. Furthermore, citation patterns revealed
clique-like relationships among the four fields—biochemical
research methods, biochemistry and molecular biology,
biotechnology and applied microbiology, and mathematical and
computational biology—with each being a source of knowledge
and diffusion for the others.

Beyond knowledge diffusion, knowledge integration was also
encouraged through collaboration among authors from different
organizations and academic disciplines. Coauthorship analysis
revealed active research collaboration between universities and
hospitals and between hospitals and companies. Separately, we
identified an engineering-oriented cluster and
biomedicine-oriented clusters of disciplines, among which we
observed a range of disciplinary collaborations, with the most
prominent 2 between radiology and medical imaging and
computer science and electrical engineering, which were the 3

disciplines that were most involved in publishing and
collaboration. Meanwhile, pathology and public health showed
a high collaborative research to publications ratio, whereas
computational biology showed a low collaborative ratio.

Limitations
This study has the following limitations that may have affected
data analysis and interpretation. First, focusing only on
published studies may have underrepresented the field. Second,
publication data were only retrieved from PubMed; although
PubMed is one of the largest databases for biomedical literature,
other databases such as DataBase systems and Logic
Programming may also include relevant studies. Third, the use
of PubMed limited our data to biomedical journals and
proceedings. Given that deep learning is an active research area
in computer science, computer science conference articles are
valuable sources of data that were not considered in this study.
Finally, our current data retrieval strategy involved searching
deep learning as the major MeSH term, which increased
precision but may have omitted relevant studies that were not
explicitly tagged as deep learning. We plan to expand our scope
in future work to consider other bibliographic databases and
search terms as well.

Conclusions
In this study, we investigated the landscape of deep learning
research in biomedicine and identified major research topics,
influential works, knowledge diffusion, and research
collaboration through scientometric analyses. The results showed
a predominant focus on research applying deep learning
techniques, especially CNNs, to radiology and medical imaging
and confirmed the interdisciplinary nature of this domain,
especially between engineering and biomedical fields. However,
diverse biomedical applications of deep learning in the fields
of genetics and genomics, medical informatics focusing on text
or speech data, and signal processing of various activities (eg,
brain, heart, and human) will further boost the contribution of
deep learning in addressing biomedical research problems. As
such, although deep learning research in biomedicine has been
successful, we believe that there is a need for further exploration,
and we expect the results of this study to help researchers and
communities better align their present and future work.
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