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Abstract

Background: Monitoring eating is central to the care of many conditions such as diabetes, eating disorders, heart diseases, and
dementia. However, automatic tracking of eating in a free-living environment remains a challenge because of the lack of a mature
system and large-scale, reliable training set.

Objective: This study aims to fill in this gap by an integrative engineering and machine learning effort and conducting a
large-scale study in terms of monitoring hours on wearable-based eating detection.

Methods: This prospective, longitudinal, passively collected study, covering 3828 hours of records, was made possible by
programming a digital system that streams diary, accelerometer, and gyroscope data from Apple Watches to iPhones and then
transfers the data to the cloud.

Results: On the basis of this data collection, we developed deep learning models leveraging spatial and time augmentation and
inferring eating at an area under the curve (AUC) of 0.825 within 5 minutes in the general population. In addition, the longitudinal
follow-up of the study design encouraged us to develop personalized models that detect eating behavior at an AUC of 0.872.
When aggregated to individual meals, the AUC is 0.951. We then prospectively collected an independent validation cohort in a
different season of the year and validated the robustness of the models (0.941 for meal-level aggregation).

Conclusions: The accuracy of this model and the data streaming platform promises immediate deployment for monitoring
eating in applications such as diabetic integrative care.

(J Med Internet Res 2022;24(3):e27934) doi: 10.2196/27934

KEYWORDS

deep learning; eating; digital watch

Introduction

Background
The technological progress of wearable devices, such as
smartwatches and wristbands, has made them an integral part
of our lives [1]. Wearable devices provide rich, high-frequency,
and longitudinal information for symptoms or activities relevant
to improving patient diagnosis, care, and treatment. Being able
to identify specific relevant activities, such as food intake, in a

way that places a minimal burden on that person has the
potential of increasing efficiency of monitoring and patient
satisfaction. For example, current diabetes management using
basal and bolus insulin regimens requires a high level of patient
engagement. One-third of patients with type 1 or type 2 diabetes
report insulin omission or nonadherence at least once in the past
month, and one of the cited reasons is being too busy [2]. In
this scenario, passively collected digital sensor data from
consumer wearable devices could be an ideal approach for
supplementing the sensor and patient-provided data collected
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by specialized connected care diabetes devices. Apart from
diabetes, a variety of diseases have been linked to poor eating
habits, including heart diseases, obesity, high blood pressure,
and other leading causes of death [3,4]. The ability to monitor
eating behavior on a continuous basis is central to improving
the care and treatment of these conditions.

Related Works
The current literature includes studies of automatic food intake
detection using a variety of sensors (Table 1), such as audio,
motion, and specialized sensors for chewing and swallowing
detection, mounted on different parts of the body such as wrists,
head, ears, and neck [5-11]. Although published results are
encouraging and indicate the feasibility of automatic food intake
detection, advancement in data collection and analytics is still
in need. First, most of the existing studies have been conducted
in the laboratory [12-15], whereas data on eating in the

free-living environment is more difficult to obtain and infer.
Second, if a study is conducted in a free-living condition, it is
challenging to obtain accurate ground truth. Typically, such
ground truth is obtained through food diaries or questionnaires,
and the failure to memorize eating times impedes establishing
accurate models [16,17]. Third, because of the cost of wearable
watches, participant recruitment, and data extraction, pioneering
studies so far are very limited in size, typically covering dozens
to hundreds of hours of records in total (Table 1) [18]. For
example, Farooq and Sazonov [19] took a total of 23 hours of
records >10 individuals in a free-living environment to study
the effectiveness of accelerometers in detecting eating. A study
that is comparable in size to this one is the Sharma et al [9]
study, which contained 1413 hours of records. Finally, this study
distinguishes itself from the above studies by its longitudinal
follow-up of weeks. This allowed us to update the models for
each device user as the data collection proceeded.

Table 1. Representative literature with relatively large size of data on eating detection.

Weighted accuracy
(%)

F1 score
(%)

Total hoursNumber of
participants

Device
position

Definitions of eatingStudy

81N/Aa44943WristDong et al [7] • Daily meals and snacks

N/A76.1 and
71.3

784.258WristThomaz et al [8] • Laboratory: participants were asked to
use a fork, knife, hand, and spoon to
eat lasagna, popcorn, sandwich,
breakfast cereal, rice, and bean

• Free-living: normal daily meal activi-
ties

75N/A1413104WristSharma et al [9] • A complete meal or snack

N/A95.2b122.310Eyeglass-
es

Zhang and Amft [20] • Participants had no constraints on diet
selection and daily activities.

• They were asked to manually log every
eating event in a diet journal of a 1-
minute resolution.

92.877.532.214EarBi et al [11] • Laboratory: 6 types of food with 3
crunchy types and 3 soft types

• Free-living: daily meal activities

N/A81.6370.120NeckZhang et al [10] • An aggregate of chewing sequences
that occur within a short duration of
time; these chewing sequences are
separated from other chewing se-
quences by a large time gap

N/A87.92310Eyeglass-
es

N/AFarooq et al [19]

This work

7893.83828.2534WristN/A5-minute chunks

8887.73828.2534WristN/AWhole meals in the dis-
covery cohort

87873828.2534WristN/AWhole meals in the val-
idation cohort

aN/A: not available.
bBest.
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Objective
Our objective is to develop a prospective, noninterventional,
observational study that addresses the above challenges in
detecting events of food intake based on passively collected
motion sensor data from wearable devices in free-living
conditions. We also aim to test the performance of the deep
learning algorithms in detecting eating using this data. To this
end, we developed a specialized app that allows the recording
of eating diaries by simply tapping on the smartwatch and
automatic streaming of the accelerometer and gyroscope data
into the cloud computing platform. A total record of 3828.25
hours (1658.98 in the discovery cohort and 2169.27 in the
validation cohort), encompassing 6 types of eating utensils
(forks, knives, spoons, glass, chopsticks, and hands), provided
us with deep data for developing models that infer eating
behavior in the general population. We develop models that
have an area under the curve (AUC) of 0.951 for detecting an
entire meal event. We also show the potential to fine-tune more
accurate personalized models. A prospective, independent cohort
further validated the model. The accuracy of this model supports
its immediate readiness to be deployed in clinical trials such as
connected diabetes care devices and other therapeutic areas.

Methods

Recruitment and Ethics Approvals
The inclusion criteria of participants in the study were as
follows: (1) aged ≥18 years; (2) living in the United States; (3)
an Eli Lilly employee working in a Lilly office in Indianapolis,

United States; (4) willing to wear an Apple Watch, which is
provided for this study and which will be used to collect data
from the device motion sensors and logs of events of food
consumption; (5) owning a Lilly iPhone and willing to pair it
with the Apple Watch provided in this study and to use an app
developed for this study to facilitate transfers of motion sensor
data; (6) having an internet connection with access to a secure
password-protected Wi-Fi at home for the duration of the study;
and (7) willing to not use another wrist-worn personal device
(eg, Apple Watch) for the duration of this study. The exclusion
criteria were as follows: (1) experiencing from hand tremors or
involuntary arm movements, (2) currently being a smoker, (3)
participation in any other study involving wearable devices that
may interfere with the conduct of this study at any point during
participation in this study, and (4) being involved in the planning
or conduct of this study or being a member of the Machine
Learning and Artificial Intelligence team of the Advanced
Analytics and Data Sciences group at Eli Lilly. The study has
been approved by the Eli Lilly Review Board (study number:
2019-8193) and reviewed by the Western Institutional Review
Board (WIRB protocol number 20190878), and all participants
have provided written consent to this study. The informed
consent form is provided in Multimedia Appendix 1.

Instruments
The purpose of this study is to develop a data streaming system
and algorithms that could automatically collect and detect eating
events based on passive monitoring of motion sensor data from
wearable devices in free-living conditions. The terms used
throughout this paper are outlined in Textbox 1.

Textbox 1. Terminology and notations used in the paper.

Terms and explanations

• Window

• A segment from the data used as the model input (typically 5 minutes in this study)

• Moving step

• The size of the stride between 2 consecutive windows

• Session

• A session is a consecutive recording from the watch; a single day can have multiple sessions.

• Region

• A segment of data within a specific time range

• Aggregation

• The methods that we use to determine the inference of a region based on its related windows

• n

• A cutoff helping to determine if a meal region is inferred correctly or if a region is false positive

• False positive regions

• A region containing at least n false positive data windows

• (Hourly) false positive detection rate

• (Number of the false regions–number of the positive regions)/total sample hours
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Our goal is to detect eating activity based on data from motion
sensors embedded in wearable devices to minimize the risk of
privacy invasion. Eating activity in humans involves potentially
distinguishable movements—hand-to-mouth gestures. A total
of two motion sensors—accelerometer and gyroscope—were
used for the position and orientation sensing in digital watches
(Figure 1B). We used the Apple Watch Series 4, which is
equipped with both sensors. We programmed the watch to
extract sensor data using a standard application programming
interface (API), which can be seamlessly paired with an iPhone
to facilitate data flow and retrospective labeling. This study has
been approved by the Eli Lilly Western Institutional Review
Board, and participants’ information was deidentified before
analytic research. Eating dairy is in general recorded by 2 simple
tappings of begin and end on the Apple Watches. Compared
with previous eating diaries, this method facilitates accurate
recordings of the eating region.

Participants were asked to log all events of food intake
regardless of the type of food or beverage consumed or the
manner in which it is consumed (eg, with or without utensils,
sitting down, standing, or walking), except while driving.
Specifically, they were asked to log each region of food intake
if she or he estimated that it would involve >3 bites or sips
(movements to bring the food to one’s mouth) and would last
for >2 minutes. Activities such as taking oral medications, using
chewing gum, or taking a few sips of water did not need to be
logged. Although many people wear a watch on a nondominant
arm, in this study, we asked the participants to wear the study
Apple Watch on the arm that they consider dominant for eating
purposes. This choice is motivated by the available literature
indicating that the food intake detection algorithms using motion
sensor data from the dominant arm provide better performance
than those using data from the nondominant arm, whereas using
sensor data from both arms does not improve performance
significantly [5].

We recruited 2 independent cohorts. The first cohort included
17 individuals, deidentified before data analysis—02CE, 064F,
08A5, 0D51, 0FA7, 11FD, 1453, 16A9, 1B55, 2257, 2BAF,
305B, 32B1, 375 D, 3e5f, 4561, and 47B7—and spanned
between May 29, 2019, and July 7, 2019. The second cohort
included 17 individuals—766F, 7D71, 7FC7, 8473, 94CD, 9979,
A07B, AE7F, B0D5, BED9, C385, CA87, D189, D3DF, DF8D,
E1E3, and E68F—and spanned between November 4, 2019,

and November 25, 2019. For each participant, we longitudinally
collected a maximum of 20 (discovery cohort) and 22 days
(validation cohort) of their daytime activities, with a median of
9 and 11 days, respectively. This provided a total of 1658.98
hours of data in the discovery cohort and 2169.27 hours of data
in the validation cohort (Figure 1A). The discovery cohort
included 162 days of samples in total, where each individual
was allowed to take different numbers of days of experiments
varying from 1 (eg, participant 1453) to 20 (eg, participant 2257;
Multimedia Appendix 2, Figure S1). The validation cohort
included 193 days of samples in total, with the experiment days
varying from 1 (eg, participant A07B) to 22 (eg, participant
CA87; Multimedia Appendix 2, Figure S1).

Data were recorded at a frequency of 50 Hz and were segmented
into individual files by the combination of collection date and
participant ID. It is common to see multiple sessions in a single
file (Figure 1D and Textbox 1), corresponding to consecutive
recording periods in a single day. Approximately 25.3%
(41/162) of the samples contain >1 session in the discovery
cohort, and approximately 68.9% (133/193) of the samples in
the validation cohort have at least two sessions (Multimedia
Appendix 2, Figure S1C). The data are presented in a timewise
fashion of 20 features, including acceleration and rotation rate
(acclx for acceleration at the x-axis, accly for acceleration at the
y-axis, acclz for acceleration at the z-axis, gyrox for gyroscope
at the x-axis, gyroy for gyroscope at the y-axis, and gyroz for
gyroscope at the z-axis), utensils (binary labels of utensils, fork,
knife, spoon, glass, chopstick, and hand), ground truth labels
(tag for all eating tags, tagTimely for eating tags that are done
when eating happens, and tagRetro for retrospectively recorded
taggings), session (sesid), timestamp (ts), and the local time
(tod). We determined whether a positive tag should be
considered in the training by tagTimely, a binary feature
indicating whether the tag is labeled during mealtime.

The data collection platform will also enable the participants
to retrospectively log approximate times of meals if they forget
to log them in a timely manner. The choice of collecting ground
truth classification labels through participants’ logs is also
motivated by the fact that a potential future activity detection
system deployed in real life may collect some amount of
personalized training data to fine-tune the inference model to
individual characteristics.
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Figure 1. Overview of data collection and streaming for meal activity analysis. (A) Data comes from two cohorts: 17 participants in the discovery
cohort with 1658.98 hours of data and 17 participants in the validation cohorts with 2169.27 hours of data. (B) Signals were collected by 2 sets of
sensors, accelerometer and gyroscope, in Apple Watch and paired with iPhone. (C) Z score and centering normalization were conducted for each of the
x, y, and z axes for each window. (D) The gyroscope and accelerometer provide continuous signals on the x, y, and z axes over time. There are 2 modes
to record meal time. The general model recording starts and stops by tapping the button on the Apple Watch. Retrospective mode allows the participant
to type in the rough meal time with the iPhone after having a meal. For each record, we took 5-minute windows with a moving step of 20 seconds. The
windows with >2.5 minutes of mealtime will be labeled as eating activity. Windows belonging to 2 sessions are removed. (E) Two augmentation
methods, quaternion rotation and scaling the signal magnitude, apply to each data window. (F) Deep learning network structure.

Data Cleaning
A couple of noncompliances appeared to have come from the
misunderstandings of the guidance. For example, participant
4561 presented very short sampling regions on June 6, 2019
(Multimedia Appendix 2, Figure S2A). It appears that she/he
recorded only the mealtime. Another noncompliance was
observed in the close-to-zero signals in accelerometer and
gyroscope data for a long region of time; for example,
47B7_2019-06-07 (Multimedia Appendix 2, Figure S2B). This
identification number follows the format of participant ID_date.
It is likely that participants took off their watch during these
time regions. We further removed individuals or days without
eating records (eg, 2257_2019-06-27). Communications with
participants indicated that they were incorrectly annotated.

For the discovery cohort, participants 064F, 1453, and 08A5
were excluded from this study because of an overwhelming
number of retrospectively annotated meals (>50%; Figure 2A),
which indicates potential poor data quality of these days.
Records from these participants are also removed as the
sampling times are <3 hours in a day, as they are possibly not
compliant with the instructions that require wearing the watch
during day time: 4561 (May 30, 2019, and June 6, 2019), 305B
(June 11, 2019), 47B7 (June 7, 2019, and June 1, 2019), 2257
(June 27, 2019), 375 D (June 7, 2019), 32B1 (June 18, 2019),
and 0D51 (June 11, 2019). Of the 17 individuals, 14 (82%)
individuals remained to consider in the model development for
the global model. The personalized models were fine-tuned and
evaluated on the 86% (12/14) of individuals with ≥7 samples:
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02CE, 0D51, 0FA7, 11FD, 16A9, 1B55, 2257, 32B1, 2BAF,
305B, 4561, and 47B7.

For the validation cohort, based on the same exclusion rules,
we also kept 82% (14/17) of individuals and removed

participants 9979 (3/3); 94CD (8/11), who had an overwhelming
number (>50%) of retrospectively recorded meals; and 7D71
(0/0), who failed to label the meal times in all dates. Then, we
removed 15 person days with a total duration of <3 hours and
another 55 person days, which did not contain any meal times.

Figure 2. Summary of the meal regions. (A) Describes the meal number of each individual in the discovery cohorts and the validation cohorts. The
bars are sorted by the total number of the meals and comprise two types of model labeling: label during eating (in-time, the blue bars) and label by
retrospect (retrospective, the orange bars). (B) Summarizes the meal numbers per day excluding the retrospectives. (C) Shows the distributions of the
duration (in minutes) of the meals for the discovery and the validation cohorts, excluding the retrospective meals. (D) Plots the distributions of the
starting times of the meals in these 2 cohorts, and the dashed lines correspond to smoothed curves describing the counts. (E) Distribution of the numbers
of the meals with different utensils in the discovery and the validation cohorts. (F) Statistics of the meal lengths (in hours) for different utensils in the
discovery and the validation cohorts.

Data Preprocessing
All the data were cut into 5-minute (300 seconds) windows with
a moving step of 20 seconds from the start of each date of data
based on the record length. The label for each 5-minute data
window was determined by the proportion of mealtimes: if the
window has >2.5 minutes (150 seconds) labeled as mealtime,
then the label of the window is 1 (positive examples); otherwise,
it is 0 (negative examples). There were 3 additional conditions
that generated −1 labels, which were excluded in both training
and evaluation (Figure 1D). The first one is when the current
window belonged to 2 different sessions; the second is that the
window included the records whose tagRetro (retrospectively
recorded eating) was not 0 or missing, which means these tags
were recalled by the users after their meals. Third, extremely
short periods of eating <3 minutes were excluded as they could
have disrupted the fairness of evaluation. A total of 282,942
windows were generated according to this preparation method

from the discovery cohort, and 13,498 of them were positive.
As the data were highly unbalanced, we applied an
oversampling: we randomly selected N records from the positive
examples with replacement, where the N is the number
difference between the negative examples and the positive
examples.

Model Training and Evaluation
The general training and evaluation strategy was
cross-validation, a commonly used scheme that ensures
sufficient test examples. In each test, we randomly selected 21%
(3/14) of individuals for the test set, 18% (2/11) of individuals
for the validation set, and the rest 64% (9/14) of individuals as
the training set. Models were trained and tuned on the training
and the validation sets, and we evaluated the performances on
the test set. We also trained 5 models for each test, which came
from 5 random splits on the training set and the validation set
while maintaining the 3 final test individuals unchanged. The
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final inference scores for the evaluations were the averaged
ensemble of the 5 models.

We experimented separately based on accelerometer and
gyroscope data, and then we assembled the inference scores
using the 2 types of data by taking the average. Experiments
are organized in the following order: input data, normalization
methods, and augmentations. In each step, we selected the
best-performing model for the next experiment. For the
fine-tuned personalized model, we first trained a model using
all the data in the discovery set, excluding the individual that
was the target of fine-tuning. Then, we fine-tuned the model
for 2 additional epochs on 60% of the days of the target
individual, using another 20% of the days as validation and the
last 20% of the days as the test set. Across all experiments, the
evaluation was conducted on the testing set with the original
class imbalance.

Model Architecture
The backbone of the models is a deep convolutional neural
network, comprising 10 building blocks and a fully connected
layer for the output listed in Multimedia Appendix 2, Table S13
and Figure 1F. Each block contains a convolutional layer, a
batch normalization layer, and a maxpooling layer. The number
of filters grows progressively from 8 to 256
(8,16,16,32,32,64,64,128,128, and 256). The sizes of the filters
follow (11,10,10,8,9,6,7,4,5, and 2). The network receives both
the 3-channel inputs from the accelerometer or the gyroscope
and the 6-channel inputs when using them together. The weights
of the network are trained by an Adam optimizer [21], the most
popular parameter optimizer, with a learning rate of 0.00003
and a binary cross-entropy loss function as the training target
is binary. To combat overfitting, we applied a callback function
to retrieve the weights from the epoch of the best performance
on the validation set. These selected weights were then applied
to the test set to evaluate the model performance. We trained a
total of 5 epochs. The kernel was initialized with Glorot uniform.
The abovementioned parameters were selected empirically and
then searched around the empirical values.

Normalization and Data Augmentation
We tested two normalization methods: centering and z score
normalization (Figure 1C). The outputs of centering were the
subtraction between the original values and the averages, and
the z score normalization required a calculation based on the
following formula, where the µ is the average, and the σ is the
SD.

To combat overfitting, we applied 2 augmentation methods
(Figure 1E). The first was scaling the signal magnitude by
multiplying a randomly selected number from a uniform
distribution in (0.8, 1.2). The second was rotating the signals
by multiplying a quaternion rotation matrix, which mimics the
situations where the same record is taken in different reference
frames. First, we randomly generated a set of coordinates (x, y,
and z) and defined a reference frame by calculating the basis
vectors.

Then, we randomly seeded a rotation angle from (0, 2π), and
calculated as follows:

The rotation matrix, which multiplies to the original acceleration
or gyroscope signals, were then defined as follows:

Evaluation Metrics
The model performances were evaluated on the ensembled
inference scores and by a series of metrics, including the area
under the receiver operating characteristics curve and the area
under the precision–recall curve (AUPRC). Using the
information of true positive TP, true negative TN, false positive
FP, and false negative FN, we evaluated the weighted F1 score
and the relating precision and recall scores [22], where i is the
index of the class, and the wi=number of class i samples/total
sample numbers is the proportion of the class i.

Precisions came from TP/(TP+FP), and recalls came from
TP/(TP+FN). We also calculated weighted accuracy following
the method in the studies by Dong et al [7] and Sharma et al
[9]:

where w is the ratio of the number of negatives over the number
of positives.

All the metrics were calculated by the corresponding functions
in scikit-learn.

Comparison With DeepConvLSTM
We applied DeepConvLSTM [22] based on the official Pytorch
implementation. We used a filter size of 32, and the number of
hidden units in the long short-term memory was 64. Details of
the structure and the parameters are listed in Multimedia
Appendix 2, Table S14. We used the Adam optimizer and binary
cross-entropy loss function.

Statistical Significance Analysis
For model comparison, in each test of inference, we first
calculated the ratio (denoted as R) of the positive (label=1) to
the negative examples (label=0) and then randomly selected
1500 positive 5-minute windows and 1500R negative windows.
We repeated 100 times to estimate the P values.
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Code Availability
The code is attached with the submission (Multimedia Appendix
3) and can be runnable with Python 3.6.12 and Keras 2.2.4.

Data Availability
On the basis of consent forms, Eli Lilly can share data with
regulatory authorities (Food and Drug Administration) in the
United States, the ethical review board overseeing this study,
and the researchers at other institutions who wish to analyze
the data in this study.

Results

Deep Learning Accurately Classifies Eating Activity
in 5-Minute Windows on Previously Unseen
Individuals
We first analyzed the data from the discovery cohort. Raw data
were collected from the accelerometer and gyroscope from the
Apple Watch at a frequency of 50 Hz and streamed to Amazon
Web Service [23]. Each time point was labeled with a meal tag
(1 denoted the meal region and 0 denoted non–meal time).
Participants were asked to specify the start and the end of the
mealtime and whether this region was recorded at the time of
the meal or retrospectively. Most (126/162, 77.8%) of the daily
records lasted approximately 8 to 15 hours, representing the
daily activity time when the participants wore the watches
(Multimedia Appendix 2, Figure S1B). The participants are
likely to begin their records from 7 AM to 9 AM (Multimedia
Appendix 2, Figure S1D) and end at 7 PM to 9 PM (Multimedia
Appendix 2, Figure S1E), which is consistent with the expected
daily activity time. A participant could have 1 to 7 eating events
within a day, with the vast majority having between 1 and 4
eating events per day. Approximately 75% of the meals would
last for <20 minutes. The start and peak times of the meal events
were shown at the expected breakfast, lunch, and dinner times
(Figure 2).

With the generated 5-minute windows (Figure 1D), we
constructed a 1D (along the time axis for both input and output)
deep learning model (Figure 1F) with 3 channels as input (x, y,
and z axes of accelerometer or gyroscope; 6 channels when
giving both accelerometer and gyroscope information). On the
basis of the cross-validation described in the Methods section,
our work showed an average AUC of 0.825 (SD 0.073; Figure
3D and Figure 4C) and an average AUPRC of 0.437 (SD 0.096),
with the baseline (same value predictions for all data points) of
0.053 (Multimedia Appendix 2, Figure S3C and Figure 4D).
When including the retrospective meals in prediction, our model
showed stable performances with an average AUC of 0.813 (SD
0.067) and AUPRC of 0.440 (SD 0.077, baseline 0.065). In
comparison, we adapted DeepConvLSTM on this data set [22],
which achieved an average AUC of 0.797 (SD 0.065) and an
average AUPRC of 0.294 (SD 0.072; Figure 3E) on the
nonretrospective meals. This demonstrated that the techniques

integrated into this approach could substantially improve over
a state-of-the-field method.

We identified the factors that affect performance. First, based
on the 5 models trained on the random splits of the training set,
assembling the inference values from the output of the last fully
connected layer, by taking the averages in each test, can
significantly improve the performances in all the experiments
(P<.001; Figure 3B-Figure 3D; Multimedia Appendix 2, Figure
S3A-3C). Second, building the model on gyroscope data can
achieve better performances than using accelerometer data or
both. The average AUC and AUPRC of the gyroscope model
are 0.02 to 0.05 higher than the other alternatives (P values for
AUCs <.001; P values for AUPRCs <.001; Figure 3B and
Multimedia Appendix 2, Figure S3A; Multimedia Appendix 2,
Tables S1 and S2). Third, choosing correct input data
normalization methods may be helpful. Centering normalization
improved the model performance by 0.002 on the AUC and
0.01 on the AUPRC (P values for AUCs=.29; P values for
AUPRCs=.10), whereas, with the z score normalization, which
may compress the original ranges of the signals, the
performances will drop by 0.01 and 0.04 on the AUC and
AUPRC (Figure 3C and Multimedia Appendix 2, S3B;
Multimedia Appendix 2, Tables S3 and S4). This is likely to
reflect the fact that the magnitude of the signal is critical to the
model, whereas the directions of the watch (ie, reflected as the
overall shift of an axis) are not relevant. Fourth, data
augmentation, including the quaternion rotation of the signals
in space and scaling the signal magnitudes, might improve the
model performance. Rotation and scaling can provide >0.01
improvement on both AUCs and AUPRCs for a single model,
although not statistically significant (P values for AUCs=.33;
P values for AUPRCs=.17). When considering the ensemble
model that aggregates 5 models generated using different
random seeds, the magnitude scaling gives better but not
significantly better performance both on AUC and AUPRC (P
values for AUCs=.26; P values for AUPRCs=.88; Figure 3D
and Multimedia Appendix 2, Figure S3C; Multimedia Appendix
2, Tables S3 and S4). Adding in local time did not improve the
performance (Tables S1 and S2).

To retrieve the performances of each individual, including the
previously excluded ones, and generate the baselines for
evaluating the improvements of our following fine-tunings on
the personalized models, we also used the leave-one-subject-out
approach to calculate the AUCs and AUPRCs. For each
individual, the model was trained on all the other data except
the one left out. The average AUC for the ensemble model was
0.818 (SD 0.104), and the average AUPRC was 0.419 (SD
0.162, Figure 4A and Figure 4B; Multimedia Appendix 2, Table
S7). Visualization of the inferences of two dates of records: data
on June 24, 2019, from 0FA7 and data on June 10, 2019, from
3E5F show consistency with the eating and noneating behaviors
(Figure 4E and Figure 4F).

J Med Internet Res 2022 | vol. 24 | iss. 3 | e27934 | p. 8https://www.jmir.org/2022/3/e27934
(page number not for citation purposes)

Zhang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Evaluation of model performance on 5-minute windows of the discovery cohort. (A) Models were built by gyroscope data only, accelerometer
data only, and gyroscope+accelerometer data. Next, we tested the centering and normalization of each axis of the data. Intensive data augmentation was
applied to the data on the fly. For each method, 5 models were trained by resampling the training and validation data and they were assembled for
evaluation. (B) Presents the performance comparisons of different data selections. (C) Presents the performance comparison of different normalization
methods applied on the gyroscope model. (D) Presents the performance comparisons of the augmentation methods based on the centering model, where
Quart refers to the quaternion rotation augmentation, and Scale refers to scaling the magnitude. (E) Comparison of the performances between
DeepConvLSTM and the method presented in this paper. AUROC: area under the ROC curve; AUPRC: area under the precision–recall curve; CNN:
convolutional neural network; ROC: receiver operator characteristic.

J Med Internet Res 2022 | vol. 24 | iss. 3 | e27934 | p. 9https://www.jmir.org/2022/3/e27934
(page number not for citation purposes)

Zhang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. The evaluations of the selected best model: convolutional neural network backbone trained with the centering normalized gyroscope data
using magnitude scaling. (A and B) show the leave-one-subject-out results of the model on the discovery cohort, evaluated both in the area under the
curves and area under the precision–recall curves. The black points in (B) are the baselines for the individuals. As 1453 does not have any positive
samples after excluding the retrospectives, its value will be empty. (C) is an area under the ROC curve, and (D) is a precision–recall curve for the
cross-validation from the ensemble model, respectively. (E and F) give the inferences of the 2 dates of records, where the blue segments denote the
signals of the non–meal time, and the orange segments are the signals of the mealtime. PR: precision recall; ROC: receiver operator characteristic.

Fine-tuning of the Personalized Model Improves
Performance
This longitudinal data allowed us to explore whether it is
possible to construct personalized models for eating and further
improve model performance (Figure 5A). The global models
served as the fine-tuning starting points for the individuals of
interest (Figure 4A and Figure 4B). This study design mimics
an important utility of the models in real life, where we adopted
an existing model to a previously unseen person and asked
whether we could improve the inference on this individual by
observing some data for this individual.

Comparing the performance of the global model on this
individual versus the fine-tuned model, we found that other than
1 individual (2BAF), the fine-tuned personalized models showed
better performance than directly applying the population models
on the specific individuals. The AUC on average improved for
the fine-tuning model to 0.872 (SD 0.099), with an average
weighted F1 (the average weights were 0.059 and 0.941 for
positives and negatives, respectively) score of 0.938 (SD 0.048),
an average precision of 0.945 (SD 0.045), and an average recall
of 0.934 (SD 0.049; Figure 5B and Figure 5C; Multimedia
Appendix 2, Tables S8 and S9).
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Figure 5. Evaluating fine-tuning to generate individual models on the discovery cohort. (A) For a specific individual under investigation, we first
trained 5 global models using all other individuals by resampling the training and validation set for the deep learning training process. Next, we split
records of the individual of interest by days into training, validation, and test sets and fine-tuned the global model using the training and validation set.
We evaluated the performance by the area under the ROC curve for both the global and the individual fine-tuned models for (B) 5 separated models
and (C) ensemble models. ROC: receiver operator characteristic.

Aggregation of Multiple Windows Reaches
Near-Perfect Detection of Meal Events
We then evaluated the model performance on the original
mealtimes. We conducted three experiments on cross-validation
of the discovery cohort:(1) the prediction for whole meals
(Figure 6A), (2) the prediction within 5 minutes or 10 minutes
after the meal starts (Figure 6B), and (3) the false calls within
an hour (Figure 6C). For all nonretrospectively recorded meal
events, we calculated the average score during each meal event.
For calculating scores for the negative regions, we randomly
selected a series of negative regions whose lengths and numbers
were matched to the meal events. The scores for the negatives
were generated by taking the averages of the windows within
the selected regions. The models achieved an AUC of 0.951
(SD 0.018) by this aggregation, and the corresponding weighted
F1 score (weights were 0.464 and 0.536 for positives and
negatives, respectively), precision, and recall were 0.877 (SD
0.037), 0.8890 (SD 0.027), and 0.879 (SD 0.035), respectively

(Figure 6D; Multimedia Appendix 2, Table S10). Including the
retrospective, meals would result in a similar AUC of 0.951
(SD 0.017), with the corresponding weighted F1 score of 0.858
(SD 0.040, weights for positives and negatives were 0.5).

For prediction on the 10-minute or 5-minute after meal start,
we used the accuracy (ie, how many mealtimes were correctly
inferred) for evaluation (Figure 6E; Multimedia Appendix 2,
Tables S11 and S12). In this case, we were interested in how
we could choose a criterion so that most meals could be detected
within 5/10 minutes. We used a moving step of 10 seconds and
defined a window to be positive if the prediction score was >0.3.
If >3 windows were predicted to be positive in 5/10 minutes,
we alarmed a call. Using these criteria, we reached a recall rate
of 0.889 for 10 minutes, and the result remained robust in the
5-minute test, cutoffs of prediction score between 0.4 and 0.6,
and the number of windows we used to alarm the call.

Next, we calculated the number of false positive predictions per
hour of negative regions. For each hour, we had a total of 360
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chunks (with a moving step of 10 seconds). The corresponding
false positive prediction was 0.172 per hour; that is, 1 to 2 times
of false positives in a whole day of activity. Again, this result

was robust against the cutoff defining a positive window and
the number of windows needed to alarm a call.

Figure 6. The results of the aggregations on the entire meals and on the specific time regions after meal start. (A) Aggregation to produce meal-level
detection performance. (B) A preprocessing step removed meals that were <3 minutes and created 5- or 10-minute windows for positive examples to
evaluate recall rate. (C) Nonmeal regions were used to calculate false positive alarms using the 5-minute windows and the same criteria as what was
used to define positive inferences in calculating the recall rate. The gray areas denote the mealtimes with the 10-minute boundaries at the start and the
end, where the windows are out of consideration. (S) Shows the evaluations of the aggregations on the entire meals. The boxplots comprise the AUCs
from the average inferred scores of the ensemble models in the cross-validation, and the experiments (models) are the same as those in Figure 3A. The
point in each box denotes the corresponding average AUC. (E) indicates the results of the aggregation on the 5- and 10-minute meals after starting and
on the entire negative signals. The lines show how the detection accuracy and the hourly false positive numbers (the black lines) change along with the
cutoffs. The orange lines show the results for the 10-minute meals, and the blue lines are the 5-minute meals. The shape of the points represents the
choice of N, where the circles/solid lines are N=1, and the triangles/dashed lines are N=3. AUC: area under the curve; ROC: receiver operator characteristic.

Generalizability to an Independent Validation Cohort
Collected in a Different Season
Although the first batch of the data was collected in the summer,
we proceeded to collect a second validation cohort in winter, 6

months later, by recruiting 17 new individuals. By splitting the
discovery cohort data into 5 sets of training and validation data,
we first finalized 5 models for the first cohort; then, we directly
applied these models to the validation cohort for inferences.
Next, we applied the scheme of the whole meal predictions to
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the validation cohort, both on the data with and without the
retrospective meals. Without any further tuning, the model
achieved a meal-level AUC of 0.941 on the validation cohort
for the nonretrospective meals, with a 0.870 weighted F1 score
(the weights were 0.445 and 0.555 for positives and negatives,

respectively), a 0.878 precision, and a 0.871 recall. With the
retrospective meals, the meal-level AUC and the weighted F1
score were 0.920 and 0.846, respectively (the weights for
positives and negatives were 0.5). The performances of our
work in this study are listed in Table 2.

Table 2. List of the performances in this study.

Weighted F1
score

Area under the preci-
sion–recall curve

Area under the curveExperiments

N/Aa0.4370.825Cross-validation of our model on 5-minute windows

N/A0.4400.813Cross-validation of our model on 5-minute windows, including the predic-
tions on retrospective meals

N/A0.2940.797Cross-validation of DeepConvLSTM [22] on 5-minute windows

N/A0.4190.818Leave-one-subject-out approach of our best model on 5-minute windows

0.938N/A0.872Fine-tuning the personalized model

0.877N/A0.951Cross-validation of our model on the original mealtimes (discovery cohort)

0.858N/A0.951Cross-validation of our model on the original mealtimes, including the
predictions of retrospective meals (discovery cohort)

0.870N/A0.941Predictions of our model on the original mealtimes (validation cohort)

0.846N/A0.920Predictions of our model on the original mealtimes, including the predic-
tions of retrospective meals (validation cohort)

N/AN/A0.889Accuracy of detecting the eating in 10 minutes

N/AN/A0.172False positive detections per hour

aN/A: not applicable.

Discussion

Principal Findings
In this study, we presented a large, in-the-field, digital eating
detection study of eating activity. Deep learning algorithms
experimented with a diverse array of augmentation,
preprocessing, and architectures allowed us to narrow down the
algorithm into one with a performance of AUC of 0.825 to infer
previously unseen individuals for a single 5-minute window.
When evaluated on the entire meal regions, this AUC was 0.951.
We further validated the algorithm in an independently
time-lapsed cohort collected in a different season (6 months
later, winter) and achieved a meal-level performance of 0.941
AUC without further tuning. This design can potentially result
in models that are more or at least similarly generalizable than
data collected consecutively in the same season. This represents
the first study that harbors a validation cohort in this field.

Compared with other studies that focus on population-wise
models [9,13,24-26], the longitudinal weeks of follow-ups of
the data set presented in this study allowed us to further explore
the possibility of personalized models for detecting eating
activity. It is widely recognized that eating motions differ
substantially in a population by gender, culture, and certainly
individual habits. This fine-tuning scheme produced an average
AUC at 0.872, corresponding to a 0.89 success rate in calling
back an eating event within 10 minutes. This substantial
improvement in performance points to the direction toward
personalized eating monitoring in the dietary research field.

Records of the local time, as well as the utensils used for each
meal, also allow us to glean insight into their influences on our
model (Multimedia Appendix 2, Figure S4). We found that food
taken with hands had relatively poor performance (AUC=0.812;
Multimedia Appendix 2, Figure S4B). In addition, we found
that false positive rates are relatively high between 6 AM to 7
AM and 9 PM, indicating potential morning and evening
activities mimicking eating movement (Multimedia Appendix
2, Figure S4C). Future studies incorporating different
characteristics of utensils as well as whole daily activity logs
might have the potential to further improve the performance.

Limitations
We acknowledge several potential limitations of this study.
First, we excluded smoking individuals, for whom the inference
task could become more complicated as the motion of smoking
shares a certain similarity with the motion of eating. Second,
we only included healthy individuals, which may not be
representative of the population of movement disorders such
as ataxia and Parkinson disease. In addition, we did not collect
the data for the nondominant hand. The weaker and noisy signals
may significantly affect our model built on dominant hand data.
Potentially, combined with additional devices such as ear- and
chest-anchored devices and video (Multimedia Appendix 2,
Table S15 [27-31]), in future works, we will be able to combat
such limitations. We used a total of 34 individuals in the study.
Although we observed strong predictions across individuals,
larger collections focusing on more individuals but less
longitudinal follow-up might further complement the
information provided in this study. Furthermore, we used 50

J Med Internet Res 2022 | vol. 24 | iss. 3 | e27934 | p. 13https://www.jmir.org/2022/3/e27934
(page number not for citation purposes)

Zhang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Hz data in this study for optimizing battery performance in
collecting data. It is yet to be evaluated how higher Hz data
contribute to performance with the development of the devices.

Future Works and Conclusions
This study and the API developed here open several future
directions that are worth exploration. For example, how do
digital indicators differ for populations coming from different
cultural backgrounds? Does handedness affect model
construction and performance? And how much will the model

be affected if one wears the device on his or her nondominant
hand? Answering these questions will need large-scale studies
with a large number of participants, and the API and data
streaming platform developed in this study will become a
convenient tool for this purpose. The accuracy of the models
developed in this study satisfies immediate deployment needs
in clinical settings to monitor eating behavior and give guidance
to treatment regimen adjustment accordingly. We envision the
digital streaming platform will be widely integrated into a
variety of clinical trials in the near future.
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