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Abstract

Background: Mental health disorders are a leading cause of medical disabilities across an individual’s lifespan. This burden
is particularly substantial in children and adolescents because of challenges in diagnosis and the lack of precision medicine
approaches. However, the widespread adoption of wearable devices (eg, smart watches) that are conducive for artificial intelligence
applications to remotely diagnose and manage psychiatric disorders in children and adolescents is promising.

Objective: This study aims to conduct a scoping review to study, characterize, and identify areas of innovations with wearable
devices that can augment current in-person physician assessments to individualize diagnosis and management of psychiatric
disorders in child and adolescent psychiatry.

Methods: This scoping review used information from the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines. A comprehensive search of several databases from 2011 to June 25, 2021, limited to the English
language and excluding animal studies, was conducted. The databases included Ovid MEDLINE and Epub ahead of print,
in-process and other nonindexed citations, and daily; Ovid Embase; Ovid Cochrane Central Register of Controlled Trials; Ovid
Cochrane Database of Systematic Reviews; Web of Science; and Scopus.

Results: The initial search yielded 344 articles, from which 19 (5.5%) articles were left on the final source list for this scoping
review. Articles were divided into three main groups as follows: studies with the main focus on autism spectrum disorder,
attention-deficit/hyperactivity disorder, and internalizing disorders such as anxiety disorders. Most of the studies used either
cardio-fitness chest straps with electrocardiogram sensors or wrist-worn biosensors, such as watches by Fitbit. Both allowed
passive data collection of the physiological signals.

Conclusions: Our scoping review found a large heterogeneity of methods and findings in artificial intelligence studies in child
psychiatry. Overall, the largest gap identified in this scoping review is the lack of randomized controlled trials, as most studies
available were pilot studies and feasibility trials.

(J Med Internet Res 2022;24(3):e33560) doi: 10.2196/33560
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Introduction

Background
The global burden of mental illnesses is daunting. In 2013,
mental illnesses, such as major depression (2nd), anxiety
disorders (7th), schizophrenia (11th), dysthymia (16th), and
bipolar disorder (17th), were listed as some of the leading causes
of years lived with disability [1]. Unipolar major depression
and self-inflicted injuries were at number 2 and 14, respectively,
as the top contributors to the global burden of disease in 2020
[2]. Despite significant advances in medical research, there is
a distinct deficiency in the detection and treatment of psychiatric
disorders, especially in children and adolescents [3]. The
subsequent ramifications are evident. For instance, in 10% of
completed suicides, the adolescent victims had no previously
recorded psychiatric diagnoses [4]. With the increasing adoption
of measurement-based practices in child and adolescent
psychiatry, large volumes of data are being generated from
clinical trials and routine practice. Such well-characterized data
may prove to be fertile opportunities for innovations in data
science and artificial intelligence (AI) to potentially address the
shortcomings and subsequently improve the burden of disease
in these populations.

Current approaches for the evaluation of psychiatric disorders
predominantly rely on physician-patient history taking, collateral
information, and patients’ self-reported questionnaires rather
than objective laboratory tests or neuroimaging biomarkers. As
a result, contemporary psychiatric assessments are inaccurate
and ineffective in providing a reliable and individualized
assessment of symptoms [3]. With growing evidence of large
data-driven approaches (eg, AI) to individualize diagnoses and
treatment management of psychiatric disorders in adults [5-9],
there are opportunities for such a paradigm in child and
adolescent psychiatry. AI approaches simulate humans’ ability
to problem solve, plan, reason, and recognize patterns [3]. In
these processes, computers learn the abilities by processing
massive data sets through multilayered mathematical models
(algorithms) and training methodologies (eg, cross-validation)
improves the AI model’s predictive confidence [10].

Broadly, the field of AI subsumes the methodological paradigms
of computing science. First, machine learning refers to a
programing approach in computer science in which the behavior
of a program is not fully determined by an established code but
can adapt its behavior (ie, learn) based on the data gathered
[11]. Simple neural networks have been used in medicine since
the early 1990s to interpret electrocardiograms (ECGs) [12],
individualized predictions of antidepressant response, and
diagnosis of myocardial infarction [13]. Second, deep learning
is a particular variant of machine learning that is often modeled
using artificial neural networks, which typically consist of
interconnected nodes representing artificial neurons [11]. Deep
learning has been used to design drugs, predict gene mutation
expression, analyze histological examples, and read radiographic
images [14,15]. Third, natural language processing (NLP)
involves training computers to understand text and spoken
languages or words in the way humans communicate [15]. NLP
is well adopted in medicine, where it is used to extract structured

text (eg, diagnosis and treatment context) from unstructured
text (eg, electronic health records). Finally, reinforcement
learning is a field of computing where computers can be trained
to make decisions based on past and current data and a given
context to maximize long-term outcomes. For example,
reinforcement learning has been used in tailoring treatments for
epilepsy and sepsis [16]. These recent AI applications provide
new possibilities for AI use in specialty medical practice, while
projecting future utility in general medical practice [10].

Objectives
AI has been innovating and reshaping medicine but progress in
psychiatry and child and adolescent psychiatry, in particular, is
slow. Most previous research in psychiatry has focused on either
NLP or the integration of various biomarkers to classify certain
disorders such as heart conditions, epilepsy, and various types
of cancer [11]. In addition, limited sustained collaboration
among engineers, data scientists, and mental health providers
has affected the slower adoption of these techniques in
psychiatric practice in comparison with psychiatry and other
medical specialties [10,17]. A review by Shatte et al [18]
discussed the literature focused on adult mental health issues
and machine learning applications. Our unique review aims to
summarize the available research in child and adolescent
psychiatry literature investigating machine learning technology
and AI applications. The second aim is to characterize future
opportunities in AI research in child and adolescent psychiatry.

The growing adoption of wearable technologies (eg, smart
watches) not only helps passively collect large volumes of data
but also opens the doors for using the data to enable remote
diagnostic capabilities in child and adolescent psychiatry.
Remote diagnosis and management of psychiatric diseases in
children is crucial, given the shortage of trained mental health
professionals.

Although wearable devices might support diagnosis and
management in the future, they will not be able to replace health
care professionals and their clinical observations. In this context,
we sought to review studies that gathered data of child and
adolescent patients with psychiatric disorders through practical
means and used passively gathered data for various prediction
mechanisms.

Methods

This scoping review used PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) information
(Multimedia Appendix 1) [19] as a guide and was organized
according to the steps outlined in this section.

Step 1: Developing a Research Question
We identified what was the extent of literature on the use of
wearable devices in the form of AI in child and adolescent
psychiatry. We aimed to gain insight into the following research
objectives: (1) understand how wearable devices are being used
in child psychiatry by exploring the types of devices that are
being used, investigating how these devices are being used in
child psychiatry (aid diagnosis, evaluate treatment efficacy,
make algorithms to predict behavioral outcomes, etc), and
researching which physiological signals are being measured by
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these devices and (2) identify how the clinical knowledge of
various pediatric psychiatric disorders has been expanded
through the use of AI, specifically wearable devices.

Step 2: Literature Search
A comprehensive search of several databases was performed
on June 25, 2021. The search was restricted from the year 2011
through the date the search was conducted. The results were
limited to English language articles. Animal studies were
excluded from this study. The databases searched were Ovid
MEDLINE (≥1946) and Epub ahead of print, in-process and
other nonindexed citations and daily (equivalent to PubMed);
Ovid Embase (≥1988); Ovid Cochrane Central Register of
Controlled Trials (≥1991); Ovid Cochrane Database of
Systematic Reviews (≥2005); Web of Science Core Collection
via Clarivate Analytics (≥1975); and Scopus via Elsevier
(≥1788).

The search strategy was designed and conducted by an
experienced librarian (LH), with input from the study
investigators (APA and MR). Controlled vocabulary
supplemented with keywords was used to search for studies.
The actual strategy, listing all the search terms used and how
they were combined, is available in Multimedia Appendix 2.

Step 3: Study Selection
The study selection process was divided into two phases: (1)
title and abstract screening and (2) full-text article screening.
For the first phase, 2 reviewers (VW and JW) screened the
articles and either excluded them or included them on the source
list. The resulting source list was reviewed by 2 other reviewers
(APA and MR). A full-text article review was then performed
by 2 reviewers (VW and JW) and the final source list was
created.

Step 4: Charting the Data
Most of the study data were extracted by a single researcher
(VW). Another researcher (JW) helped complete 1 column and
reviewed the table after it was completed. The following
information was included in the table: year, sample population
(size and demographics), psychiatric diagnosis, age range,
wearable device used, and the measured physiological
symptoms. The studies were divided based on the participants’
main diagnosis: autism spectrum disorder (ASD),

attention-deficit/hyperactivity disorder (ADHD), and
internalizing disorders (IDs).

Ethics and Dissemination
This proposed scoping review did not require ethics or
institutional review board approval, as data were collected
through the review of published peer-reviewed literature and
gray literature. The results will be submitted for publication in
an open-access peer-reviewed journal and presented at relevant
medical and engineering conferences.

Results

Study Selection
The initial search yielded 344 articles. In all, 2 researchers (VW
and TJW) completed the title and abstract screening process to
narrow down this list. They reviewed papers independently,
and disagreements were reviewed by 2 additional researchers
(APA and MR). During this step, 89.2% (307/344) articles were
omitted because they did not satisfy the inclusion criteria. The
criteria for inclusion of studies for review in the first round of
screening were as follows: the study must use a wearable device
that passively tracked physiological variables in real time
(objective measurements) and the device must be worn by a
patient who had been diagnosed with one or more of the
following psychiatric disorders: oppositional defiant disorder,
conduct disorder, mood disorder (depression, anxiety, and
bipolar disorder), ADHD, learning disability (dyslexia, etc),
autism, or psychotic disorder. A full-text screening of the
remaining 10.8% (37/344) articles was conducted by the same
2 researchers (VW and TJW). Given our focus on child and
adolescent psychiatric illnesses, the criteria for study inclusion
were accordingly altered to focus on child and adolescent
psychiatric patients only (aged 0-18 years), wherein studies
were written in English and published before January 1, 2021.
Eligible designs included randomized controlled trials,
nonrandomized experimental studies, cohort studies, and
case-control studies. In addition, studies that focused on motor
impairment were excluded. The PRISMA flow diagram for the
study selection process is illustrated in Figure 1. After the entire
screening process was completed and reviewed by 2 additional
researchers (APA and MR), 5.5% (19/344) articles were left on
the final source list for this scoping review (Table 1).
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for study selection.
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Table 1. Summary of studies on the use of wearable devices in child psychiatry.

Measured physiological
symptoms

DeviceAgeDiagnosisSample characteristicsYearStudy

HRc, SDNNd, CVe, LFf,

and HFg
ECGb chest strap (Shim-
mer)

18-36 monthsASDa40 participants: 29 males
and 11 females; race not
specified

2018Bilecci et al [20]

QEEGi and HRVjECG chest strap and EEGh

headset (EEG- Enobio
wireless device)

6-8 yearsASD5 participants: all males;
race not specified

2016Bilecci et al [21]

HR, RMSSDk, and RSAlECG chest strap (based off
Shimmer)

6-8 yearsASD5 participants: all males;
race not specified

2017Di Palma et al
[22]

Diurnal activity, sleep effi-
ciency, and circadian regu-
lation

ActiGraph belt (AMIo mo-
tionlogger)

5-18 yearsBPm or ADHDn155 participants: 97
males and 58 females;
race not specified

2016Faedda et al [23]

HRECG chest strap30-72 monthsASD or LDp24 participants: 18 males
and 6 females; race not
specified

2020Fioriello et al
[24]

Skin temperature and skin
conductive data (ac-

Accelerometer wrist strap
(Affectiva Q Sensor), EEG

Not specifiedASDnot specified2014Gayet al [25]

celerometer), EEG powerheadset (MindWave Mo-
spectrums (EEG), and HR,bile), ECG chest strap
HRV, respiration, body(Zephyr BioHarness), and
temperature, and respira-
tion (ECG)

mobile phone app (My-
Media)

HRV, EDAq, and motion-
based activity (accelerome-
ter)

Wrist-worn biosensor
(Empatica E4)

6-17 yearsASD20 participants: 75%
male; 95% White; 90%
non-Hispanic

2019Goodwin et al
[26]

HRV and EDA or GSRrWrist-worn biosensor3-12 yearsASD60 participants: sex and
race not specified

2016Krupa et al [27]

RRs intervalsECG chest strap (Shim-
mer)

Not specifiedASD24 participants: 17 males
and 7 females; race not
specified

2015Kushki et al [28]

Movement data (actigra-
phy via accelerometer)

Smart watch app (Stop-
Watch)

8-17 yearsADHD32 participants: 17 males
and 15 females; race not
specified

2021Leikauf et al [29]

Angular velocity (gyro-
scope) and acceleration in

Smart watch (Asus Zen-
Watch 3)

5-9 yearsADHD30 participants: 11 males
and 4 females with age-
matched controls; race
not specified

2020Lin et al [30]

axial direction (accelerom-
eter)

Acceleration and angular
velocity

IMUu chest strap and
headband (3-Space Sensor;
YEI Technology)

4-8 yearsIDst63 participants: 57% fe-
male; 75% White, non-
Latinx; 11% Asian or
Pacific Islander; 11%

2021McGinnis et al
[31]

African American; 3%
biracial

Acceleration and angular
velocity

IMU chest strap (3-Space
Sensor; YEI Technology)

3-8 yearsIDs63 participants: 57% fe-
male; 65% White; 82.5%
in 2-parent households;

2019McGinnis et al
[32]

32% income >US
$100,000

Motion data (flapping,
rocking, punching, and
hitting)

Accelerometers worn on
wrists, ankles, and upper
body

Not specifiedASD4 participants: sex and
race not specified

2011Min et al [33]

Acceleration and move-
ment patterns

Accelerometers worn on
wrists and ankles (Run-
scribe inertial sensors)

6-16 yearsADHD36 participants: 15 males
and 3 females with non-
matching controls; race
not specified

2019Munoz-Organero
et al [34]

Linear motionAccelerometer embedded
in a smart watch

5-11 yearsADHD10 participants: sex and
race not specified

2020Ouyang et al [35]
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Measured physiological
symptoms

DeviceAgeDiagnosisSample characteristicsYearStudy

Skin conductance levels

and NS-SCRsv (EDA data)

Wrist-worn biosensor
(Empatica E4)

8-16 yearsASD6 participants: sex not
specified; 4 White; 2
Latin American or His-
panic

2019Pfeiffer et al [36]

HR, HRV, electrical prop-
erty fluctuations in the skin
(EDA data), motion (ac-
celerometer), and peripher-
al skin temperature (in-
frared thermophile)

Wrist-worn biosensor
(Empatica E4)

8-12 yearsIDs5 participants: sex and
race not specified

2020Redd et al [37]

Motion complexity (ac-
celerometer, gyroscope,
and magnetometer)

Ankle-worn biosensors
(APDM Opal; APDM
Wearable Technologies)

3-12 monthsASD5 participants: sex and
race not specified

2021Wilson et al [38]

aASD: autism spectrum disorder.
bECG: electrocardiogram.
cHR: heart rate.
dSDNN: SD of the averaged normal sinus RR intervals for 5-minute segments.
eCV: time interval between 2 consecutive R waves.
fLF: low frequency.
gHF: high frequency.
hEEG: electroencephalography.
iQEEG: quantitative electroencephalography.
jHRV: heart rate variability.
kRMSSD: root-mean square of the successive normal sinus RR interval difference.
lRSA: respiratory sinus arrhythmia (indicator of autonomic function).
mBP: blood pressure.
nADHD: attention-deficit/hyperactivity disorder.
oAMI: acute myocardial infarction (motionlogger ActiGraph belt).
pLD: learning disability.
qEDA: electrodermal activity.
rGSR: galvanic skin response.
sRR interval, the time elapsed between 2 successive R waves of the QRS signal on the electrocardiogram.
tID: internalizing disorder.
uIMU: inertial measurement unit.
vNS-SCR: nonspecific skin conductance response.

Introductory Information
The studies on the final source list were published between 2011
and 2021, and were spread across the world with most being
conducted in the United States. In addition, the growth rate of
research in this field increased substantially after 2018. The
following sections provide a synopsis of each of the sources
organized into the 3 categories previously outlined.

Studies Focused on ASD
Most studies (11/19, 58%) [20-22,24-28,33,36,38] focused on
how the use of wearable devices could be used to aid in the
treatment, behavioral prediction, and diagnosis of children with
ASD. Although each study analyzed patients with ASD, the
objectives and methods varied greatly among the studies. Several
studies used ECG chest straps [20-22,24,25,28] for the most
part to categorize the autonomic nervous system responses in
patients with ASD during various tasks. For example, a study
by Bilecci et al [20] used ECG strap during a joint attention
stimuli in toddlers with ASD. The ECG chest strap measured

SD of the average normal sinus RR intervals (the time elapsed
between 2 successive R waves of the QRS signal on the ECG)
for 5-minute segments, heart rate (HR), CV (time interval
between 2 consecutive R waves), low frequency (changes in
sympathetic regulation), and high frequency (changes in
parasympathetic regulation). The results showed that the SD of
the average normal sinus RR intervals for 5-minute segments,
CV, and low frequency values were significantly higher in the
ASD group than in the control group at baseline. In addition,
the CV was significantly higher in the ASD group during the
joint attention task. These findings suggest that joint attention
tasks coupled with wearable devices could potentially help
physicians diagnose autism in toddlers.

A longitudinal study by Di Palma et al [22] mediated
sociocognitive tasks through serious games allowed for the
coding of child behavior. Children received treatment for 6
months while being monitored by an ECG wearable chest belt.
The serious games consisted of joint attention tasks and imitation
exercises and the ECG belt measured HR, respiratory sinus
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arrhythmia (RSA; indicator of autonomic function), and
root-mean square of the successive normal sinus RR interval
difference. There was an increase in HR events during
sociocognitive tasks. Researchers also found a correlation
between detected physiological events and the level of
involvement of the child during the task, along with a decrease
in RSA and root-mean square of the successive normal sinus
RR interval difference during activity which indicates proficient
social interaction. Over time, patients displayed an increased
percentage of physiological events associated with lower RSA
during activity, which suggests improvement in cognitive
engagement throughout the course of treatment. These predictive
algorithms could be used at home by parents, at school by
teachers, and in the clinic by therapists to create more
individualized therapy plans.

Several studies used electroencephalography (EEG) in addition
to ECG measures [21,25]. Bilecci et al [21] focused on obtaining
quantitative EEG (pattern analysis of EEG) that was meant to
determine treatment efficacy. Participants with ASD were
monitored during a socioemotive interaction to implement a
more individualized and effective treatment plan for these
children. The results showed that all children yielded different
measurements which emphasizes the importance of
individualized therapy. The use of an AI device such as this
would allow therapists to track a child’s engagement so that
they can tailor their therapy to the child’s specific needs.
Another study, in addition to measurement of EEG and ECG,
also used an accelerometer wrist strap and created a mobile
phone app called MyMedia and MySchedule [25]. The 6 main
emotions that the app was designed to capture were happiness,
sadness, fear, disgust, surprise, and anger. The sensors and facial
recognition detected pupil dilation, skin conductance, HR or
HR variability, blood pressure, concentration, and attention
levels through a headset, watch, and chest strap. This method
could provide a personalized way for autistic children and their
caregivers to understand and manage their emotions.

Many of the studies used wrist-worn biosensors [26,27,36].
Some of the studies used accelerometers worn on various body
parts such as wrists [25], ankles [38] as well as wrists, ankles,
and upper body [33]. Using the Empatica E4 (Empatica, Inc)
device study by Goodwin et al [26] investigated whether
collecting and analyzing physiological and motion data from
children with ASD during naturalistic observations could predict
aggression. This wrist-worn sensor measured cardiovascular
and electrodermal activity, along with detecting motion using
an accelerometer. The results suggested that aggression to others
can be predicted 1 minute before it occurs if biosensor data are
collected for 3 minutes before the aggressive behavior. In this
study, aggression was defined as hitting, kicking, biting,
scratching, grabbing, pulling, pinching, or throwing objects at
others. To make binary aggression predictions, a
ridge-regularized logistic regression was used with the extracted
time series features as input variables. This method had 84%
average prediction accuracy and the average duration of
aggressive episodes was 28 seconds.

Wilson et al [38] used wearable ankle sensors to diagnose ASD
in children. Many believe that motor dysfunction may be
predictive of ASD and the study used wearable ankle sensors

to track full-day motor activity in infants with a high familial
risk for ASD. These sensors contained a 3D-accelerometer, a
3D-gyroscope, and a 3D-magnetometer. Leg movement data
were collected when the participants were aged 3, 6, 9, and 12
months, and an autism diagnostic tool was used to evaluate each
child at the ages of 18 and 36 months. On the basis of the
movement data collected from the sensors, the researchers were
able to construct a new measure of motion complexity defined
in terms of the variability of the frequency components
underlying the observed movements. The results of the study
showed that high-risk infants with a later diagnosis of ASD
showed lower motion complexity compared those who were
not diagnosed later. In fact, there was a stronger correlation
between motion complexity and ASD outcome relative to
cognitive ability and adaptive skills, making this method a
promising diagnostic tool.

A study by Krupa et al [27] also used a wearable wristband that
measured the galvanic skin response and HR variability
(indicators of the autonomic nervous system) for diagnostic
purposes. The machine was also used to determine a child’s
current emotion. The results showed that the machine could
differentiate children with ASD from normally developing
children with 65% accuracy. In addition, it could differentiate
neutral from emotion with 93.33% accuracy and happiness from
involvement with 90% accuracy.

An intervention study by Pfeiffer et al [36] evaluated how well
in-ear and overear headphones can decrease sympathetic
activation in children with ASD and associated auditory
hypersensitivity (hyperacusis) by measuring skin conductivity
through electrodermal activity. Empatica E4 wristbands
collected electrodermal activity data, as skin conductance is an
indicator of stress or anxiety levels, and hyperacusis is
associated with stress and anxiety. The results showed that in-ear
and overear noise attenuating headphones led to a significant
difference in both skin conductance levels and frequency of
nonspecific conductance responses in subsequent phases of the
study compared with the baseline measurements completed at
the beginning of the study.

Studies Focused on ADHD
A small percentage of the studies (5/19, 26%) [23,29,30,34,35]
examined how the use of wearable devices could be used to
accurately diagnose ADHD and evaluate the treatment efficacy
of various strategies used to treat children with ADHD.
Although each of the studies in this category had different
methods and objectives and collected different physiological
measurements, all the devices used in these studies used an
accelerometer [23,29,30,34,35].

In all, 11% (2/19) of studies used a smart watch application
[29,30]. Leikauf et al [29] conducted a pilot study on the efficacy
of StopWatch, a smart watch application designed to track
movement and provide visual and haptic feedback regarding
the movement data collected for patients with ADHD. As this
application collected movement data via an accelerometer, this
study focused specifically on the hyperactivity aspect of ADHD.
In a similar study, researchers used data collected from the
gyroscope and accelerometer placed in a smart watch to analyze
the movements of children with ADHD [30]. They compared
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the ADHD cohort to an age- and sex-matched control group to
determine whether these types of measurements could be used
to diagnose children with ADHD. After collecting data for 2
hours for 3 consecutive days in a naturalistic setting, the data
suggested that children with ADHD had more variable and
frequent movements than the controls. The Zero-Crossing Rate
values across all 3 axes of the gyroscope were higher in the
ADHD group; however, only the variance across the y-axis
yielded a significant difference.

Munoz-Organero et al [34] used 4 triaxial accelerometers
(placed on both wrists and ankles) to analyze movement patterns
in normally developing children; patients with ADHD, who
were medicated; and patients with ADHD, who were
nonmedicated. They then used the data collected to propose a
recurrent neural network to characterize the movement patterns
of normally developing children that can be used to assess the
similarity of new patients, which could potentially direct
diagnosis. The results demonstrated that patients with ADHD,
who were nonmedicated, showed higher differences medium
intensity movements compared with normally developing
patients whereas patients with ADHD, who were medicated,
showed different behavior in their low intensity movements.

The final study in this category aimed to develop an objective
method of evaluating the therapeutic effects of ADHD
treatments by placing an accelerometer in their smart watch that
recorded the movements of these patients [35]. The variance
values of the accelerometer data before and after 1 month of
using the medication methylphenidate were compared to
determine the treatment efficacy of this drug. The Swanson,
Nolan, and Pelham questionnaire (a subjective measure of
treatment efficacy) was then compared with the accelerometer
results, and the correlation between the 2 measurements was
moderately strong. In addition, the variance values along the y-
and z-axes of the accelerometers significantly decreased after
1 month of medication use, suggesting that the medication
helped patients with ADHD.

A study by Faeda et al [23] used an ActiGraph belt (acute
myocardial infarction motionlogger) and aimed to determine
whether measures of activity, sleep, and circadian rhythm could
be used to differentiate pediatric patients with bipolar disorder
from pediatric patients with ADHD. They compared three
different study groups: children with ADHD, children with
bipolar disorder, children with ADHD and a comorbid
depressive disorder and typically developing children. Each of
these groups of children wore an ActiGraph belt for 3 to 5 days,
which measured arousal, circadian rhythms, and sleep
wakefulness cycles. The results showed that sleep duration and
circadian strength measurements differed between children with
ADHD and those with bipolar disorder. In addition, children
with bipolar disorder had reduced measures of total sleep,
reduced relative circadian amplitude, and increased nocturnal
activity relative to the control group as well as both ADHD
groups. This study suggests that wearable devices and AI may
aid in the diagnosis of these overlapping pediatric disorders.

Studies Focused on IDs
A few studies (3/19, 16%) [31,32,37] investigated the
identification children with IDs using wearable devices and

predicted their adverse behavioral outcomes through machine
learning and AI.

McGinnis et al [31] aimed to develop a digital phenotype for
childhood internalizing psychopathology based on data collected
from a wearable inertial sensor. Data were recorded while the
child completed three different tasks: the bubbles task (induced
positivity), snake task (induced anxiety), and speech task
(induced fear). The sensors were placed on both the head and
waist of the child and acceleration and body movements were
measured with an inertial measurement unit. They found that
the children with IDs burned out quicker during the bubbles
task and that it helped identify depressive, anxious, and
trauma-related disorders. On the other hand, the snake task
helped identify children with withdrawn, anxious, and depressive
problems, oppositional problems, and specific phobias.
Similarly, the speech task identified children with withdrawn,
anxious, and depressive problems. After analyzing these results,
they found that the phenotype from features that measured
reward responsiveness could accurately detect children with
underlying internalizing psychopathology with 75% accuracy.

Redd et al [37] investigated whether tracking physiological
signals, such as HR, skin electrodermal activity, and skin
temperature, could help predict a meltdown to facilitate earlier
and more effective intervention. These measurements were
recorded using a wrist-worn biosensor that incorporated blood
volume pulsivity measurements, an electrodermal activity sensor
to measure electrical fluctuations in the skin, a 3-axis
accelerometer to measure overall motion and activity, and an
infrared thermophile used to measure peripheral skin
temperature. Parents also recorded their observations, and then
the observations and physiological data were compared to create
a predictive algorithm. The results showed that this model can
accurately classify the behavioral states of children with 68%
accuracy; however, only 4 meltdowns were recorded during the
study which means that more data need to be collected and
analyzed.

Discussion

Principal Findings
The primary outcome of this scoping review was a
characterization of 19 studies of child and adolescent patients
with ASD, ADHD and ID that gathered data through practical
means and used passively gathered data for various prediction
mechanisms.

From the included studies we were able to provide a descriptive
analysis of currently available devices used to passively gather
data in AI trials. Most of the studies used either ECG strap or
wrist-worn biosensor. This is somewhat surprising as, for
example. studies by Fioriello et al [24] and Kushki et al [28]
could only collect data on HR via ECG chest strap, whereas
many of the commercially available wrist watches can collect
significantly more data [39].

The information obtained from this review can guide future trial
development. Only 1 trial [23] had a high number of participants
(N=155). Other trials [33] managed to enroll only 4 participants.
We were not able to find any trials on children and adolescents
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specifically with major depressive disorder or suicidality. Only
1 trial [23] compared children with ADHD and children with
bipolar disorder; however, no studies specifically addressed
children with bipolar disorder or psychosis. There were also no
trials that gathered data during inpatient hospitalization or during
evidence-based outpatient treatment that children would
typically receive. No studies obtained data from parents as well
during the trials focusing only on children.

All the studies summarized focused on detecting behavioral
changes in patients. This leaves opportunities to innovate with
the data to actuate the detected behaviors using reinforcement
learning approaches. Particularly, if a state of behavior is
predicted before it visibly manifests, there is an opportunity to
alert responsible adults nearby to intervene using proven
interventions. Such timely interventions may prove to be a
positive reinforcement for children, who otherwise are penalized
for unacceptable behavior. In older patients (ie, adolescents vs
young children), physiology-based triggers (eg, based on HR
variability) with an action message (eg, performing breathing
exercises for 30 seconds) may be helpful in forcing a positive
change in behavior or mood.

Feature extraction and feature engineering are the key aspects
of machine learning and AI efforts using wearable data [40]
Given the heterogeneity in the types of devices and clinical
questions being researched, approaches to extract signals from
wearable data widely differed among the literature reviewed in
this work. Feature extraction methods (eg, principal-component
analysis, locally linear embedding, and autoencoding) will
facilitate the identification of wearable-derived measures
associated with clinical diagnosis or outcomes. Feature
engineering uses wearable-derived measures to develop features
for downstream analyses using domain-guided knowledge (eg,
deriving motion features from raw accelerometer data).
Determining the feature extraction or engineering approach is
dependent on the nature of the clinical question being posed
and types of measurements derived from wearables.

As AI in child and adolescent psychiatry is an emerging field,
there are obvious gaps that will continue to be explored. Most
of the papers focused on using the technology for diagnostic
purposes, specifically ASD and ADHD. We believe that these
emerging technologies can be used in other diagnostic categories
such as mood, anxiety, and psychosis. There is also much room
to innovate in the realm of intervention, treatment, and public
health.

Limitations
Our study had several limitations. We did not conduct a
systematic review or prospectively register a protocol. This was
expected to be a nascent area; hence, a scoping review was most
appropriate. Another limitation is the potential that we have
missed important original literature on the use of mobile and
wearable AI in child psychiatry. This was mitigated by an
extensive search of multiple databases, searching references of

included articles, and ensuring duplicate review of all the
abstracts and full-text. We chose not to include nonoriginal or
non–peer-reviewed research and non-English articles. This
might have led to us missing key conclusions drawn from this
research. We also did not examine each of the machine learning
technologies in detail but rather resorted to a brief description
of the methods used in each of the studies.

Conclusions
This scoping review provides a comprehensive assessment of
the literature on the use of mobile and wearable AI in children
with ASD, ADHD, and ID. Our scoping review found large
heterogeneity of methods and findings in AI studies in child
psychiatry. Overall, the largest gaps identified in this scoping
review are the lack of randomized controlled trials, as most
studies available were pilot trials. The definition of digital
biomarkers used in these studies seems to be very wide. The
studies included in the review had a small number of
participants. Nevertheless, our scoping review identified several
key strengths across the disorders considered in this study. First,
wearable technologies comprising multiple sensors (eg, HR,
sleep, and accelerometers) demonstrate promise in the diagnosis
and prediction of aspects of disorders spanning child and
adolescent psychiatry. Second, analytic solutions using data
from wearables and expert annotations of child behavior can
predict the onset of behavioral changes relevant to psychiatric
disorders. Hence, given the growing ubiquity of wearables
across the age span (children to parents, guardians, or teachers),
our review strongly suggests the incorporation of wearables in
child and adolescent psychiatry research. Such integration would
be pivotal in facilitating remote monitoring and remote
psychiatric services, which will likely help reduce disparities
in mental health care access because of a shortage of child and
adolescent psychiatrists. From a research perspective, the
interaction of wearable biomarkers with conventional
biomarkers (eg, genomics, metabolomics, neuroimaging, EEG,
and environmental exposures) in the context of the diagnosis,
treatment, and management of psychiatric disorders is yet to be
pursued in large studies. Finally, the integration of wearables
in child and adolescent psychiatry research should extend
beyond controlled research settings to allow the extraction of
the benefits of AI approaches. Naturalistic studies should look
to collect annotations of children’s behavior as observed in their
daily life at home, day care, or school and expand the
involvement of relevant stakeholders in studies, wherein not
only are parents annotating behaviors but also teachers, social
workers, and counselors. Such a collection of annotated data
from a real-world environment where children and adolescents
develop will also provide opportunities to innovate with AI
approaches such as reinforcement learning. Future directions
should focus specifically on enrolling larger number of more
diverse groups of patients. Future research should also focus
on assessing which tools, mobile and wearable, are most
efficient in collecting the most reliable data in various patient
populations, as the primary outcome of interest.
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