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Abstract

Background: Information in pathology reports is critical for cancer care. Natural language processing (NLP) systems used to
extract information from pathology reports are often narrow in scope or require extensive tuning. Consequently, there is growing
interest in automated deep learning approaches. A powerful new NLP algorithm, bidirectional encoder representations from
transformers (BERT), was published in late 2018. BERT set new performance standards on tasks as diverse as question answering,
named entity recognition, speech recognition, and more.

Objective: The aim of this study is to develop a BERT-based system to automatically extract detailed tumor site and histology
information from free-text oncological pathology reports.

Methods: We pursued three specific aims: extract accurate tumor site and histology descriptions from free-text pathology
reports, accommodate the diverse terminology used to indicate the same pathology, and provide accurate standardized tumor site
and histology codes for use by downstream applications. We first trained a base language model to comprehend the technical
language in pathology reports. This involved unsupervised learning on a training corpus of 275,605 electronic pathology reports
from 164,531 unique patients that included 121 million words. Next, we trained a question-and-answer (Q&A) model that connects
a Q&A layer to the base pathology language model to answer pathology questions. Our Q&A system was designed to search for
the answers to two predefined questions in each pathology report: What organ contains the tumor? and What is the kind of tumor
or carcinoma? This involved supervised training on 8197 pathology reports, each with ground truth answers to these 2 questions
determined by certified tumor registrars. The data set included 214 tumor sites and 193 histologies. The tumor site and histology
phrases extracted by the Q&A model were used to predict International Classification of Diseases for Oncology, Third Edition
(ICD-O-3), site and histology codes. This involved fine-tuning two additional BERT models: one to predict site codes and another
to predict histology codes. Our final system includes a network of 3 BERT-based models. We call this CancerBERT network
(caBERTnet). We evaluated caBERTnet using a sequestered test data set of 2050 pathology reports with ground truth answers
determined by certified tumor registrars.

Results: caBERTnet’s accuracies for predicting group-level site and histology codes were 93.53% (1895/2026) and 97.6%
(1993/2042), respectively. The top 5 accuracies for predicting fine-grained ICD-O-3 site and histology codes with 5 or more
samples each in the training data set were 92.95% (1794/1930) and 96.01% (1853/1930), respectively.
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Conclusions: We have developed an NLP system that outperforms existing algorithms at predicting ICD-O-3 codes across an
extensive range of tumor sites and histologies. Our new system could help reduce treatment delays, increase enrollment in clinical
trials of new therapies, and improve patient outcomes.

(J Med Internet Res 2022;24(3):e27210) doi: 10.2196/27210
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Introduction

Background
Much of the information in electronic medical records (EMRs)
required for the practice of clinical oncology and cancer research
is contained in unstructured text. As much as 80% of EMR data
can be found in narrative text notes and scanned documents [1],
ranging from clinic or surgical notes, including pathology,
radiology, and ambulatory care, to past medical or family
history. The extraction of discrete data elements from this
unstructured text, particularly those relating to disease diagnosis
and commonly captured in routine pathology reports, is critical
for the selection of treatment options, identification of patients
eligible for clinical trials, and monitoring of adherence to
established clinical treatment pathways.

Natural language processing (NLP) has been used to extract
information from medical text for several decades [2-6], and a
thorough review of NLP-based information extraction for
cancer-related EMR notes can be found in the study by Datta
et al [7]. Application of NLP to pathology reports has also been
prevalent in the literature during the course of the last decade
[8-19]. That said, many early studies used regular expression–
and rule-based systems [20,21] that require considerable up-front
development and can be difficult to adapt and maintain.

More recently, there has been growing interest in more highly
automated deep learning approaches for clinical NLP [6,22]. In
late 2018, a powerful new deep learning NLP algorithm was
released: bidirectional encoder representations from transformers
(BERT) [23]. BERT established new, state-of-the-art
performance levels on common nonclinical NLP benchmarks
[24]. This success spawned rapid research and development of
multiple BERT-inspired and transformer-based neural
architectures [25-33]. Several of these have, for the first time,
achieved or surpassed human-level performance on tasks as
diverse as question answering, named entity recognition, speech
recognition, and more [30,33-35]. BERT and related
architectures have facilitated significant improvements in
multiple medical applications, including processing of electronic
health records [36,37], outcome prediction [38-40], identification
of medical terms and concepts [41], medical chatbots [42],
sentiment analysis [43], recommender systems [44], and others.
Despite BERT’s success, we are aware of only a single
application of BERT to the already promising area of free-text
pathology reports [45]. The study focused on classification of
text into only a few cancer-related categories, including afflicted
organ (15 organ groups), disease type (noncancer, premalignant,
or cancer), cancer reason (6 histology groups), and presence of
metastatic disease (no, yes: in lymph nodes and yes: in
non–lymph node tissue). Our goal is to develop and evaluate a

BERT-based system to extract detailed tumor site and histology
information from free-text pathology reports. The availability
of manually curated data within the H Lee Moffitt Cancer Center
and Research Institute (Moffitt) Cancer Registry (MCR)
represented a unique opportunity to train a BERT-based system
using a gold standard data set classified using a standard
ontology.

BERT’s proficiency at question answering prompted us to
construct a question-and-answer (Q&A) system to extract
clinical data from pathology reports. This concept has long been
compelling—Q&A systems for medical data extraction have
been pursued for >40 years [46]. Such a system would have
several desirable properties: an intuitive user interface, the
ability to extract additional data fields by searching for answers
to additional questions, and the ability to generalize to other
medical documents. Furthermore, it would allow us to make
data available for clinical and research use close to real time,
thus reducing treatment delays, increasing enrollment in clinical
trials of new therapies, and improving patient outcomes. To
train such a general-purpose Q&A system on pathology reports,
one would need a diverse set of questions on which to train it.
Our task in this paper is more modest (and is in essence a
classification task of site and histology); however, we view the
Q&A portion of our system as a small step toward this broader
goal.

Primary Contributions
This work describes three primary contributions:

1. A new BERT language model for comprehension of
pathology reports in oncology. We call this CancerBERT,
or caBERT for short.

2. A new Q&A caBERT-based system, tolerant to varied
terminologies, word orders, and spelling mistakes, to extract
tumor site and histology descriptions from free-text
pathology reports.

3. A new caBERT network (caBERTnet) to predict
International Classification of Diseases for Oncology,
version 3.2 (ICD-O-3.2), codes from the extracted
descriptions. This system can handle up to 332 organ sites
and 1143 tumor histologies. On an unseen test data set with
214 sites and 193 histologies it achieved overall accuracies
that are equal to, or above, those of existing systems, while
also expanding on the number of site and histology classes
captured by these systems. Although the results in practice
still require human validation, they provide a means of early
abstraction from unstructured pathology text over a very
broad set of sites and histologies and in addition can provide
an initial signal to assist expert cancer registrars in their
case diagnosis–abstraction workflow.
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Methods

Information on our software development tools is provided in
Multimedia Appendix 1 [47-53]. To construct our system, we
had to achieve three specific aims: (1) extract accurate tumor
site and histology descriptions from complex free-text pathology
reports, (2) accommodate the diverse terminology used to
indicate the same pathology, and (3) provide accurate
standardized tumor site and histology codes for use by
downstream applications.

Extract Tumor Site and Histology Descriptions

Overview
Constructing this system required us to first train a base
language model to comprehend the technical language in
pathology reports (Textbox 1). This involved unsupervised
training on a large corpus of pathology text. For this we
constructed a pathology language–model training data set,
described in more detail in the next section (Pathology Language
Model).

Textbox 1. A fragment of text from a pathology report generated at H Lee Moffitt Cancer Center and Research Institute (Moffitt).

Fragment of text from a pathology report generated at Moffitt

• clinical history: not given. preoperative diagnosis: right lower lobe, squamous cell carcinoma. specimen types: a: right station 7 fs b: station #
10 c: right lung fs d: station 4r e: additional station 10 f: additional station 7 final diagnosis: a. lymph node right station 7 biopsy: anthracotic
lymph node 1 with lymphoid hyperplasia negative for malignancy. b. lymph node station 10 biopsy: anthracotic lymph node 1 negative for
malignancy. c. lung right pneumonectomy: moderate to poorly differentiated squamous cell carcinoma with extensive necrosis see key pathological
findings. bronchial and vascular resection margins negative for malignancy. three of 10 hilar lymph nodes with metastatic squamous cell carcinoma.
d. lymph nodes station 4r biopsies: anthracotic lymph nodes 5 negative for malignancy. e. lymph node additional station 10 biopsy: minute lymph
node 1 negative for malignancy. f. lymph node station 7 biopsy: anthracotic lymph nodes 4 negative for malignancy. key pathological findings
tumor type: squamous cell carcinoma with extensive necrosis. histological grade: moderate to poorly differentiated. tumor location: right lung
involving right lower lobe. right upper and middle lobes free of tumor.

Next, it required us to train a Q&A model that appends a Q&A
layer onto the pathology language model to answer pathology
questions. Our Q&A system was designed to search for the
answers to two predefined questions in each pathology report:

1. What organ contains the tumor?
2. What is the kind of tumor or carcinoma?

For example, when presented with the report shown in Textbox
1, the system should respond to the question What organ
contains the tumor? with C343: lower lobe, lung, and would
respond to the question What is the kind of tumor or carcinoma?
with 8070/3: squamous cell carcinoma, nos (not otherwise
specified).

This involved supervised training on a set of pathology reports,
each with ground truth answers to these 2 questions determined
by human experts. To do this, we constructed a second
fine-tuning training data set, described in more detail in the

Pathology Q&A Model section. Finally, we evaluated our system
using a sequestered fine-tuning testing data set, described in
more detail in the Pathology Q&A Model section.

Pathology Language Model
Training a base language model to comprehend pathology
reports leveraged prior work by several groups (Figure 1). Lee
et al [54] performed transfer learning on BERT using nearly 18
billion words extracted from PubMed abstracts. The result,
BioBERT, is tuned for biomedical language comprehension
tasks and is publicly available. Next, Alsentzer et al [55]
performed transfer learning on BioBERT to tune it for clinical
language comprehension. They used EMR notes in the Medical
Information Mart for Intensive Care, version 3 (MIMIC-III)
data set [56], which includes data from approximately 60,000
intensive care unit stays by patients at Beth-Israel Hospital in
Boston, Massachusetts. The model created by Alsentzer et al
[55], ClinicalBERT, was also made publicly available.

Figure 1. Sequence of transfer-learning steps used in training the CancerBERT base language model. BERT: bidirectional encoder representations
from transformers; ICU: intensive care unit; MIMIC-III: Medical Information Mart for Intensive Care, version 3.
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Alsentzer et al [55] created two models built upon BioBERT:
one trained on all MIMIC-III notes and one trained on just the
MIMIC-III discharge summaries. Initial pretraining
experimentation revealed that the latter provided higher
accuracies on a separate sample of our pathology reports. We
noted that Moffitt pathology reports have a language structure
closer to discharge summaries than to general clinical notes.
Consequently, our model was initialized with weights from the
latter of the two ClinicalBERT models:
ClinicalBERT–Bio+Discharge Summary BERT Model.

Transfer learning was accomplished by performing
masked-language modeling [23]. Briefly, 15% of the words in
the corpus are selected at random and replaced with a mask
token. The language model is then trained to predict the masked
words. The word-masking process is performed automatically
at the beginning of each training run.

Our language-model training corpus included electronic
pathology reports of solid tumors produced by pathologists at
Moffitt between 1986 and 2020. The year 1986 was the earliest
date on pathology reports cataloged in our enterprise data

warehouse. The data set was restricted to solid tumors for two
reasons: first, to focus the problem domain for this
proof-of-concept study, and, second, Moffitt hematologic
pathology reports follow a quasi-structured format, reducing
the need for extraction of data from unstructured text.

This data set contained both Health Level Seven International
messages and plain-text pathology reports. These were
minimally processed to extract and clean the text relevant to
pathology (more details can be found in Multimedia Appendix
1). The final language model training corpus included 275,605
electronic pathology reports from 164,531 unique patients and
included 121 million words.

Pathology Q&A Model
The pathology Q&A lesson plan involved 3 stages, each
intended to improve our system’s comprehension of pathology
reports and thereby increase the accuracy of question answering
(Figure 2). The three stages involved training the Q&A model
to (1) answer general English language questions, (2) answer
technical biomedical science questions, and (3) answer questions
from Moffitt pathology reports.

Figure 2. Lesson plan for the caBERT network consisting of one question and answering model A and two classification models, one for primary site
(model B) and another for histology (model C). BioASQ: Biomedical Semantic Indexing and Question Answering; Q&A: question and answer; SQuAD:
Stanford Question Answering Dataset.

Each training stage used supervised learning. This required a
training data set that included passages of text, ≥1 questions
related to each passage, and ground truth answers to those
questions that appeared as contiguous phrases within the related
passage. At the end of each stage we evaluated our system using
the same sequestered test data set constructed from Moffitt
pathology reports, as described in more detail later in this
section. The experimental parameters used to train the Q&A
model were held constant over all stages and are listed in
Table S1 in Multimedia Appendix 1.

For the first stage of training we used the Stanford Question
Answering Dataset (SQuAD), version 1.1 [57]. SQuAD consists
of more than 100,000 questions and answers created by
crowdworkers on Wikipedia articles. The SQuAD data format
is widely used in NLP research. Therefore, we designed our
system to read and process data sets in this format.

For the second stage of training we used the large-scale
Biomedical Semantic Indexing and Question Answering
(BioASQ) data set [58]. In particular, we used data from
BioASQ Challenge 7b: Biomedical Semantic Question
Answering. This data set contains 2747 training questions along
with their ground truth answers. According to the BioASQ
Challenge 7b description: “All the questions are constructed by
biomedical experts from around Europe.” This data set was
converted to SQuAD format by Yoon et al [59] and made
available for public use.

Next, we constructed a Q&A fine-tuning data set in SQuAD
format based on Moffitt pathology reports. We obtained ground
truth answers to our 2 questions from data abstracted by Moffitt
certified tumor registrars (CTRs). CTRs undergo an extensive
training and internship program to become proficient at
extracting quantitative and categorical data from unstructured
pathology reports. They are widely employed by cancer centers
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and other organizations to extract data for clinical and research
applications and for reporting to state and national agencies.
The MCR deploys state-of-the art quality assurance procedures:
its benchmark for quality is 90% and its target accuracy is 95%
[60].

Moffitt’s enterprise data warehouse was searched to find solid
tumor pathology reports generated after 2006 with matched
MCR data (Figure 3). These reports were screened to ensure

that they contained a description of a positive diagnosis of a
single primary tumor. Next, each report was processed to ensure
that it contained an answer to at least one of the questions in
the Q&A model. This was accomplished programmatically by
searching each report for a phrase contained in a table of
acceptable answer phrases (Figure S1 in Multimedia Appendix
1), as described in more detail in the next section (Accommodate
Diverse Terminology). Our search produced 16782 reports that
met these inclusion criteria (Figure 3).

Figure 3. Flowchart depicting the data curation process for creating the Moffitt fine-tuning data sets (used in the site and histology question-and-answer
and classification tasks). MCR: Moffitt Cancer Registry; MRN: medical record number.

Next, we curated these reports to ensure that (1) the relative
frequencies of the 10 most common tumor sites and histologies
in this collection matched the relative frequencies in Moffitt’s
patient population as a whole and (2) all MCR-assigned tumor
sites and histologies reported for Moffitt patients after 2006
were represented in the data set. The final curated collection
contained 10,247 reports (Figure 3). We will refer to this data
set as the fine-tuning data set to contrast it with the caBERT
language model data set used to train the base language model
as described in the Pathology Language Model section.

The curated collection of reports was randomly divided to create
two data sets: 79.99% (8197/10,247) of the reports were used
to create the Moffitt fine-tuning training data set and 20.01%
(2050/10,247) were used to create the Moffitt fine-tuning testing
data set. Each data set was saved in SQuAD format using a
custom-written Python program. The training data set was used
for the final stage of Q&A training and also for ICD-O-3 code
predictions, described in more detail in the Accurate ICD-O-3
Codes section. The testing subset was used to evaluate the
impact of Q&A training at the end of each training stage (Figure
S2 in Multimedia Appendix 1) and also to evaluate the
performance of the final pipeline (Figure 4).
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Figure 4. The final caBERT network (caBERTnet) connects caBERT instances A, B, and C, used for site and histology question and answering,
International Classification of Diseases for Oncology, Third Edition (ICD-O-3) primary site and ICD-O-3 histology code classification, respectively.

Question-answering accuracy was evaluated using two metrics:
exact match and F1 score. Exact match is true if the
caBERT-extracted phrase is an identical word-for-word match
with the MCR phrase and false otherwise. We calculated the
average number of true results across all test samples. The F1
score is a measure of the degree of overlap among the words in
the caBERT-extracted phrase and the MCR phrase. This varies
from 0 (no words in common) to 1 (all words in common but
not necessarily in the same order). Each exact match
corresponded to an F1 score of 1.0. We calculated the average
F1 score across all test samples and expressed it as a percentage.

After all training stages were complete, they were repeated using
the initial ClinicalBERT model (ClinicalBERT–Bio+Discharge
Summary BERT) with a new randomly initialized Q&A layer.
This allowed us to determine the impact of developing a
pathology-tuned BERT model on extraction accuracy over the
baseline accuracy of using ClinicalBERT alone (Figure S2 in
Multimedia Appendix 1). The training parameters were set to
those optimized for ClinicalBERT and reported by Alsentzer
et al [55].

Accommodate Diverse Terminology
Our pathology reports came supplied with ground truth labels
for primary site and histology in the form of ICD-O-3 codes
[61], which were abstracted by Moffitt CTRs. To train the Q&A
model we needed a method to determine the precise location
within each pathology report of the actual text corresponding
to these labels. This proved nontrivial owing to the rather diverse
terminology within each pathology report used to refer to each
primary site and histology.

To address this issue, we used data from several canonical
sources. Our primary source was the ICD-O-3 standards [62],
which we used to define the primary preferred terminology for
each code. Within the ICD-O-3 standards there are 332 unique
site codes and 1143 unique histology codes, each with
accompanying preferred terms. Along with the preferred term,
many codes also have an additional set of synonyms, which we
stored together with the preferred term in a table of acceptable
phrases for each code. In addition to the ICD-O-3 tables, we
also used terminology from the National Cancer Institute’s

Surveillance, Epidemiology, and End Results (SEER) program
Site/Histology Validation List [62], along with the SEER
Site-specific training module website [63].

To provide a little more detail, the specific sources we used to
construct our acceptable phrase tables were as follows. For
histology, we used the ICD-O-3.2 morphology table (version
15112019) [64] and supplemented this with terms from the
SEER Site/Histology Validation List (version 20150918),
current versions of which are both available in Microsoft Excel
format from their respective websites. For the site terms, we
used the ICD-O-3 mapping table maintained by the National
Cancer Institute [65], supplemented again by the SEER
Site/Histology Validation List. In addition, for the site terms
we also scraped the tables contained in the SEER Site-specific
learning module website for any new terms.

The aforementioned sources have the benefit of being subject
to an international standard and are useful in designating
preferred terms for each histology and site code. However, we
should note that there do exist slight discrepancies between the
World Health Organization–maintained ICD-O-3 coding
standards and the North American Association of Central Cancer
Registries coding guidelines, which are followed in the SEER
materials. For simplicity, we chose to base our model on the
ICD-O-3 standards, but this caveat may prove relevant for any
future cancer registry applications of the model.

Although these sources provided us with preferred and
alternative terminologies, they did not encompass the full range
of language used for every label in our pathology reports, which
often included things such as permutations of word orderings
as well as acronyms and other typographical differences with
the canonical terms. Of note, Moffitt CTRs routinely record a
short description of the histology and site for every labeled
pathology report in a text-based field. For each histology and
site code, we appended these additional phrases to the list of
synonyms of the preferred canonical terminology.

Using the sources described earlier, we created two hierarchical
tree structures as illustrated in Table S2 in Multimedia Appendix
1: one to hold histology terms and one to hold site terms. To
construct these trees, the histology and site codes were first
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grouped into broad morphology and site groups as specified in
the ICD-O-3 tables. Within each group are a collection of
specific codes, where each code has an associated preferred
term, and a list of synonyms. For efficient searching, these trees
were stored as JSON objects that were imported into Python as
nested dictionaries and lists. See Figure S1 in Multimedia
Appendix 1 for an example of an entry in our acceptable phrase
table.

To search each pathology report for appropriate spans of text,
we used the trees to construct a dictionary with keys provided
by the specific site and histology codes and values provided by
the associated acceptable phrase table. Using this dictionary,
for each pathology report we implemented a simple search for
an exact match from the list of preferred terms and synonyms
for the labeled ground truth histology and site code, giving
preference for the preferred term, followed by each synonym
ordered by length (with the longest matching synonym given
preference over the others).

Even with the diverse terminology within the acceptable phrase
table for each code, not every pathology report contained an
exact match within the list of allowed terms. For pathology
reports that did not contain an exact match, we further refined
the search by allowing for matches that only overlapped with
a subset of the word tokens within each phrase, again giving
preference to the longest synonyms and also using a set of stop
terms to avoid overly general terminology. To capture potential
word-ordering differences, we allowed these word token subsets
to be constructed in an arbitrarily permuted order, which was
made efficient by using the itertools module available as part
of the Python Standard Library.

Using the aforementioned procedure, of the 10,247 pathology
reports in the Moffitt fine-tuning training and testing data sets,
we were able to find appropriate textual answers within 10,096
(98.53%) reports for primary site (with n=8070, 79.93%, in the
training set and n=2026, 20.07%, in the testing set) and within
10,218 (99.72%) reports for histology (with n=8176, 80.02%,
in the training set and n=2042, 19.98%, in the testing set).

Provide Accurate ICD-O-3 Codes

Overview
The tumor site and histology phrases extracted by the Q&A
model (Figure 2) were used to predict ICD-O-3 site and
histology codes. This involved fine-tuning two additional copies
of caBERT: one to predict site codes and the second to predict
histology codes. Our final system (Figure 4) includes a network
of 3 caBERT-based models. We refer to this system as
caBERTnet.

Training the ICD-O-3 Site and Histology Code
Classifiers
Classifier training parameters are described in more detail in
Table S1 in Multimedia Appendix 1. Briefly, each caBERT
instance was trained to perform a classification task: given an
input phrase, predict the corresponding ICD-O-3 code.
Classification tasks were trained using the Moffitt fine-tuning
training data set (Extract Tumor Site and Histology Descriptions
section). Training samples were screened to ensure that each

contained ground truth site and histology codes and at least one
site or histology phrase provided by the MCR. Missing site and
histology phrases were filled using SEER preferred terms. These
were identified by performing a lookup into the ICD-O-3 table
using the site or histology code in the training sample.

After screening, the ground truth phrases were labeled and
concatenated to form a single combined phrase. For example,
if the MCR phrases were lung lower lobe and squamous cell
carcinoma, then the combined phrase would be site: lung lower
lobe. histology: squamous cell carcinoma. The combined phrase
was used to train both the caBERT site classification model and
the caBERT histology classification model. The use of a
combined phrase allowed caBERTnet to leverage any correlation
between site and histology to improve its performance. For
example, astrocytomas are brain tumors. When caBERTnet
encountered a previously unseen pathology report during the
test phase with the combined phrase site: frontal. histology:
anaplastic astrocytoma, it correctly predicted a brain site of
C711, frontal lobe and a histology of 9401/3 astrocytoma
anaplastic NOS (not otherwise specified).

Testing the ICD-O-3 Site and Histology Code Classifiers
After training of the site and histology ICD-O-3 code
classification models was complete, caBERTnet performance
was evaluated using the sequestered Moffitt fine-tuning test
data set described in the Extract Tumor Site and Histology
Descriptions section. For each test sample, the MCR-generated
site and histology phrases were used to create a ground truth
combined phrase. Next, the site and histology phrases extracted
by the Q&A stage of caBERTnet were used to create a predicted
combined phrase. The predicted phrase was tokenized to prepare
it for input into each classification model. Ground truth site and
histology codes from the MCR were enumerated, as described
earlier, and stored as true labels. Subsequently, the trained site
and histology classification models were used to classify the
tokenized predicted combined phrases for each test sample. The
outputs from this classification, logits, were converted into
probabilities, sorted, and converted back into ICD-O-3 codes
as described earlier, labeled as predicted codes, and saved for
further performance analysis.

caBERTnet performance was evaluated in 3 different ways.
First, the top 5 accuracies were determined. This metric (or its
inverse, the top 5 error rate) is commonly used to evaluate
classification algorithms [66]. Briefly, it calculates the average
probability that the correct site or histology code occurs within
the top N predicted codes because N is varied from 1 through
5. Top 1 accuracy, the accuracy of the code scored most highly
by the classification algorithm, is equivalent to precision, recall,
and F1 score for this classification task.

Second, we examined the effect of culling or removing
infrequently occurring codes. Our hypothesis was that the
caBERT site and histology code classifiers suffer when they do
not have enough training data to learn from. Therefore, to
examine the effect of training sample size, we iteratively
eliminated site and histology codes from the full 2050-sample
test data set when the number of examples with a particular
code in the training set (alone) fell below a specified threshold.
We varied that threshold from 0 samples (no culling) to 35
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samples in increments of 5 samples. At each culling threshold
we recalculated the top 5 performance of the site and histology
classifiers.

Third, we calculated the overall accuracy of predicting the
correct group code for each site and histology code. Group
codes occur higher up in the ontological tree and, as the name
implies, encompass a group or range of related tumor sites or
histologies. For example, the site codes C341 upper lobe, lung
and C349 lung, NOS have the same group code: C34 bronchus
and lung. The histology codes 8070/3 squamous cell carcinoma,
NOS and 8051/0 verrucous carcinoma both have the same group
code: 805-808 squamous cell neoplasms. The ICD-O-3 ontology
includes 82 group-level site codes covering the 332 fine-grained
site codes. It includes 49 group-level histology codes covering
the 1143 fine-grained histology codes.

Group codes are useful for search and summary applications.
The group codes for both the predicted and ground truth
fine-grained codes were determined by searching in the tree
data structures described in the Accommodate Diverse
Terminology section. For each fine-grained code, the search
started at that code’s location in the tree and proceeded upward.
Finally, we calculated the overall accuracy of prediction within
each group code for both site and histology predictions.

Results

Model Accuracy
The accuracy of the both the ClinicalBERT and caBERT Q&A
models when tested on the Moffitt fine-tuning testing data set
improved at each Q&A training stage (SQuAD, BioASQ, and
Moffitt training data; Figure S2 in Multimedia Appendix 1).
ClinicalBERT had higher accuracy than caBERT on the Moffitt
test set after each of the first 2 training stages. This suggests
that the specialized pathology-language tuning reduced
caBERT’s ability to learn from the SQuAD and BioASQ training
data sets. However, caBERT outperformed ClinicalBERT after
training on Moffitt pathology reports. This was true both for
exact match (3254/4068, 79.99%, for caBERT vs 3069/4068,
75.44%, for ClinicalBERT) and F1 score (87.76% for caBERT
vs 84.85% for ClinicalBERT).

The top N accuracy of predicting fine-grained site codes ranged
from 71.58% (1456/2034; top 1) to 91.05% (1852/2034; top 5),
without culling (Figure 5). The accuracy for predicting histology
codes ranged from 83.87% (1706/2034; top 1) to 94.79%
(1928/2034; top 5). Culling 6.39% (130/2034) of the test
samples—those site and histology codes with <5 samples in the
training data set—improved accuracy for site code prediction
to 73.84% (1406/1904; +2.26%; top 1) and 93.28% (1776/1904;
+2.23%; top 5). The same culling improved the accuracy of
histology code prediction to 85.29% (1624/1904; +1.42%; top
1) and 96.27% (1833/1904; +1.48%; top 5).

Figure 5. The effect of culling rare tumor sites and histologies on the top N accuracy of predicting fine-grained International Classification of Diseases
for Oncology, Third Edition codes.
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Group-Level Code Predictions
We also computed the accuracy of the more coarse–grained
group-level code predictions by mapping each top 1 code
prediction to its corresponding group in the ICD-O-3 ontology.
The accuracy of predicting group-level site codes was 93.53%
(1895/2026) overall (Figure 6). The ten most commonly
represented sites—(1) breast, (2) skin, (3) lung and bronchus,
(4) prostate gland, (5) corpus uteri, (6) thyroid gland, (7) kidney,
(8) large intestine, (9) rectum, and (10) ovary—included 79.42%

(1609/2026) of the test samples and had an accuracy of 97.7%
(1572/1609). Accuracies <80% were observed for connective
and soft tissues (15/29, 52%, with 29/2026, 1.43%, of the
samples), stomach (14/27, 52%, with 27/2026, 1.33%, of the
samples), gallbladder and extrahepatic bile ducts (14/18, 78%,
with 18/2026, 0.89%, of the samples), small intestine (10/13,
77%, with 13/2026, 0.64%, of the samples), retroperitoneum
and peritoneum (7/11, 64%, with 11/2026, 0.54%, of the
samples), and other (52/90, 58%, a collection of 27 sites totaling
90/2026, 4.44%, of the samples).

Figure 6. Accuracy of predicting tumor site group codes from unstructured and previously unseen pathology reports on solid tumors, broken down to
show performance within each site group. The overall accuracy over all site groups was 93.53% (1895/2026).

The accuracy of predicting group-level histology codes was
97.6% (1993/2026) overall (Figure 7). The ten most commonly
represented histologies—(1) adenomas and adenocarcinomas,
(2) ductal and lobular neoplasms, (3) nevi and melanomas, (4)
squamous cell carcinomas, (5) cystic mucinous and serous
neoplasms, (6) transitional cell papillomas and carcinomas, (7)

gliomas, (8) epithelial neoplasms, (9) complex mixed and
stromal neoplasms, and (10) lipomatous neoplasms—included
95.84% (1957/2042) of the test samples and had an accuracy
of 98.06% (1919/1957). An accuracy of <80% was observed
for epithelial neoplasms only (14/18, 78%, with 18/2042, 0.88%,
of the samples).
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Figure 7. Accuracy of predicting tumor histology group codes from unstructured and previously unseen pathology reports on solid tumors, broken
down to show performance within each histology group. The overall accuracy over all histology groups was 97.6% (1993/2042).

Discussion

Primary Contributions
This work describes 3 primary contributions. First, we created
caBERT: a BERT-based language model for comprehension of
cancer pathology reports. We are aware of only 1 other attempt
to create a pathology- and oncology-specific BERT language
model [45]. That study included 290,438 pathology reports
created between 2005 and 2015 from a tertiary teaching hospital
in the United States. However, only 8870 of these reports were
cases involving cancer. Our study included 275,605 pathology
reports from patients with cancer diagnosed or treated at Moffitt.
The larger corpus of cancer-specific reports should help our
system achieve higher performance levels with cancer-related
NLP tasks. However, because we did not have access to the
system described in the study by Ma et al [45], a direct
comparison with ours was not possible.

Second, we created a new Q&A system to extract tumor site
and histology descriptions from free-text pathology reports.
This is the first functional Q&A system for extracting

information from pathology reports that we are aware of. The
Q&A format has 2 important benefits. First, it provides a
user-friendly interface to the information extraction system.
Second, incorporation of additional questions into our system
is straightforward. With appropriate ground truth–labeled
training data, this should allow us to extract additional data
fields from free-text pathology reports.

Third, we created a new caBERT network, caBERTnet, to
predict fine-grained ICD-O-3 site and histology codes using the
answers extracted through the initial Q&A component. There
has been considerable prior work using NLP methods to predict
ICD-O codes from pathology reports [11,12,16,67]. Here, we
compare our results to 5 of the most highly cited recent
publications in this area.

Comparisons With Prior Work
Much of the prior work has focused on a single anatomical site
or histology. For example, Coden et al [16] described a system
to extract information on tumor site, histology, grade, lymph
nodes, tumor size, and reporting date from free-text pathology
reports of colon cancer. They achieved precision and recall
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values of between 0.95 and 0.98 for both site and histology
ICD-O codes. Their system used a rule-based NLP pipeline,
with a large number of controlling parameters that required
extensive manual tuning to obtain optimal results. In contrast,
BERT-based NLP systems can both discover and tune the steps
of a traditional NLP pipeline automatically [68]. This has
significant advantages in terms of reduced effort; in addition,
it allows these systems to be quickly retuned for data sets from
other institutions or different applications through transfer
learning [69].

The BERT system from Ma et al [45], mentioned earlier, was
used to extract information on 15 primary cancer sites, 6 cancer
reasons, and 3 metastatic disease states. In all, 11 of their cancer
sites corresponded to ICD-O-3 group-level site classifications
(eg, breast, lung, or bronchus). The others were broader
groupings (eg, colorectal, upper gastrointestinal, and head and
neck). Of their cancer reasons, 4 corresponded to ICD-O-3
group-level histology classifications (eg, melanoma and soft
tissue sarcoma). The remaining two cancer reasons were very
broad groupings: carcinoma and blastoma. They achieved
accuracies on the full test set of 96.7% and 98.5% for cancer
site and cancer reason, respectively. However, they did not
predict ICD-O-3 group or fine-grained codes.

Nguyen et al [70] developed a system to monitor Health Level
Seven International electronic pathology reports from across
the state of Queensland in Australia. Their system relied on
business rules and symbolic reasoning using Systematized
Nomenclature of Medicine codes. They tuned their system using
201 pathology reports and tested it on 220 unseen reports. They
extracted 8 different cancer characteristics from these reports.
These characteristics included ICD-O-3 site codes (both
fine-grained, Cxxx, and group, Cxx) and histological type. Their
data set included 66 sites and 94 histologies. They achieved F1
scores of 61.1%, 73.2% and 63.7% on fine-grained site codes,
group site codes, and histology codes, respectively.

Alawad et al [67] developed a multistage system of deep
convolutional neural networks to extract the primary site,
histological grade, and laterality from pathology reports. They
achieved an F1 score of 77.5% over 12 ICD-O-3 site codes.

Qiu et al [11] also developed a deep convolutional neural
network to extract ICD-O-3 codes from breast and lung cancer
pathology reports. Training was based on 942 pathology reports
annotated by cancer registry experts. The data set included 7
breast sites and 5 lung sites. Of the 12 sites, 6 had at least 50
samples per code. The remaining 6 sites had 10 to 50 samples
each. They evaluated their system using a 10-fold
cross-validation. Their overall F1 score for predicting tumor
sites across all 12 ICD-O-3 codes was 72.2%.

Our study included a greater diversity of cancer cases than
previous studies (214 site codes and 193 histology codes), while
obtaining similar or better accuracy scores. Many of the site
and histology codes in our training data set included ≤5 samples,
whereas prior studies reported ≥10 training samples per code.
Culling codes from the test set with ≤5 samples in the training
set reduced the size of our test data set by 6.39% (130/2034;
130 pathology reports). However, this increased our top-1
accuracy on the test data to 73.84% (1406/1904; +2.26%) and

85.29% (1624/1904; +1.42%) for site and histology,
respectively. Our system also ranks and reports the top 5
predictions for ICD-O-3 site and histology codes. This has useful
clinical applications: often there is a degree of uncertainty or
hedging in pathology reports [16]. Listing the top 5 predicted
codes could help to reduce this uncertainty. For example, an
artificial intelligence–assisted abstraction system that provides
the top 5 predicted ICD-O-3 codes for a particular pathology
report (in a pull-down menu, for example) could aid the process
of abstraction and enhance the workflow in cancer registries.
Our top 5 accuracies for fine-grained codes with ≥5 training
samples were 92.95% (1794/1930) and 96.01% (1853/1930)
for site and histology, respectively.

Additional Insights From the Results
Figure 5 shows the top 5 results at various levels of rare-code
elimination from the test data set, and it provides 3 additional
insights. First, as N increased from 1 to 5, the improvement in
accuracy for sites was larger than that for histologies. This
suggests that there is more uncertainty predicting site codes
than in predicting histology codes. Second, eliminating rare
codes, for example, going from E=0 (green lines) to E=5 (blue
lines; Figure 5), improved site accuracy more than it improved
histology accuracy. This suggests that site prediction was more
dependent on sample size. Third, site accuracy failed to improve
for E>20. This suggests that 20 samples per code were required
to maximize site code prediction accuracy.

The overall accuracy for predicting site group codes was 93.53%
(1895/2026) (Figure 6). Nevertheless, several site group codes
had accuracies <80%. Here, we will discuss the Other group
(52/90, 58%, accuracy), along with two of the site group codes
with the lowest accuracies: C49 Connective, Subcutaneous, and
Other Soft Tissues (15/29, 52%, accuracy) and C16 Stomach
(14/27, 52%, accuracy).

The Other site category included 27 group codes. Together,
these group codes contained 61 fine-grained codes with at least
one sample pathology report each in the training data set, as
determined by the MCR. The mean and median number of
reports in the training data set for each fine-grained code in the
Other category were 6.3 (SD 6.3) and 4 (IQR 5), respectively.
Consequently, caBERTnet accuracy on these rare sites was
likely limited by the availability of training data.

caBERTnet failed to predict the MCR site code for 14 test cases
in the group C49 Connective, Subcutaneous, and Other Soft
Tissues. We manually reviewed 50% (7/14) of these cases, all
of which were labeled by the MCR as soft tissue of the limb,
shoulder, and hip or pelvis (codes C491, C492, and C495). In
14% (1/7) of these cases, the information required to determine
the correct site was not present in the pathology report text. In
these situations, CTRs would use additional information in the
patient record. However, this information was not available to
caBERTnet. In the remaining 86% (6/7) of the cases, the
pathology report described characteristics of a lesion that had
metastasized from the limb, shoulder, hip, or pelvis to another
location. The MCR recorded the originating organ as the tumor
site, whereas caBERTnet predicted the metastasis site.
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caBERTnet failed to predict the MCR site code for 13 test cases
in the group C16 Stomach. All these cases were labeled by the
MCR as C160 Cardia, NOS, and by caBERTnet as lesions of
the lower third of the esophagus (C155; 12/13, 92%) or as
overlapping lesions of the esophagus (C158; 1/13, 8%). The
MCR labels are due to a rule in the American Joint Committee
on Cancer Staging Manual, Eighth Edition [71]. On page 189
in that manual it states as follows:

Cancers involving the Esophagogastric Junction
(EGJ) that have their epicenter within the proximal
2 cm of the cardia (Siewert types I/II) are to be staged
as esophageal cancers. Cancers whose epicenter is
more than 2 cm distal from the EGJ, even if the EGJ
is involved, will be staged using the stomach cancer
TNM (primary tumor, lymph nodes, and distant
metastases) and stage groupings (see Chapter 17).

The pathology reports on these cases did not mention the spatial
location of the tumor sample in relation to the EGJ.
Consequently, measurement of the tumor location in
pretreatment imaging was required to determine the correct
tumor site code.

The overall accuracy for predicting histology group codes was
97.7% (Figure 7). Only one group code had an accuracy <80%:
801-804 Epithelial Neoplasms, NOS (77.8%). caBERTnet failed
to predict the MCR histology code for 5 of these cases. In 80%
(4/5) of these cases, the pathology report was based on histology
at the metastatic site of disease. The MCR coded these as the
histology of the originating tumor, whereas caBERTnet
predicted the histology at the metastatic site. In 20% (1/5) of
the cases, the information required to determine the correct
histology code was not present in the pathology report and
required the CTR to conduct a review of the patient medical
record.

The last case was quite interesting because the pathology report
included an initial intraoperative diagnosis that disagreed with
the final diagnosis. The former indicated a histological type of
spindle cell carcinoma. The latter included the following
statements: “the differential diagnosis includes sarcomatoid
carcinoma and inflammatory myofibroblastic tumor...the
histomorphologic and immunoprofile support the diagnosis of
sarcomatoid carcinoma.” The MCR coded the histology as
8032/3 spindle cell carcinoma, NOS, based on the intraoperative
statements, whereas caBERTnet predicted 8033/3
pseudosarcomatous carcinoma. The phrase sarcomatoid
carcinoma is an alternative form of the ICD-O-3 preferred
phrase pseudosarcomatous carcinoma. Although caBERTnet’s
prediction did not agree with that of the MCR, downstream
applications may still value automatic prediction and
codification of the final diagnosis.

Potential Applications
There are multiple potential applications of caBERTnet at
Moffitt. For example, there is a delay of several months between
initial pathology report dictation and CTR abstraction because
the CTRs typically wait for enough time to have elapsed for the
first course treatment to have been administered to minimize
the number of times they have to review the medical record.

caBERTnet can be used to extract information from pathology
reports in a timelier way, thus facilitating the use of the data for
clinical pathway reporting and screening for clinical trials.
Furthermore, CTRs only abstract the subset of pathology reports
associated with the cancer diagnosis and first-course treatment.
caBERTnet could be used to extract information from pathology
reports associated with subsequent biopsies and surgeries that
would never be manually curated by the CTRs. To facilitate
these use cases, we plan to extract tumor site and histology
information close to real time and link these values to other
patient data stored in our analytics platform. These data can be
incorporated into real-time dashboards and data sets for a wide
range of decision support and research applications.

We do not believe that caBERTnet will replace CTRs at cancer
clinics. Many complex, difficult, and rare cases require intuition
and information outside of the pathology report to determine
the correct coding. These cases are beyond the scope of an NLP
tool. However, caBERTnet may help simplify and accelerate
MCR workflows. For example, caBERTnet could preprocess
pathology reports to identify the top 5 site and histology
ICD-O-3 codes and their corresponding phrases. The phrases
could then be highlighted within the report body. In addition,
two pull-down menus could be prepopulated with top 5 code
predictions: one for site and the other for histology. The CTR
could then quickly choose a code from either pull-down menu.
If the correct code was not among the top 5, then the CTR would
resort to their current workflow, entering this information by
hand.

Limitations of Approach
Although there are immediate applications of the caBERTnet
model within our internal workflows, there are a number of
aspects of our modeling approach that limit the application of
caBERTnet to other use cases. In this section, we provide an
overview of several important limitations that we believe should
be considered before caBERTnet implementation.

The most critical limitations correspond to issues related to our
data curation and preprocessing approaches. In the curation of
our Moffitt fine-tuning data set, we restricted the available
reports to only those containing a single primary tumor
diagnosis. Although this was partly imposed by the nature of
the SQuAD Q&A task (which expects a single answer to each
question asked of each input), it nonetheless limits the
generalizability of our model to reports containing multiple (or
zero) positive diagnoses. We are exploring methods of
mitigating these issues within the current setup by adjusting the
likelihood thresholds for output predictions that could be used
to screen out reports with no diagnosis. Another limitation
inherent to a Q&A system is the necessity of knowing the
precise span of text corresponding to the answer to each question
asked of each report. Owing to the sheer number of reports in
our fine-tuning data set, it was infeasible to manually curate
answer labels. To circumvent this issue, we chose to create our
own automated system to determine the answer text in each
report. Any such automated preprocessing necessarily leaves a
fingerprint on downstream tasks. The drawbacks of our approach
in particular relate to the restriction of answers from a
predetermined list of possibilities for each site and histology.
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Although these phrase sets were diverse (and our approach even
allowed for permutations of phrasing within these terms), this
process nevertheless limits the allowed terminology and is
necessarily incomplete.

In addition, a single pathology report may reference several
tissue samples (which can be from related or distant sites from
the actual site of diagnosis). Although we limited our automated
answer-search preprocessing algorithm to only find terms
associated with the known diagnosis label for each report, it is
possible that the answer found in the report text by the
preprocessing corresponds to a false answer from a different
sample in the report; this is particularly relevant for cases with
multiple samples from related sites (eg, upper outer quadrant
breast vs upper inner quadrant breast). When the 2 samples are
in the same site (or histology) group, this issue is avoided by
outputting the group code; however, this does not help when
the 2 samples belong to different groups altogether.

Future Directions
We plan to continue development of caBERTnet. Of particular
interest is extending the system with additional questions and
MCR-derived ground truth labels to train it to extract additional
tumor characteristics. These include grade, size, involvement
of lymph nodes, primary or metastatic status, presence or
absence of molecular markers, and others. caBERTnet could
also be customized to extract information on hematological
malignancies.

A caBERTnet-assisted MCR abstraction tool could also be used
for active [72] or human-in-the-loop [73] learning. Briefly, this
approach uses human-labeled data to improve the performance
of machine learning algorithms over time. It is particularly
useful when the subject matter expert (a CTR in our case)
provides labels for cases with low-confidence predictions by
the machine learning algorithm. However, it would require
careful engineering to avoid common pitfalls and ensure
seamless operation [74].

The system’s accuracy on rare sites and histologies could be
improved with additional training data. A potential option may

be to collaborate with other academic cancer centers; distributing
caBERTnet for training on local pathology reports at other sites
based on ground truth labeling of training and test data sets from
highly standardized registry data or the application of federated
multitask learning [75] that distributes copies of a central model
to multiple spoke sites for tuning of the central model on local
data could allow vast improvements in caBERTnet accuracy.
Using these methods, information learned at local sites (eg,
model weights) is transmitted back to the central node where
the information is combined in a pluralistic way that avoids the
need to impose consensus on the data distributions at the spoke
sites. This allows for both heterogeneity in local data and broad
generalizability of the central model. That said, the most
effective way to protect private health information when sharing
such models remains an unsolved problem, and these kinds of
expansions would depend on the development of validated
privacy schemes specific to BERT.

Conclusions
Our new NLP system, caBERTnet, is built around a network
of 3 cooperating BERT instances. On a sequestered test data
set, it produced top 5 accuracies of 92.95% (1794/1930) and
96.01% (1853/1930) for fine-grained ICD-O-3 site and histology
codes, respectively. This level of accuracy is on par with existing
systems in the literature, while also being accurate over a
broader range of site and histology groups.

Pathology report abstraction systems such as caBERTnet cannot
be expected to achieve performance on par with CTRs who
abstract data ultimately incorporated into population-based
cancer registries [76], given the vast amount of ancillary data
from within the electronic health record that is required for
thorough abstraction and the subtle nuances associated with
coding guidelines. However, caBERTnet could expedite access
to timely pathology data needed for disease surveillance, cohort
identification, and clinical trial matching. Furthermore, it can
improve existing workflows, serving as a valuable step toward
the ultimate goal of a mostly automated abstraction system.
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Abbreviations
BERT: bidirectional encoder representations from transformers
BioASQ: Biomedical Semantic Indexing and Question Answering
caBERTnet: CancerBERT network
CTR: certified tumor registrar
EGJ: esophagogastric junction
EMR: electronic medical record
ICD-O-3: International Classification of Diseases for Oncology, Third Edition
MCR: Moffitt Cancer Registry
MIMIC-III: Medical Information Mart for Intensive Care, version 3
NLP: natural language processing
NOS: not otherwise specified
Q&A: question and answer
SEER: Surveillance, Epidemiology, and End Results
SQuAD: Stanford Question Answering Dataset
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