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Abstract

Background: Advancesinbiomedical research using deep learning techniques have generated alarge volume of related literature.
However, there is a lack of scientometric studies that provide a bird’s-eye view of them. This absence has led to a partial and
fragmented understanding of the field and its progress.

Objective: This study aimed to gain a quantitative and qualitative understanding of the scientific domain by analyzing diverse
bibliographic entities that represent the research landscape from multiple perspectives and levels of granularity.

Methods: We searched and retrieved 978 deep learning studies in biomedicine from the PubMed database. A scientometric
analysis was performed by analyzing the metadata, content of influential works, and cited references.

Results: Inthe process, we identified the current leading fields, major research topics and techniques, knowledge diffusion, and
research collaboration. There was a predominant focus on applying deep learning, especially convolutional neural networks, to
radiology and medical imaging, whereas afew studies focused on protein or genome analysis. Radiology and medical imaging
also appeared to be the most significant knowledge sources and an important field in knowledge diffusion, followed by computer
science and electrical engineering. A coauthorship analysis revealed various collaborations among engineering-oriented and
biomedicine-oriented clusters of disciplines.

Conclusions: Thisstudy investigated the landscape of deep learning research in biomedicine and confirmed its interdisciplinary
nature. Although it has been successful, we believe that there is a need for diverse applications in certain areas to further boost
the contributions of deep learning in addressing biomedical research problems. We expect the results of this study to help
researchers and communities better align their present and future work.

(J Med Internet Res 2022;24(4):€28114) doi: 10.2196/28114

KEYWORDS
deep learning; scientometric analysis; research publications; research landscape; research collaboration; knowledge diffusion

: [3]. The exponentially growing amount of datain many fields
Introduction and recent advances in graphics processing units have further
Deep learning is a class of machine learning techniques based ~ €XPedited research progressin thefield. Deep learning hasbeen
on neural networks with multiple processing layers that learn  2Ctively applied to tasks, such as natural language processing

representations of data [1,2]. Stemming from shallow neural  (NLP), speech recognition, and computer vision, in various
networks, many deep learning architectures, such as domains [1] and has shown promising results in diverse areas

convolutional neural networks (CNNs) and recurrent neural  ©f biomedicine, including radiology [4], neurology [2],
networks (RNNS), have been developed for various purposes  cadiology [3], cancer detection and diagnosis [6,7],
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radiotherapy [8], and genomics and structural biology [9-11].
Medical image analysisis a field that has actively used deep
learning. For example, successful applications have been made
in diagnosis [12], lesion classification or detection [13,14],
organ and other substructure localization or segmentation
[15,16], and image registration [17,18]. In addition, deep
learning has also made an impact on predicting protein structures
[19,20] and genomic sequencing [21-23] for biomarker
development and drug design.

Despite the increasing number of published biomedical studies
on deep learning techniques and applications, there has been a
lack of scientometric studies that both qualitatively and
quantitatively explore, analyze, and summarize the relevant
studies to provide a bird’s-eye view of them. Previous studies
have mostly provided qualitative reviews[2,9,10], and the few
available bibliometric analyses were limited in their scope in
that the researchers focused on a subarea such as public health
[24] or aparticular journal [25]. The absence of acoherent lens
through which we can examine the field from multiple
perspectives and levels of granularity leads to a partial and
fragmented understanding of the field and its progress. To fill
this gap, the aim of this study is to perform a scientometric
analysis of metadata, content, and citationsto investigate current
leading fields, research topics, and techniques, as well as
research collaboration and knowledge diffusionin deep learning
research in biomedicine. Specifically, we intend to examine (1)
biomedical journalsthat had frequently published deep learning
studies and their coverage of research areas, (2) diseases and
other biomedical entitiesthat have been frequently studied with
deep learning and their relationships, (3) major deep learning
architecturesin biomedicine and their specific applications, (4)
research collaborations among disciplines and organizations,
and (5) knowledge diffusion among different areas of study.

Methods

Data

Data were collected from PubMed, a citation and abstract
database that includes biomedical literature from MEDLINE
and other life science journals indexed with Medical Subject
Heading (MeSH) terms[26]. MeSH isahierarchicaly structured
biomedical terminology with descriptors organized into 16
categories, with subcategories[27]. In this study, deep learning
[MeSH Major Topic] was used as the query to search and
download deep learning studiesfrom PubMed. LimitingaMeSH
term as amajor topic increases the precision of retrieval so that
only studiesthat are highly relevant to the topic are found [28].
As of January 1, 2020, a total of 978 PubMed records with
publication yearsranging from 2016 to 2020 have been retrieved
using the National Center for Biotechnology Information Entrez
application programming interface. Entrez is a data retrieval
system that can be programmatically accessed through its
Biopython module to search and export records from the
National Center for Biotechnology Information’s databases,
including PubMed [26,29]. The metadata of the collected
bibliographic recordsincluded the PubMed identifier or PubMed
ID, publication year, journal titleand itselectronic ISSN, MeSH
descriptor terms, and author affiliations. We also downloaded
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the citation counts and references of each bibliographic record
and considered data sources other than PubMed as well. We
collected citation counts of the downloaded bibliographic
records from Google Scholar (last updated on February 8, 2020)
and the subject categories of their publishing journals from the
Web of Science (WoS) Core Collection database using the
electronic ISSN.

Detailed Methods
Metadata Analysis

Journals

Journals are an important unit of analysisin scientometricsand
have been used to understand specific research areas and
disciplines[30]. Inthisstudy, biomedical journalsthat published
deep learning studies were grouped using the WoS Core
Collection subject categories and analyzed to identify widely
studied research areas and disciplines.

MeSH Terms

Disease-related MeSH terms were analyzed to identify major
diseasesthat have been studied using deep | earning. We mapped
descriptors to their corresponding numbers in MeSH Tree
Structuresto identify higher level concepts for descriptors that
were too specific and ensured that all the descriptors had the
same level of specificity. Ultimately, all descriptors were
mapped to 6-digit tree numbers (C00.000), and terms with >1
tree number were separately counted for all the categories they
belonged to. In addition, we visualized the co-occurrence
network of major MeSH descriptors using VOSviewer (version
1.6.15) [31,32] and its clustering technique [33] to understand
the relationships among the biomedical entities, as well as the
clusters they form together.

Author Affiliations

We analyzed author affiliations to understand the major
organi zations and academic disciplinesthat were activein deep
learning research. The affiliations of 4908 authors extracted
from PubMed records were recorded in various formats and
manually standardized. We manually reviewed the affiliations
to extract organizations, universities, schools, colleges, and
departments. For authors with multiple affiliations, we selected
the first one listed, which is usualy the primary. We also
analyzed coauthorships to investigate research collaboration
among organi zations and disciplines. All the organizationswere
grouped into one of the following categories. universities,
hospitals, companies, or research institutes and government
agencies to understand research collaboration among different
sectors. We classified medical schools under hospitals as they
are normally affiliated with each other. In the category of
research institutes or government agencies, we included
nonprofit private organizations or foundations and research
centersthat do not belong to a university, hospital, or company.
We extracted academic disciplines from the department section
or the school or college section when department information
was unavailable. Asthe extracted disciplines were not coherent
with multiple levels and combinations, data were first cleaned
with OpenRefine (originally developed by Metaweb then
Google), an interactive data transformation tool for profiling
and cleaning messy data[34], and then manually grouped based
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on WoS categories and MeSH Tree Structures according to the
following rules. We treated interdisciplinary fields and fields
with high occurrence as separate disciplines from their broader
fields and aggregated multiplefieldsthat frequently co-occurred
under a single department name into a single discipline after
reviewing their disciplinary similarities.

Content Analysis

We identified influential studies by examining their citation
counts in PubMed and Google Scholar. Citation counts from
Google Scholar were considered in addition to PubMed as
Google Scholar’s substantial citation data encompasses WoS
and Scopus citations [35]. After sorting the articles in
descending order of citations, the 2 sources showed a Spearman
rank correlation coefficient of 0.883. From the PubMed top 150
list (ie, citation count >7) and Google Scholar top 150 list (ie,
citation count >36), we selected the top 109 articles. Among
these, we selected the sources that met the criteriafor applying
or devel oping deep learning models as the subjects of analysis
to understand the major deep learning architectures in
biomedicine and their applications. Specifically, we analyzed
the research topics of the studies, the dataand architectures used
for those purposes, and how the black box problem was
addressed.

Cited Reference Analysis

We collected the references from downloaded articles that had
PubMed IDs. Citations represent the diffusion of knowledge
from cited to citing publications; therefore, analyzing the highly
cited referencesin deep learning studies in biomedicine allows
for the investigation of disciplines and studiesthat have greatly
influenced the field. Toward this end, we visualized networks
of knowledge diffusion among WoS subjects using Gephi
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(v0.9.2) [36] and examined metrics such as modularity,
PageRank score, and weighted outdegree using modularity for
community detection [37]. PageRank indicates the importance
of anode by measuring the quantity and quality of itsincoming
edges [38], and weighted outdegree measures the number of
outgoing edges of anode. We also reviewed the contents of the
10 most highly cited influential works.

Results

Metadata Analysis

Journals

On the basis of the data set, 315 biomedical journals have
published deep learning studies, and Table 1 lists the top 10
journals selected based on publication size. Different WoS
categories and MeSH terms are separated using semicolons.

From atotal of 978 records, 96 (9.8%) were unindexed in the
WoS Core Collection and were excluded, following which, an
average of 2.02 (SD 1.19) categories were assigned per record.
The top ten subject categories, which mostly pertained to (1)
biomedicine, with 22.2% (196/882) articles published in
Radiology, Nuclear Medicine, and Medical Imaging (along with
Engineering, Biomedical: 121/882, 13.7%; Mathematical and
Computational Biology: 107/882, 12.1%; Biochemical Research
Methods: 103/882, 11.7%; Biotechnology and Applied
Microbiology: 76/882, 8.6%; Neurosciences. 74/882, 8.4%);
(2) computer science and engineering (Computer Science,
Interdisciplinary Applications: 112/882, 12.7%; Computer
Science, Artificial Intelligence: 75/882, 8.5%; Engineering,
Electrical and Electronic: 75/882, 85%); or (3)
Multidisciplinary Sciences (82/882, 9.3%).

JMed Internet Res 2022 | vol. 24 | iss. 4| €28114 | p. 3
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JOURNAL OF MEDICAL INTERNET RESEARCH Nam et a
Table 1. Top 10 journals with the highest record counts.

Journal title Web of Science category National Library of Medicine  Publisher Record
catalog Medica Subject Head- count, n
ing term

BMC? Bioinformatics Biochemical Research Methods, Mathe-  Computational Biology BMC 38

matical and Computational Biology;
Biotechnology and Applied Microbiolo-
ay

Scientific Reports Multidisciplinary Sciences Natural Science Disciplines Nature Research 37

Neural Networks Neurosciences, Computer Science, Arti-  Nerve Net; Nervous System Elsevier 35

ficial Intelligence

Proceedings of the Annual N/AC Biomedical Engineering |IEEE 31

International Conference of

the |IEEE? Engineering in

Medicine and Biology Society

|EEE Transactions on Medi-  Imaging Science and Photographic Electronics, Medical; Radiogra-  |EEE 30

cal Imaging Technology; Engineering, Electrical and phy

Electronic; Computer Science, Interdis-
ciplinary Applications; Radiology, Nu-
clear Medicine, and Medical Imaging;
Engineering, Biomedical
Sensors Chemistry, Andytical; Electrochemistry; Biosensing Techniques Multidisciplinary Digita 26
Instruments and Instrumentation; Engi- Publishing Institute
neering, Electrical and Electronic
Bioinformatics Biochemica Research Methods; Mathe- Computational Biology; Oxford University Press 22
matical and Computational Biology; Genome
Biotechnology and Applied Microbiolo-
ay

Nature Methods Biochemical Research Methods Biomedical Research/methods; Nature Research 21
Research Design

Medical Physics Radiology, Nuclear Medicine, and Biophysics American Association of 20

Medical Imaging Physicistsin Medicine

PloSone Multidisciplinary Sciences Medicine; Science Public Library of Science 20

8BMC: BioMed Central.
B|EEE: Institute of Electrical and Electronics Engineers.
°NJ/A: not applicable.

MeSH Terms

For the main MeSH term or descriptor, an average of 9 (SD
4.21) terms was assigned to each record as subjects. Among
them, we present in Figure 1 the diseases that were extracted
from the C category. In the figure, the area size is proportional
to the record count, and the terms are categorized by color. In
addition, termsunder >1 category were counted multipletimes.
For instance, the term Digestive System Neoplasms has two
parents in MeSH Tree Structures, Neoplasms and Digestive
System Diseases, and as such, we counted articles in this
category under Neoplasmsby Ste as well as under Digestive
System Neoplasms. Owing to the limited space, 7 categories
whosetotal record countswere<10 (eg, Congenital, Hereditary,
and Neonatal Diseases and Abnormalities; Nutritional and
Metabolic Diseases; and Somatognathic Diseases) were

https://www.jmir.org/2022/4/e28114

combined under the Others category, and individual diseases
that had <10 record counts were summed up with each other in
the same category to show only their total count (or with one
of the diseases included as an example). In the process, we
identified Neoplasms as the most frequently studied disease
type, with atotal of 199 studies.

Wefurther constructed aco-occurrence network of the complete
set of major MeSH descriptors assigned to the records to
understand the rel ationships among the biomedical entities. To
enhance legibility, we filtered out terms with <5 occurrences.
Figure 2 presents the visualized network of nodes (100/966,
10.4% of the total terms) with 612 edges and 7 clusters. In the
figure, the sizes of the nodes and edges are proportional to the
number of occurrences, and the node color indicatesthe assigned
cluster (although the term deep learning was considered
nonexclusive to any cluster asit appeared in all records).
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Figure 1. Disease-related Medical Subject Heading descriptors studied with deep learning.
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Figure2. Co-occurrence network of the major Medical Subject Heading descriptors (number of nodes=100; number of edges=612; number of clusters=7).
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As depicted in Figure 2, each cluster comprised descriptors
from two groups: (1) biomedical domains that deep learning
was applied to, including body regions, related diseases,
diagnostic imaging methods, and theoretical models, and (2)
the purposes of deep learning and techniques used for the tasks,
including diagnosis, analysis, and processing of biomedical
data. Inthefirst cluster, computer neural networks and software
were studied for the purposes of computational biology,
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specifically protein sequence analysis, drug discovery, and drug
design, to achieve precision medicine. These were relevant to
the biomedical domains of (1) proteins, related visualization
methods (microscopy), and biological models, and (2)
neoplasms, related drugs (antineoplastic agents), and diagnostic
imaging (radiology). In the second cluster, deep learning and
statistical models were used for RNA sequence analysis and
computer-assisted radiotherapy planning in relation to the
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domains of (1) genomics, RNA, and mutation, and (2) brain
neoplasmsand liver neoplasms. Thethird cluster comprised (1)
heart structures (heart ventricles), cardiovascular diseases, and
ultrasonography and (2) eye structures (retina), diseases
(glaucoma), and ophthalmol ogical diagnostic techniques. These
had been studied for computer-assisted image interpretation
using machine learning and deep learning algorithms. The
biomedical domain group of the fourth cluster involved specific
terms related to neoplasms such as type (adenocarcinoma),
different regions (breast neoplasms, lung neoplasms, and
colorectal neoplasms), and respective imaging methods
(mammography and X-ray computed tomography) to which
deep learning and support vector machines have been applied
for the purpose of computer-assisted radiographic image
inter pretation and computer-assisted diagnosis. Thefifth cluster
included (1) brain disorders (Alzheimer disease), neuroimaging,
and neurological models; (2) prostatic neoplasms; and (3)
diagnostic magnetic resonance imaging and 3D imaging.
Supervised machine learning had been used for
computer-assisted image processing of these data. In the sixth
cluster, automated pattern recognition and computer-assisted
signal processing were studied with (1) human activities (eg,
movement and face), (2) abnormal brain activities (epilepsy and
seizures) and monitoring methods (el ectroencephal ography),
and (3) heart diseases and electrocardiography. In the last
cluster, medical informatics, specifically data mining and NLP,
including speech perception, had been applied to (1) electronic
health records, related information storage and retrieval, and
theoretical models and (2) skin diseases (skin neoplasms and
melanoma) and diagnostic dermoscopy.

Author Affiliations

To investigate research collaboration within the field, we
analyzed paper-based coauthorships using author affiliations
with different levels of granularity, including organization and
academic disciplines. We extracted organizations from 98.7%
(4844/4908) of the total affiliations and visualized the
collaboration of different organization types. The top 10
organizations with the largest publication records included
Harvard University (37/844, 4.4%), Chinese Academy of
Sciences (21/844, 2.5%; eg, I nstitute of Computing Technol ogy,
Institute of Automation, and Shenzhen Institutes of Advanced
Technology), Seoul National University (21/844, 2.5%),
Stanford University (20/844, 2.4%), Sun Yat-sen University
(14/844, 1.7%; eg, Zhongshan Ophthamic Center and
Collaborative Innovation Center of Cancer Medicine),
University of California San Diego (14/844, 1.7%,; eg, Institute
for Genomic Medicine, Shiley Eye Institute, and Institute for
Brain and Mind), University of California San Francisco
(14/844, 1.7%), University of Michigan (14/844, 1.7%), Yonsei
University (14/844, 1.7%), and the University of Texas Health
Science Center at Houston (12/844, 1.4%). The extracted
organizations were assigned to one of the following four
categories according to their main purpose: universities,
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hospitals, companies, or research institutes and government
agencies. Among these, universities participated in most papers
(567/844, 67.2%), followed by hospitals (429/844, 50.8%),
companies (139/844, 16.5%), and research ingtitutes or
government agencies (88/844, 10.4%). We used a co-occurrence
matrix to visualize the degrees of organizational collaboration,
with the co-occurrence values log normalized to compare the
relative differences (Figure 3).

From Figure 3, we found that universities were the most active
in collaborative research, particularly with hospitals, followed
by companies and research institutes or government agencies.
Hospital sal so frequently collaborated with companies; however,
research institutes or government agencies tended not to
collaborate much as they published relatively fewer studies.

We aso examined the collaborations among academic
disciplines, which we could extract, as described in the Methods
section, from 76.24% (3742/4908) of the total affiliations.
Approximately half (ie, 386/756, 51.1%) of the papers were
completed under disciplinary collaboration. Figure 4 depicts
the network with 36 nodes (36/148, 24.3% of thetotal) and 267
edges after we filtered out disciplines with weighted degrees
<10, representing the number of times one collaborated with
the other disciplines. In the figure, the node and edge sizes are
proportional to the weighted degree and link strength,
respectively, and the node color indicates the assigned cluster.

Asshown in thefigure, the academic disciplines were assigned
to 1 of 6 clusters, including 1 engineering-oriented cluster
(cluster 1) and other clustersthat encompassed biomedical fields.
We specifically looked at the degree of collaboration between
the biomedical and engineering disciplines. Figure 4 depicts
that the most prominent collaboration was among Radiology,
Medical Imaging, and Nuclear Medicine; Computer Science;
and Electronics and Electrical Engineering. There were aso
strong links among Computer Science or Electronics and
Electrical Engineering and Biomedical Informatics, Biomedical
Engineering, and Pathology and Laboratory Medicine.

Among the top 10 disciplines in Figure 4, the following three
had published the most papers and had the highest weighted
degree and degree centralities: Computer Science (number of
papers=195, weighted degree=193, and degree centrality=32);
Radiology, Medical Imaging, and Nuclear Medicine (number
of papers=168, weighted degree=166, and degree centrality=30);
and Electronics and Electrical Engineering (number of
papers=161, weighted degree=160, and degree centrality=32).
Meanwhile, some disciplines had high weighted degrees
compared with their publication counts, indicating their
activeness in collaborative research. These included Pathology
and Laboratory Medicine (5th in link strength vs 8th in
publications) and Public Health and Preventive Medicine (9th
inlink strength vs 15thin publications). A counterexample was
Computational Biology, which was12thinlink strength but 7th
in publications.
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Figure 3. Collaboration of organization types.
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Content Analysis

Overview

We analyzed the content of influential studies that had made
significant contributions to the field through the application or
development of deep learning architectures. Weidentified these
studies by examining the citation counts from PubMed and
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Google Scholar, assigning the 109 most-cited records to one of
the following categories: (1) review, (2) application of existing
deep learning architectures to certain biomedica domains
(denoted by A), or (3) development of a novel deep learning
model (denoted by D). Table 2 summarizes the 92 papers
assigned to the application or development category according
to their research topic in descending order of citation count.
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Table 2. Top 92 studies with the highest citation count under the application or development category, according to the research topic.

Researchtopicand Task type

number

Data

Deep learning architectures

(Diagnostic) image analysis

A1[39]

A2[40]
A3[41]
A4[42]
A6 [43]
D1[44]
A7 [45]
D2 [46]
A8[47]
A9[48]
A10[49]
D3[50]
D4[51]
A11[52]

A12[53]

A13[54]
A14[55]
A15[56]
D6 [57]

A16[58]
A17[59]

D7[60]
A18[61]
A19[62]

A20[63]

D8[16]
A211[64]

D9 [65]

A22[66]
A23[67]
A24[68]

A26[69]

A27[70]
A29[71]

Classification

Segmentation and classification
Classification

Survival prediction
Classification and segmentation
Segmentation

Prediction

Tracking

Classification

Classification

Classification and segmentation
Segmentation

Binding affinities prediction
Survival classification

Classification

Classification
Classification and segmentation
Classification
Classification
Classification and segmentation
Classification

Classification
Classification

Classification and prediction

Segmentation

Segmentation

Classification, prediction, and
reconstruction

Detection and classification
Detection and segmentation
Classification and localization
Segmentation and prediction

Classification
Survival classification

Prediction

Retinal disease OCT?and chest x-ray with pneu- nception

monia

Retinal disease OCT
Melanoma dermoscopic images
Brain glioblastoma MRI®

WsI9 of 13 cancer types
Brain MRI

Retinal fundusimageswith cardiovascular disease

Video of freely behaving animal

Colonoscopy video of colorectal polyps

Lung cancer CTY

Retinal OCT with macular disease

Brain gliomaMRI

Protein-ligand complexes as voxel

Brain gliomaMRI, functional MRI, and DTI h

Fundusimages with glaucomatous optic neuropa-

thy

Chest radiographs with pneumonia

Critical head abnormality CT
Brain gliomaMRI

Thoracic disease radiographs

Echocardiogram video with cardiac disease

Brain positron emission tomography with

Alzheimer

Breast cancer histopathological images

Skin tumor images

Chest CT with chronic obstructive pulmonary
disease and acute respiratory disease

Brain MRI with autism spectrum disorder

Fetal MRI and brain tumor MRI

Natural movies and functional MRI of watching

movies

Facial images with a genetic syndrome

Microscopic images of cells
Breast cancer mammograms

Lung cancer CT

Lung cancer CT

Lung cancer CT

Polar maps of myocardial perfusionimaging with

caD!

U-net and CNNP
Inception

CNN_S

CNN with CAE® and DeconvNet

ResNet' based

Inception

ResNet-based DeeperCut subset
Inception

CNN

Encoder-decoder CNN

CNN based

SqueezeNet based

CNN and mCNN

Inception

ResNet and CheXNet
ResNet, U-net, and DeepLab
ResNet

DenseNet based

VGGNet and U-net

Inception

CNN based
ResNet
CNN

FCNN/
Proposal network (P-Net) based
AlexNet and De-CNN

CNN based
U-net

Faster region-based CNN with VGGNet
Mask-RCNN, CNN with GoogL eNet and

RetinaNet

CNN; fully connected NN; SAEX
CNN
CNN
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Researchtopicand Task type Data Deep learning architectures
number
A30(72] Classification Prostate cancer MRI CNN
D12[73] Classification Liver SWE™ with chronic hepatitis B CNN based
D14 [74] Segmentation Liver cancer CT DenseNet with U-net based
A31[75] Classification Fundus images with macular degeneration AlexNet, GooglLeNet, VGGNEet, inception,
ResNet, and inception-ResNet
A32[76] Classification Bladder cancer CT cuda-convnet
A34[77] Classification Prostate cancer tissue microarray images MobileNet
D19 (78] Classification Holographic microscopy of Bacillus species CNN based
A36[79] Surviva classification Chest CT CNN
D20 [80] Classification and localization ~ Malignant lung nodule radiographs ResNet based
A37[81] Classification Shoulder radiographs with proximal humerus ResNet
fracture
A39[82] Classification Facial images of hetero and homosexual VGG-Face
A41[83] Segmentation and classification CAD CT angiography CNN and CAE
A42 [84] Classification and localization ~ Radiographs with fracture U-net
A43[85] Binding classification Peptide major histocompatibility complex asim- CNN
age-like array
A44[86] Detection Lung nodule CT CNN
A45 [87] Classification Confocal endomicroscopy video of oral cancer  LeNet
A46 [88] Classification WSI of prostate, skin, and breast cancer MIL" with ResNet and RNN
D24 [89] Tracking Video of freely behaving animal FCNN based
D25[90] Segmentation Fundus images with glaucoma U-net based
A47[91] Segmentation and classification Cardiac disease cine MRI U-net; M-Net; Dense U-net; SVF-Net;
Grid-Net; Dilated CNN
D27[92] Classification Knee abnormality MRI AlexNet based
D28[93] Binding affinities prediction Protein-ligand complexes as grid CNN based
A50 [94] Segmentation Autosomal dominant polycystic kidney dissase  FCNN with VGGNet
CT
A51[95] Segmentation and classification  Knee cartilage lesion MRI VGGNet
AB52 [96] Classification Mammograms ResNet
A541[97] Prediction CAD CT angiography FCNN
D31[98] Classification and localization WS of lymph nodesin metastatic breast cancer  Inception based
D35[99] Classification Fluorescence microscopic images of cells FENNC based
A56 [100] Classification Retina fundus images with diabetic retinopathy  ResNet; GooglL eNet
and breast mass mammography
Image processing
A25[101] Avrtifact reduction Brain and abdomen CT and radial MRP data U-net
A28 [102] Resolution enhancement Fluorescence microscopic images GANY with U-net and CNN
D15[103] Dealiasing Compressed sensing brain lesion and cardiac MRl GAN with U-net and VGGNet based
D16 [104] Resolution enhancement Superresolution localization microscopic images GAN with U-net—based pix2pix network
modified
A33[105] Reconstruction Brain and pelvic MRI and CT GAN with FCNN and CNN
D18[106] Artifact reduction CT CNN based
A38[107] Reconstruction Contrast-enhanced brain MRI Encoder-decoder CNN
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Researchtopicand Task type Data Deep learning architectures
number
D22 [108] Reconstruction Brain MR fingerprinting data FFNN based
D23[109] Resolution enhancement Hi-C matrix of chromosomes CNN based
A48[110] Resolution enhancement Brain tumor MRI U-net
D26[111] Reconstruction Lung vessels CT CNN based
D32[112] Resolution enhancement Knee MRI CNN based
D33[113] Reconstruction CT CNN based
D34 [18] Registration Cardiac cine MRI and chest CT CNN based
Sequence analysis
D17[114] Novel structures generationand gy LES Stack-RNNS with GRU and LSTMY
property prediction based
A40[115] Novel structures generation SMILES variational AEY; CNN- and RNN with
GRU-based AAEY
D21[116] Geneexpression (variant effects) Genomic sequence CNN based
prediction
D30[117] Novel structures generationand SMILES GAN with differentiable neural computer
classification and CNN based
A53[118] Novel structures generation SMILES LSTM
A57[119] Classification Antimicrobial peptide sequence CNN withLSTM
Sequence and image analysis
D13[120] Contact prediction Protein sequence to contact matrix ResNet based
(Diagnostic) pattern analysis
A5[121] Subtype identification (survival  Multi-omics data from liver cancer AE
classification)
D5[122] Phenotype prediction Genotype GoogL eNet and deeply supervised net
based
D10[123] Survival prediction Genomic profiles from cancer FFNN based
D11 [124] Drug synergies prediction Gene expression profiles of cancer cell lineand  FFNN based
chemical descriptors of drugs
A35 [125] NLP* (classification) Electronic health record with pediatric disease A ttention-based BLSTMY
A49 [126] Binding classification Protein sequence as matrix and drug molecular ~ SAE
fingerprint
D29[127] Classification Electrocardiogram signa BLSTM based
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Researchtopicand Task type Data Deep learning architectures
number
A55 [128] Classification Polysomnogram signal CNN

80CT: optical coherence tomography.

BCNN: convolutional neural network.

°MRI: magnetic resonance imaging.

dwsl: whole slide i mage.

ECAE: convolutional autoencoder.

"ResNet: residual networks.

9CT: computed tomography.

ADTI: diffusion tensor imaging.

'mCNN: multicolumn convolutional neural network.
IFCNN: fully convolutional neural network.
KSAE: stacked autoencoder.

lcAD: coronary artery disease.

MSWE: shear wave elastography.

"MIL: multiple instance learning.

OFFNN: feedforward neural network.

PMR: magnetic resonance.

9GAN: generative adversarial network.
'SMILES: simplified molecular input line-entry system.
SRNN: recurrent neural network.

'GRU: gated recurrent unit.

YL STM: long short-term memory.

VAE: autoencoder.

WAAE: adversarial autoencoder.

*NLP: natural language processing.

YBLSTM: bidirectional long short-term memory.

Research Topics

Inthese studies, researchersapplied or devel oped deep learning
architectures mainly for thefollowing purposes. image analysis,
especially for diagnostic purposes, including the classification
or prediction of diseases or survival, and the detection,
localization, or segmentation of certain areas or abnormalities.
These 3 tasks, which aim to identify the location of an object
of interest, are different in that detection involves a single
reference point, whereas|ocalization involves an areaidentified
through abounding box, saliency map, or heatmap, segmentation
involves a precise area with clear outlines identified through
pixel-wise analysis. Meanwhile, in some studies, models for
image analysis unrelated to diagnosis were proposed, such as
classifying or segmenting cells in microscopic images and
tracking moving animals in videos through pose estimation.
Another major objective involved image processing for
reconstructing or registering medical images. This included
enhancing low-resolution images to high resolution,
reconstructing images with different modalities or synthesized
targets, reducing artifacts, dealiasing, and aligning medical
images.

Meanwhile, several researchers used deep learning architectures
to analyze molecules, proteins, and genomes for various
purposes. Theseincluded drug design or discovery, specifically
for generating novel molecular structures through sequence
analysis and for predicting binding affinities through image

https://www.jmir.org/2022/4/e28114

analysis of complexes; understanding protein structure through
image analysis of contact matrix; and predicting phenotypes,
cancer survival, drug synergies, and genomic variant effects
from genes or genomes. Finally, in some studies, deep learning
was applied to the diagnostic classification of sequential data,
including electrocardiogram or polysomnogram signals and
electronic health records. In summary, in the reviewed literature,
we identified a predominant focus on applying or developing
deep learning models for image analysis regarding localization
or diagnosis and image processing, with afew studiesfocusing
on protein or genome analysis.

Deep Learning Architectures

Regarding the main architectures, most of them were
predominantly CNNs and based on =1 CNN architecture such
as a fully CNN (FCNN) and its variants, including U-net;
residual neura network (ResNet) and its variants; GooglL eNet
(Inception v1) or Inception and VGGNet and its variants; and
other architectures. Meanwhile, a few researchers based their
models on feedforward neural networks that were not CNNSs,
including autoencoders (AES) such as convolutional AE and
stacked AE. Others adapted RNNs, including (bidirectional)
long short-term memory and gated recurrent unit. Furthermore,
models that combined RNNs or AEs with CNNs were aso
proposed.

Content analysis of the reviewed literature showed that different
deep learning architectures were used for different research
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tasks. Modelsfor classification or prediction tasks using images
were predominantly CNN based, with most being ResNet and
GoogLeNet or Inception. ResNet with shortcut connections
[129] and GoogLeNet or Inception with 1x1 convolutions,
factorized convolutions, and regularizations [130,131] allow
networks of increased depth and width by solving problems
such as vanishing gradients and computational costs. These
mostly analyzed medical images from magnetic resonance
imaging or computed tomography, with cancer-related images
often used asinput datafor diagnostic classification, in addition
toimage-like representations of protein complexes. Meanwhile,
when applying these tasks to data other than images, such as
genomic or gene expression profiles and protein sequence
matrices, researchers used feedforward neural networks,
including AEs, that enabled semi- or unsupervised learning and
dimensionality reduction.

Image analysis for segmentation and image processing were
achieved through CNN-based architectures as well, with most
of them being FCNNs, especially U-net. FCNNs produce an
input-sized pixel-wise prediction by replacing the last fully
connected layers to convolution layers, making them
advantageous for the abovementioned tasks [132], and U-net

https://www.jmir.org/2022/4/e28114
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enhances these performances through long skip connections
that concatenate feature maps from the encoder path to the
decoder path [133]. In particular, for medical image processing
tasks, a few researchers combined FCNNs (U-net) with other
CNNs by adopting the generative adversarial network structure,
which generates new instances that mimic thereal datathrough
an adversarial process between the generator and discriminator
[134]. We found that images of the brain were often used as
input data for these studies.

On the other hand, RNNs were applied to sequence analysis of
the string representation of molecules (simplified molecular
input line-entry system) and pattern analysis of sequential data
such as signals. A few of these models, especially those
generating novel molecular structures, combined RNNs with
CNNs by adopting generative adversarial networks, including
adversarial AE. In summary, thefindings showed that the current
deep learning models were predominantly CNN based, with
most of them focusing on analyzing medical image data and
different architectures that are preferred for the specific tasks.

Among these studies, Table 3 shows, in detail, the objectives
and the proposed methods of the 35 studies with novel model
development.
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Table 3. Content analysis of the top 35 records in the development category.

Number

Development objectives

Methods (proposed model)

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

D13

D14

D15

D16

D17

D18

D19

D20

D21

D22

D23

Segment brain anatomical structuresin 3D MRI?

Estimate posesto track body partsin various ani-
mal behaviors

Predict isocitrate dehydrogenase 1 mutation in
low-grade gliomawith MRI radiomics analysis

Predict protein-ligand binding affinities represent-
ed by 3D descriptors

Predict phenotype from genotype through the bi-
ological hierarchy of cellular subsystems

Classify and localize thoracic diseases in chest
radiographs

Multi-classification of breast cancer from
histopathological images

Interactive segmentation of 2D and 3D medical
images fine-tuned on a specific image

Facial image analysis for identifying phenotypes
of genetic syndromes

Predict cancer outcomes with genomic profiles
through survival models optimization

Predict synergy effect of novel drug combinations
for cancer treatment

Classify liver fibrosis stages in chronic hepatitis
B using radiomics of SWE®

Predict protein residue contact map at pixel level
with protein features

Segment liver and tumor in abdominal CT€ scans

Reconstruct compressed sensing MRI to dealiased
image

Reconstruct sparse localization microscopy to
superresolution image

Generate novel chemical compound design with
desired properties

Reduce metal artifacts in reconstructed x-ray CT
images

Predict Bacillus speciesto identify anthrax spores
in single cell holographic images

Classify and detect malignant pulmonary nodules
in chest radiographs

Predict ti ssue-specific gene expression and genom-
ic variant effects on the expression

Reconstruct MRP to obtain tissue parameter maps

Generate high-resolution Hi-C interaction matrix
of chromosomes from a low-resol ution matrix

Voxelwise Residual Network: trained through residual learning of volumetric feature
representation and integrated with contextual information of different modalities and
levels

DeeperCut’s subset DeepL abCut: network fine-tuned on labeled body parts, with de-
convolutional layers producing spatial probability densities to predict locations

Deep learning—based radiomics: segment tumor regions and directly extract radiomics
image features from the last convolutional layer, which isencoded for feature selection
and prediction

KDEEP: 3D network to predict binding affinity using voxel representation of protein-
ligand complex with assigned property according to its atom type

DCell: visible neural network with structure following cellular subsystem hierarchy
to predict cell growth phenotype and genetic interaction from genotype

DenseNet-based CheXNeXt: networkstrained for each pathology to predict its presence
and ensemble and localize indicative parts using class activation mappings

CSDCNNP: trained through end-to-end learning of hierarchical feature representation
and optimized feature space distance between breast cancer classes

Bounding box and image-specific fine-tuning—based segmentation: trained for interac-
tive image segmentation using bounding box and fine-tuned for specific image with
or without scribble and weighted loss function

DeepGestalt: preprocessed for face detection and multiple regions and extracts pheno-
type to predict syndromes per region and aggregate probabilities for classification

SurvivalNet: deep survival model with high-dimensional genomic input and Bayesian
hyperparameter optimization, interpreted using risk backpropagation

DeepSynergy: predicts drug synergy value using cancer cell line gene expressionsand
chemical descriptors, which are normalized and combined through conic layers

DLRE®: predict the probability of liver fibrosis stages with quantitative radiomics
approach through automatic feature extraction from SWE images

RaptorX-Contact: combined networks to learn contact occurrence patterns from se-
quential and pairwise protein featuresto predict contacts simultaneously at pixel level

Hybrid Densely connected U-net: 2D and 3D networks to extract intra- and interslice
features with volumetric contexts, optimized through hybrid feature fusion layer

DAGAN': conditional GANY stabilized by refinement learning, with the content loss
combined adversarial lossincorporating frequency domain data

Artificial Neural Network Accelerated—Photoactivated Localization Microscopy:

trained with superresolution PALM h asthe target, compares reconstructed and target
with loss functions containing conditional GAN

Reinforcement Learning for Structural Evolution: generate chemically feasiblemolecule
as strings and predict its property, which is integrated with reinforcement learning to
biasthe design

CNN'-based Metal Artifact Reduction: trained on images processed by other Metal
Artifact Reduction methods and generates prior images through tissue processing and
replaces metal-affected projections

HoloConvNet: trained with raw hol ographic imagesto directly recognize interspecies
difference through representation learning using error backpropagation

Deep | earning—based automati ¢ detection: predict the probability of nodules per radio-
graph for classification and detect nodule location per nodule from activation value

ExPecto: predict regulatory features from sequences and transform to spatial features
and use linear models to predict tissue-specific expression and variant effects

Deep reconstruction network: trained with a sparse dictionary that maps magnitude
image to quantitative tissue parameter values for MRF reconstruction

HiCPlus: predict high-resolution matrix through mapping regiona interaction features
of low-resolution to high-resolution submatrices using neighboring regions
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Number  Development objectives Methods (proposed model)
D24 Esfi mgtegos& totrack body parts of freely mov- | AP videos preprocessed for egocentric alignment and body parts labeled using
INg anmais Gu!l' and predicts each location by confidence maps with probability distributions
D25 Jointly segment optic disc and cup in fundusim- M-Net: multi-scale network for generating multi-label segmentation prediction maps
ages for glaucoma screening of disc and cup regions using polar transformation
D26 Reconstruct limited-view PAT™ to high-resolution  Deep gradient descent: learned iterative image reconstruction, incorporated with gra-
3D images dient information of the datafit separately computed from training
D27 Predict classifications of and localizekneeinjuries  MRNet: networkstrained for each diagnosis according to aseriesto predict its presence
from MRI and combine probabilities for classification using logistic regression
D28 Predict binding affinities between 3D structures  Pafnucy: structure-based prediction using 3D grid representation of molecular com-
of protein-ligand complexes plexes with different orientations as having same atom types
D29 Classify electrocardiogram signal's based on Deep hidirectional LSTM" network—based wavelet sequences: generate decomposed
wavelet transform frequency subbands of electrocardiogram signal as sequences by wavel et-based layer
and use asinput for classification
D30 Generate novel small molecule structures with Reinforced Adversarial Neural Computer: combined with GAN and reinforcement
possible biological activity learning, generates sequences matching the key feature distributionsin the training
molecule data
D31 Detect and localize breast cancer metastasisin LY mph Node Assistant: predict the likelihood of tumor in tissue area and generate a
digitized lymph nodes slides heat map for slides identifying likely areas
D32 Transform low-resolution thick sliceknee MRl DeepResolve: trained to compute residual images, which are added to low-resolution
to high-resolution thin slices images to generate their high-resolution images
D33 Reconstruct sparse-view CT to suppress artifact ~ Learned Experts’ Assessment—Based Reconstruction Network: iterative reconstruction
and preserve feature using previous compressive sensing methods, with fields of expert-applied regulariza-
tion terms learned iteration dependently
D34 Unsupervised affine and deformable aligning of  Deep Learning |mage Registration: multistage registration network and unsupervised
medical images training to predict transformation parameters using image similarity and create warped
moving images
D35 Classify subcellular localization patterns of pro-  Localization Cellular Annotation Tool: predict localization per cell for image-based

teins in microscopy images

classification of multi-localizing proteins, combined with gamer annotations for
transfer learning

3MRI: magnetic resonance imaging.
PCSDCNIN: class structure-based deep convolutional neural network.
CSWE: shear wave elastography.

dDLRE: deep learning radiomics of elastography.

€CT: computed tomography.

'DAGAN: Desliasing Generative Adversarial Networks.
9GAN: generative adversarial network.

PPALM: photoactivated localization microscopy.

ICNN: convolutional neural network.

IMRF: magnetic resonance fingerprinting.

KLEAP: LEAP Estimates Animal Pose.

lcul: graphical user interface.

MPAT: photoacoustic tomography.

"LSTM: long short-term memory.

Black Box Problem

analyzing data other than images, there were no generaly
accepted techniques for model interpretation, and researchers

In quite a few of the reviewed studies, the black box problem
of deep learning was partly addressed, as researchers
implemented vari ous methods to improve model interpretability.
To understand the prediction results of image analysis models,
most used one of the following two techniques to visualize the
important regions: (1) activation-based heatmaps[45,54,65,70],
especialy class activation maps [57,61,77,92], and saliency
maps [59] and (2) occlusion testing [39,75,82,94]. For models

https://www.jmir.org/2022/4/e28114

suggested some methods, including adopting an interpretable
hierarchical structure such as the cellular subsystem [122] or
anatomical division [125], using backpropagation [123],
observing gate activations of cellsin the neural network [114],
or investigating how corrupted input data affect the prediction
and how identical predictions are madefor different inputs[93].
As such, various methods were found to be used to tackle this
well-known limitation of deep learning.
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Cited Reference Analysis

On average, each examined deep learning study with at least
one PubMed indexed citation (429/978, 43.9%) had 25.8 (SD
20.0) citations. These cited references comprised 9373 unique
records that were cited 1.27 times on average (SD 2.16).
Excluding the ones that were unindexed in the WoS Core
Collection (8618/9373, 8.06% of the uniquerecords), an average
of 1.77 (SD 1.07) categories were assigned to arecord. Thetop
ten WOoS categories, which were assigned to the greatest number
of total cited references, pertained to the following three major
groups: (1) biomedicine (Radiology, Nuclear Medicine, and
Medical Imaging: 2025/11,033, 18.35%; Biochemical Research
Methods: 1118/11,033, 10.13%; Mathematical and
Computational Biology: 1066/11,033, 9.66%; Biochemistry and
Molecular Biology: 1043/11,033, 9.45%; Engineering,
Biomedical: 981/11,033, 8.89%; Biotechnology and Applied
Microbiology: 916/11,033, 8.3%; Neurosciences. 844/11,033,
7.65%), (2) computer science and engineering (Computer
Science, Interdisciplinary Applications. 1041/11,033, 9.44%;
Engineering, Electrical and Electronic: 645/11,033, 5.85%),
and (3) Multidisciplinary Sciences (with 1411/11,033, 12.79%
records).

Nam et al

To understand the intellectua structure of how knowledge is
transferred among different areas of study through citations, we
visualized the citation network of WoS subject categories. In
the directed citation network shown in Figure 5, the edges were
directed clockwise with the source nodes as the WoS categories
of the deep learning studies we examined and the target nodes
as the WoS categories of the cited references from which
knowledge was abtained. To enhance legibility, we filtered out
categories with <100 weighted degrees, excluding self-loops,
to form anetwork of 20 nodes (20/158, 12.7% of the total) and
59 edges (59/2380, 2.48% of the total). In the figure, the node
color and size are proportional to the PageRank score
(probability 0.85; e=0.001; Figure 5A) and weighted-out degree
(Figure 5B), and the edge size and color are proportional to the
link strength. PageRank considers not only the quantity but also
the quality of incoming edges, identifying important exporters
for knowledge diffusion based on how often and by which fields
a node is cited. On the other hand, the weighted outdegree
measures outgoing edges and identifies major knowledge
importers that frequently cite other fields.

Figure5. Citation network of the Web of Science subject categories assigned to the reviewed publications and their cited references according to (A)
PageRank and (B) weighted outdegree (number of nodes=20; number of edges=59).

(A) PageRank
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Mathematical & Clomputational Biology

Bintechnology & A;Jhliﬂf: Microbiology

Biochemistry & i\:fil:lecdar Biology con b
Cefl Biblogy

Genetics & Hereaity

Asdepictedin Figure 5A, categorieswith high PageRank scores
mostly coincided with the frequently cited fields identified
above and were grouped into two communities through
modularity (upper half and lower half). The upper half region
centered on Radiology, Nuclear Medicine, and Medical Imaging,
which had the highest PageRank score (0.191) and proved to
be afield with a significant influence on deep learning studies
in biomedicine. Meanwhile, important knowledge exportersto
this field included Engineering, Biomedical (0.134);
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(B) Weighted Outdegree
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Engineering, Electrical and Electronic (0.110); and Computer
Science, Interdisciplinary Applications (0.091). The lower half
region mainly comprised categorieswith comparable PageRank
scores in which knowledge was frequently exchanged between
one another, including Biochemical Research Methods (0.053),
Multidisciplinary Sciences (0.053), Biochemistry and Molecular
Biology (0.052), Biotechnology and Applied Microbiology
(0.050), and Mathematical and Computational Biology (0.048).
Specifically, in Figure 5B, Mathematical and Computational
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Biology (1992), Biotechnology and Applied Microbiology
(1836), and Biochemical Research Methods (1807) were
identified as major knowledge importers with the highest
weighted outdegrees, whereas Biochemistry and Molecular
Biology (344) had a relatively low weighted outdegree,
indicating their role as a source of knowledge for these fields.

We analyzed the 10 most frequently cited studies to gain an
in-depth understanding of the most influential works and
assigned these papers to one of the three categories. review,
application, or development. Review articles provided
comprehensive overviews of the development and applications
of deep learning [1,3], with 1 focusing on applications to
medical image analysis [4]. We summarize the 7 application

Nam et al

(denoted by A) or development (denoted by D) studiesin Table
4.

In these studies, excluding the study by Hochreiter and
Schmidhuber [135], whose research topic pertained to computer
science, deep learning was used for diagnostic image analysis
of various areas [12-14,136] and for sequence analysis of
proteins [21] or genomes [22]. The main architectures
implemented to achieve the different research objectives mostly
comprised CNNs [12-14,136] or CNN-based novel models
[21,22] and RNNs[135]. Thefindingsindicated that these deep
neural networks either outperformed previous methods or
achieved a performance comparable with that of human experts.

Table 4. Content analysis matrix of the highly cited references in the application or development category.

Category Citation Research topic: task type Objectives Methods (deep learning architectures)
count, n
Al1[12] 53 Diag_ngsti_c image analysis: Apply CNN2to classifying skin lesions I nception version C_&finetuned end_to end Wit_h
classification from clinical images images; tested against dermatol ogists on 2 bi-
nary classifications
A2[13] 51 Diagnosticimage analysis.  Apply CNN to detecting referrable diabetic  Inception version 3 trained and validated using
classification retinopathy on retinal fundus images 2 data sets of images graded by ophthalmolo-
gists
D1[135] 34 Computer science Develop anew gradient-based RNNP to LSTMC achieved constant error flow through
solve error backflow problems memory cells regulated by gate units; tested
numerous times against other methods
D2[21] 33 Sequence analysis: binding  Propose a predictive model for sequence CNN-based DeepBind trained fully automati-
(variant effects) prediction  specificities of DNA- and RNA-binding caly through parallel implementation to predict
proteins and visualize binding specificitiesand variation
effects
A3[14] 27 Diagnosticimage analysis:  Evaluate factors of using CNNsfor thora=  Compare performances of AlexNet, CifarNet,
classification coabdominal lymph node detection and in-  and GoogL eNet trained with transfer learning
terstitial lung disease classification and different data set characteristics
D3[22] 23 Sequence analysis. chro- Propose amodel for predicting noncoding CNN-based DeepSEA trained for chromatin
matin profiles (variant ef-  variant effects from genomic sequence profile prediction to estimate variant effects
fects) prediction with single nucleotide sensitivity and prioritize
functional variants
A4[136] 23 Diagnosticimage analysis.  Evaluate CNNSs for tuberculosis detection ~ Compare performances of AlexNet and

classification

on chest radiographs

GoogL eNet and ensemble of 2 trained with

transfer learning, augmented data set, and radi-
ol ogist-augmented approach

8CNN: convolutional neural network.
PRNIN: recurrent neural network.
€L STM: long short-term memory.

Discussion

Principal Findings

With the increase in biomedical research using deep learning
techniques, we aimed to gain a quantitative and qualitative
understanding of the scientific domain, as reflected in the
published literature. For this purpose, we conducted a
scientometric analysis of deep learning studiesin biomedicine.

Through the metadata and content analyses of bibliographic
records, we identified the current leading fields and research
topics, the most prominent being radiology and medical imaging.
Other biomedical fields that have led this domain included

https://www.jmir.org/2022/4/e28114

biomedical engineering, mathematical and computational
biology, and biochemical research methods. As part of
interdisciplinary research, computer science and electrica
engineering were important fields as well. The major research
topics that were studied included computer-assisted image
interpretation and diagnosis (which involved localizing or
segmenting certain areasfor classifying or predicting diseases),
image processing such as medical image reconstruction or
registration, and sequence analysis of proteins or RNA to
understand protein structure and discover or design drugs. These
topics were particularly prevalent in their application to
neoplasms.
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Furthermore, although deep learning techniques that had been
proposed for these themes were predominantly CNN based,
different architecturesare preferred for different research tasks.
The findings showed that CNN-based models mostly focused
on analyzing medical image data, with RNN architectures for
sequential  data analysis and AEs for unsupervised
dimensionality reduction yet to be actively explored. Other deep
learning methods, such as deep belief networks[137,138], deep
Q network [139], and dictionary learning [140], have also been
applied to biomedical research but were excluded from the
content analysis because of low citation count. Asdeep learning
isarapidly evolving field, future biomedical researchers should
pay attention to the emerging trends and keep aware of
state-of-the-art models for enhanced performance, such as
transformer-based models, including bidirectional encoder
representations from transformers for NLP [141]; wav2vec for
speech recognition [ 142]; and the Swin transformer for computer
vision tasks of image classification, segmentation, and object
detection [143].

The findings from the analysis of the cited references revealed
patterns of knowledge diffusion. In the analysis, radiology and
medical imaging appeared to be the most significant knowledge
source and an important field in the knowledge diffusion
network. Relatedly, we identified knowledge exporters to this
field, including biomedical engineering, electrical engineering,
and computer science, asimportant, despitetheir relatively low
citation counts. Furthermore, citation patterns revealed
clique-like relationships among the four fields—biochemical
research methods, biochemistry and molecular biology,
biotechnol ogy and applied microbiology, and mathematical and
computational biology—uwith each being a source of knowledge
and diffusion for the others.

Beyond knowledge diffusion, knowledge integration was also
encouraged through collaboration among authors from different
organizations and academic disciplines. Coauthorship analysis
reveal ed active research collaboration between universitiesand
hospitals and between hospital s and companies. Separately, we
identified an engineering-oriented cluster and
biomedicine-oriented clusters of disciplines, among which we
observed a range of disciplinary collaborations, with the most
prominent 2 between radiology and medical imaging and
computer science and electrical engineering, which were the 3

Authors Contributions

Nam et al

disciplines that were most involved in publishing and
collaboration. Meanwhile, pathology and public health showed
a high collaborative research to publications ratio, whereas
computational biology showed alow collaborative ratio.

Limitations

This study hasthe following limitations that may have affected
data analysis and interpretation. First, focusing only on
published studies may have underrepresented the field. Second,
publication data were only retrieved from PubMed; athough
PubMed is one of thelargest databases for biomedical literature,
other databases such as DataBase systems and Logic
Programming may also include relevant studies. Third, the use
of PubMed limited our data to biomedica journals and
proceedings. Given that deep learning isan active research area
in computer science, computer science conference articles are
valuable sources of datathat were not considered in this study.
Finally, our current data retrieval strategy involved searching
deep learning as the major MeSH term, which increased
precision but may have omitted relevant studies that were not
explicitly tagged as deep learning. We plan to expand our scope
in future work to consider other bibliographic databases and
search terms as well.

Conclusions

In this study, we investigated the landscape of deep learning
research in biomedicine and identified major research topics,
influential works, knowledge diffusion, and research
collaboration through scientometric analyses. The results showed
a predominant focus on research applying deep learning
techniques, especially CNNs, to radiology and medical imaging
and confirmed the interdisciplinary nature of this domain,
especially between engineering and biomedical fields. However,
diverse biomedical applications of deep learning in the fields
of genetics and genomics, medical informatics focusing on text
or speech data, and signal processing of various activities (eg,
brain, heart, and human) will further boost the contribution of
deep learning in addressing biomedical research problems. As
such, although deep learning research in biomedicine has been
successful, we believe that thereisaneed for further exploration,
and we expect the results of this study to help researchers and
communities better align their present and future work.
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