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Abstract

Background: Sleep influences moods and mood disorders. Existing methods for tracking the quality of people’s sleep are
laborious and obtrusive. If a method were available that would allow effortless and unobtrusive tracking of sleep quality, it would
mark a significant step toward obtaining sleep data for research and clinical applications.

Objective: Our goal was to evaluate the potential of mobile sensing data to obtain information about a person’s sleep quality.
For this purpose, we investigated to what extent various automatically gathered mobile sensing features are capable of predicting
(1) subjective sleep quality (SSQ), (2) negative affect (NA), and (3) depression; these variables are associated with objective
sleep quality. Through a multiverse analysis, we examined how the predictive quality varied as a function of the selected sensor,
the extracted feature, various preprocessing options, and the statistical prediction model.

Methods: We used data from a 2-week trial where we collected mobile sensing and experience sampling data from an initial
sample of 60 participants. After data cleaning and removing participants with poor compliance, we retained 50 participants.
Mobile sensing data involved the accelerometer, charging status, light sensor, physical activity, screen activity, and Wi-Fi status.
Instructions were given to participants to keep their smartphone charged and connected to Wi-Fi at night. We constructed 1 model
for every combination of multiverse parameters to evaluate their effects on each of the outcome variables. We evaluated the
statistical models by applying them to training, validation, and test sets to prevent overfitting.

Results: Most models (on either of the outcome variables) were not informative on the validation set (ie, predicted R2≤0).

However, our best models achieved R2 values of 0.658, 0.779, and 0.074 for SSQ, NA, and depression, respectively on the training

set and R2 values of 0.348, 0.103, and 0.025, respectively on the test set.

Conclusions: The approach demonstrated in this paper has shown that different choices (eg, preprocessing choices, various
statistical models, different features) lead to vastly different results that are bad and relatively good as well. Nevertheless, there
were some promising results, particularly for SSQ, which warrant further research on this topic.

(J Med Internet Res 2022;24(3):e25643) doi: 10.2196/25643
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Introduction

Background
Sleep is important for well-being and plays a key role in people’s
mood and their risk for mental health problems such as
depression. Therefore, obtaining a reliable picture of people’s
sleep quality critical for the study, prevention, and treatment of
mood disorders. However, most of the existing methods are
based on obtrusive techniques, either asking participants to wear
dedicated technological devices (in the laboratory or otherwise)
or to self-report their sleep patterns in a sleep diary. Therefore,
both methods are burdensome for individuals and are not
appropriate for long-term monitoring. If a method that is capable
of unobtrusively tracking a person’s sleep quality is developed,
it would mean an important leap forward. One potential solution
is the use of smartphones that have become ubiquitous in today’s
society. Approximately 76% of adults in countries with
advanced economies have a smartphone [1], a device equipped
with several sensors that automatically record user behaviors,
some of which may be considered sleep-related ones. This study
aims to examine to what extent automatically recorded
information with smartphones—known as mobile sensing—can
be used to predict self-reported subjective sleep quality (SSQ),
mood, and the risk of mood disorders in the form of depression.

Sleep quality can be measured either in terms of subjective,
self-reported sleep quality or can be captured with objective
measurements such as polysomnography (PSG) and more
recently actigraphy. Subjective and objective sleep quality are
only weakly related [2-4] because they measure different aspects
of sleep quality, namely physical sleep quality (objective) or a
person’s perception of sleep quality (subjective). However, they
are both predictive of moods [5-7] and mood disorders [8-10].
Given the obtrusiveness of objective measurement methods and
their adversity to use over long periods, we focus on predicting
SSQ. Therefore, the primary outcome of this study is to measure
SSQ with mobile sensing. As a secondary outcome, given the
relevance of sleep quality for moods and mood disorders, we
will examine to what extent mobile sensing is capable of
predicting moods in terms of the daily negative affect (NA) and
risk for mood disorders in terms of depression symptom severity.
Thus, the underlying mechanism (and the underlying data on
which this mechanism relies) is the relation between sleep and
mental health.

Related Work
In most studies, an accelerometer is used to detect smartphone
movements that are seen as synonymous with participant
movements in bed [11-14]. Such movement detection is also
used in commercial sleeping apps, such as Sleep as Android
[15], Sleep Cycle [16], and Apple’s native health app.
Accelerometers can be used for movement detection with and
without instructions to the participants. For example, researchers
can instruct participants to place their smartphone next to or
under their pillows. However, for the sake of ecological validity,
this is usually not recommended. Another seemingly
straightforward feature indicating sleep is whether the
smartphone is being used (ie, screen on/off events) [14,17].
These screen events have proved useful for detecting circadian

rhythms and people’s temporal sleep preferences [18]. A more
contextual feature comes from the light sensor; ambient light
indicates whether a room is dark and thereby helps determine
whether a participant is sleeping [12,19,20]. Similarly, a
microphone can pick up ambient sound, thereby confirming
whether a participant is in a quiet environment [11,14,20].

Early efforts were made, for example, using location (GPS),
contextual (sound and light), physical activity (accelerometer),
and communication data (text and call logs) to infer SSQ
measured with the Pittsburgh Sleep Quality Index [21], divided
into 4 categories [22]. Using these features in a factor graph
model, an accuracy of 78% was achieved. Other pioneering
research on mobile sensing and sleep was conducted by
comparing the quality of a smartphone accelerometer with an
actigraph accelerometer for sleep monitoring [23]. Both devices
showed reasonable agreement with all features except sleep
onset latency. However, on a more critical note, 1 study [24]
found no significant correlation between sleep measured by
PSG and a smartphone app, although the mobile app did have
high sleep-wake detection performance (85.9%) in relation to
PSG. Thus, although mobile sensing for sleep detection has
attained modest success, it is unclear how robust these methods
are to changes in features and how well they describe sleep in
comparison to PSG.

Despite PSG being considered the gold standard for sleep
research, it is being recently rivaled by numerous wearable
devices that feature an integrated accelerometer (among other
sensors). Moreover, a mobile app was developed that achieved
better user experience and lower perceived intrusiveness than
wearables [11]. Using light, phone usage (including screen
state), physical activity, and sound features in a completely
“hands-off” approach, the app had an estimated sleep duration
error of approximately 42 minutes, a slightly worse result than
the other sleep detection methods, with 23 minutes when the
smartphone is on the bed and 10 minutes for wearables.
Subsequently, an app called StudentLife was developed with
which a significant negative correlation among sleep, depression,
and stress was found [19]. By using the same features as those
in an earlier study [11], 95% of bedtimes were predicted with
an error of 25 minutes from the ground truth as measured with
an actigraph (Jawbone UP). Bringing the sensing accuracy of
smartphones on par with that of wearables is significant because
wearables are still not pervasive, thus making smartphones the
least obtrusive solution for now.

A more indirect way of assessing sleep is by dividing a night
into small epochs and predicting whether a participant is asleep
or awake through self-reported bed and wake-up times or
actigraphy. Of course, these sleep-wake states can then be used
to derive other features that may subsequently be used for
predicting sleep proxy measures. For example, 10-minute
segments of sleep-wake states were predicted with 93%
accuracy, but daily sleep quality was predicted with 84%
accuracy [12]. Similarly, 15-minute bins were predicted with
89% accuracy using only screen on/off events [25]. Furthermore,
88.8% accuracy was reported when determining whether a
10-minute segment was a sleep state, whereas using the time
of day alone achieved 86.9% accuracy [26]. Moreover, the
accuracy per participant ranged from 65.1% to 97.3% although
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lower accuracies could mostly be attributed to missing data
reports and misreports. After adjustments, the accuracy was
increased to 91.8%, corresponding to a median absolute
deviation (MAD) of 38 minutes for the sleep start time and 36
minutes for the sleep end time.

This Study
We analyzed data from a 2-week study involving various
smartphone sensors and the experience sampling method (ESM,
also known as ecological momentary assessment) to collect
SSQ in the morning and daily moods in terms of NA, as well
as a 1-time assessment of person-level depression using a
validated depression screening instrument. As mentioned above,
several theoretically and empirically based predictions can be
made regarding what sensors are the most significant for
predicting SSQ and the associated variables of daily moods and
depressive symptom severity. In addition, there are multiple
ways to process the data based on different thresholds and data
combinations, and there are different options to model the
relationship between mobile sensing and the predicted variables.
To examine this variability, we perform a multiverse analysis
[27] in which we compare prediction results across multiple
sensors, extracted features, thresholds, outlier methods, and
prediction models. In other words, essentially all sensible
combinations of these aspects, choices referred to as multiverse
parameters, are evaluated in terms of how they are capable of
predicting the outcome measures. Using this approach, this
study not only aims to predict sleep with mobile sensing but
also to investigate (1) which model, (2) which feature, and (3)
which sensor works best within the context of the study.
Consequently, this method is an analysis of robustness and
transparency because it shows how different choices affect the
outcome.

Methods

Overview of Data Preprocessing
As already mentioned earlier, we focused on the many
seemingly arbitrary choices to be made during data
preprocessing. Consequently, we performed a multiverse study
showing the robustness of these choices. Following this
approach, this section describes each aspect of the multiverse
approach separately. First, various preprocessing steps were
conducted for minimizing the number of participants with faulty
data, namely removing participants with fewer than 10 data
points for a sensor, sensors where all values were 0 (broken
sensor), and 1 participant who had 40,000 times more data points
than the participant with the second highest number of data
points. In this regard, we present preprocessing of the different
sensors in this study and describe when they are considered to
indicate that a participant is sleeping, often having more than
1 threshold. Next, we discuss how features were built. These
features are used in various statistical models. In the context of
a multiverse approach, we experimented with several models
to see which one worked best. Finally, we tried different outlier

removal methods to catch faulty data entry and unlikely data
instances.

Data Collection
Data were collected during a 2-week study in 2018 [28].
Participants installed 2 separate apps on their smartphones, 1
for collecting sensor data and 1 for tracking their moods and
SSQ using ESM. Mobile sensing data were gathered from
specific (software) sensors to account for behavioral and
contextual factors. These sensors are described in Table 1.
Participants were instructed to charge their smartphones at night
and connect to Wi-Fi whenever possible. On the other hand,
data on the participants’ SSQ and NA were collected using
ESM, where they were prompted 10 times per day with a
16-item questionnaire measuring, among other parameters, their
momentary (positive or negative) affect and how they slept if
it was their first survey of the day. Depression levels were
recorded only after the study using the Depression, Anxiety and
Stress Scale questionnaire [29,30]. Katholieke Universiteit 
Leuven’s Social and Societal Ethics Committee, whose
directives are based on the Helsinki Declaration, approved the
study (reference no. G-2018 01 1095). Written electronic
consent from all subjects included in this study was obtained.

In total, 230 people responded to the participant selection
questionnaire posted on social networking sites and other places
frequented by students at the University of Leuven. Participants
were excluded if they (1) did not understand Dutch, (2) did not
have sufficient activity on their devices, (3) did not own an
Android smartphone (except Huawei, Wiko, Medion, or
Xiaomi), and (4) did not grow up with smartphones (ie, below
32 years of age). Among the 114 individuals who participated
in an information session, 69 decided to join; 2 refused to sign
the informed consent, and app installation failed for another 2
individuals. After excluding 5 participants who completed fewer
than 30 ESM surveys, 60 participants remained. Furthermore,
all data were preprocessed such that participants with fewer
than 10 observations in total or only 0s (indicating a broken
sensor) were left out. Single observations were left out if they
were far away in time from any other observations (ie, if there
was a gap in time in the data) using boxplot outliers. Next,
values for each sensor were visually inspected to exclude
participants who had very poor data quality. Participants were
only retained if they had sufficient data for all sensors (ie, more
than 10 observations), resulting in a final data set of 50
participants. Because participants were mainly university
students and advertising was mainly done on social media and
the campus of the faculty of psychology, the majority of the
sample was young and female (14 male and 36 female aged
17-32 years, mean 21.90, SD 2.38 years).

Sensor Data Preprocessing
In this study, we used the following sensors: accelerometer,
charging status, light sensor, Android activity recognition
(AAR), screen activity, and Wi-Fi status. Table 1 gives an
overview of the sensors and how their data were handled to
obtain information on participants’ sleep quality.
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Table 1. Description of sensors used in this studya.

Indication of sleeping when...ConsiderationsDescriptionSensor

Absolute value is less than (0.25, 0.5,

1) m/s2.

Other axes (y and z) not measured ow-
ing to programming error

Acceleration in m/s2 along the x-axisAccelerometer

Battery is charging.Momentary sleep interruptions are un-
likely to be picked up by this sensor.

Indication of whether the smartphone is
charging

As participants were instructed to leave their
smartphone charging at night, a charging
smartphone can mean that the participant is
sleeping.

Charging

Value is less than

(8, 12, 16) lux.

Room with translucent curtains may
simulate a wake-up state.

Smartphone may be upside down.

Illuminance in luxb captured by the light
sensor (usually at the front-top side of the
smartphone)

Light

AAR returns “Still.”Proprietary algorithm obfuscates how
AAR is transformed into discrete activ-
ities.

Category of physical activity as measured

by AARc (ActivityRecognitionApi app)

Physical activity

Screen is off.Duplicate entries (screen off multiple
times without screen on) are frequent.

There is no distinction regarding
whether the app turned the screen on
(eg, notifications) or the participants.

Logs whether the screen has been changed
to on or off.

Screen activity

Connected to Wi-Fi.Unlikely to pick up temporary wake-
up states

Information about whether the smartphone
is connected to Wi-Fi

Wi-Fi

a The considerations column discusses issues that are (likely) associated with the sensors or their implementation. The sleeping when... column indicates
when a sensor decides that a participant is sleeping in a window. Multiple values in parentheses indicate that the same data have been used but with a
different cutoff value.
blux is the SI unit for intensity.
cAAR: Android activity recognition.

One of the core elements in this multiverse study is inspecting
each sensor and applying suitable preprocessing. The
accelerometer was thought to be highly indicative of the sleep
state [14,20]. However, as this sensor was sampled only every
2.9 minutes on average (SD 6.72 minutes with the longest
interval being 15 minutes), only movement at that specific
moment leads to the detection of a nonsleeping state. Additional
problems with this sensor were that owing to a programming
error, only the x-axis data were collected and the sensor in the
participants’ smartphones was uncalibrated. The latter issue led
to some accelerometers not showing 0 acceleration at their
lowest point. To offset this, accelerometer values were centered
per participant, and the absolute values were calculated
subsequently, such that a corresponding sleep or wake state
could be derived from the threshold values specified in Table
1. As the accelerometers were not calibrated beforehand, we
attempted to align them by centering. Moreover, for every
acceleration, there must be an opposite deceleration. Physical
activity is the product of on-the-fly processing by Google’s
AAR [31]. In brief, AAR runs an algorithm that combines
multiple sensors to form discrete activities. In this research,
only the activity “Still” was used because this indicates that the
smartphone is not moving (whereas the other activities indicate
some type of movement).

The screen state software sensor was preprocessed in such a
way that interactions of less than 12 seconds were ignored. This
is necessary because some of the smartphone screens light up
whenever there is a new notification and thus pollute the actual

stream of the screen state. On the other hand, if people use their
smartphone in the middle of the night for, say, checking the
time, this will most likely also be thrown out. For the charging,
light, and Wi-Fi sensors, no further preprocessing was applied.

After cleaning the data, the participant’s nights were divided
into windows of 5 minutes. To avoid a high number of false
positives, only data from 10 PM to 10 AM on the next day were
considered. For each window and sensor, a majority vote
determined whether a participant was sleeping. For example, if
the app sensed that the smartphone was charging twice and that
it was not charging once (within the same window), a majority
vote set the window to sleeping. If there were no data in the
window, the last observations (ie, of the previous window) were
carried forward.

Feature Creation
Several features were extracted from the data that were deemed
indicative of sleep quality. Figure 1 displays a visual example
of all the features explained in this section. The basic building
blocks for most features are the BedTime and WakeUpTime
features that are found by examining 3 to 5 adjacent windows
where a participant is sleeping (BedTime) or not sleeping
(WakeUpTime) according to a sensor. Concretely, for the first
3 to 5 adjacent windows where a participant is sleeping, the
first window of that sequence is the BedTime window. The
opposite is true for WakeUpTime, namely the first window of
the first 3 to 5 adjacent windows where a participant is not
sleeping.
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Figure 1. A fictional example of the features used in this study. This figure only depicts the first and last hours of the windows for illustration purposes,
where the … obscures the rest of the night. Gray bars indicate sleep states, and white ones indicate nonsleeping states. The night starts at 10:20 PM (ie,
before the first sleeping window) because BedTime requires 3 to 5 adjacent windows (4 windows in this example). Similarly, WakeUpTime starts at
9:20 AM because this denotes the start of 3 to 5 adjacent windows, depending on the chosen parameters. Notice how SleepTime is the time between
BedTime and WakeUpTime, whereas TotalSleep is simply the sum of all the sleeping windows. Finally, the number of interruptions is given as the
number of nonsleeping sequences minus the number of sleeping sequences; the interruptions duration feature includes all the nonsleeping windows
within SleepTime.

From the initial features of BedTime and WakeUpTime, several
others could be calculated as well. First, SleepTime was
calculated as the time between BedTime and WakeUpTime.
Second, sleep quality may be impacted when a participant sleeps
unusually longer or shorter than usual. To capture this, we
computed the deviation from each participant’s average
BedTime and WakeUpTime (in hours) for each night
(abbreviated as devAvgBedTime and devAvgWakeUpTime,
respectively). Hours have been recentred such that 10
PM=0,11=1...,10=12. Third, the number and duration of nightly
interruptions (abbreviated as nInterruptions and
InterruptionsDuration, respectively) are calculated as follows:
Every pattern of neighboring wake-up minus the sleeping
windows counts as one interruption, and the total number of
nonsleeping windows forms the total duration (multiplied by
the window size of 5 minutes). Both features are only calculated
within the interval of BedTime – WakeUpTime, also known as
the SleepTime.

As we did not know the validity of BedTime and
WakeUpTime—based on which all features discussed so
far—we added a feature called TotalSleep that is simply the
number of sleeping windows at night (10 PM-10 AM) multiplied
by the window size (ie, 5 minutes). Another feature not based
on sleep or wake-up times but can be useful is the physical
activity of the previous day, as measured by AAR. Concretely,
UserActive is the sum of the time spent walking or cycling
during the previous day.

Modeling Approach
As the purpose of this research was to predict SSQ, which
cannot be measured directly, we used proxy measures to validate
our approach. In particular, we trained models to predict the
SSQ reported each morning, average NA of the next day, and
the participants’general level of depressive symptoms. All these

variables are on a scale of 0 to 100. The input features used
were those described in the previous section (ie, SleepTime,
devAvgBedTime, devAvgWakeUpTime, nInterruptions,
InterruptionsDuration, UserActive, and TotalSleep). For better
understanding the effect of independent variables on dependent
variables, only 1 input feature (eg, SleepTime) per dependent
variable was used. Therefore, 21 combinations of independent
and dependent variables had to be tested. We also attempted
using several models to see which one worked best. We applied
multilevel models (MLMs) [32], k-nearest neighbors (kNN)
[33], support vector machines (SVMs) with a radial kernel [34],
extreme gradient boosting (XGB) [35], and generalized additive
models (GAMs) with smoothing splines [36]. For predicting
depression, linear models (LMs) were used instead of MLMs
because these data do not have a nested structure (ie, every
participant has only 1 data instance). All these models were
trained and tuned using the caret package in the R statistical
software package [37]. Because there were several missing sleep
values (see the Results section), we decided to apply only
generalized and not personalized models because these would
be left with too few observations.

Outlier Analysis
Because of the noisy nature of this type of data, outlier analysis
may be needed to remove unlikely observations. Several
strategies are available to detect outliers, including a strategy
where no outliers are removed. A simplistic method for doing
this is by subtracting a multiple of the SD from the median.
First, the median was chosen because some variable distributions
may be significantly skewed, and secondly, we chose to multiply
the SD by 3 because we only wanted to throw out those
observations that were truly outliers. A slightly adjusted version
of this method is one that does not use the SD but uses the MAD
because this is often a more robust measure of dispersion.
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Finally, a multivariate outlier method was also applied, namely
isolation forests that work by building a decision tree to isolate
anomalies [38,39]. Outlier observational strategies were also
parameters evaluated in this multiverse analysis and are given
in Table 2.

Multiverse
As mentioned earlier, an important aim of this study is to
evaluate the effect of several data preprocessing, sensor, and
modeling choices on the prediction of sleep quality, mood, and
depression via a multiverse study. Table 2 gives an overview
of all the multiverse variables.

Table 2. Multiverse parameters and values considered in this studya.

Number of values (N)Parameter

10Sensors

Sensor thresholds for sensors listed in Table 1

7Features

devAvgBedTime

devAvgWakeUpTime

InterruptionsDuration

nInterruptions

SleepTime

TotalSleep

UserActive

3Outcome variables

Subjective sleep quality

Negative affect

Depression

5Models

Generalized additive models with smoothing splines

k-nearest neighbors

Mixed effects models

Support vector machines

Extreme gradient boosting

4Outlier removal

None

median(x) ± 3σx per participant

median(x) ± 3 × madb(x) per participant

Isolation forests; Liu et al [38]; Cortes [39]

3Feature thresholds

3 to 5 adjacent windows

12,600Total number of combinations

aFor each parameter, N indicates how many values are there so that the total number of combinations is the product of N.
bmad: median absolute deviation.

Because there are 12,600 combinations in this multiverse setup,
overfitting plays an even larger role than usual; that is, simply
splitting the data set into a training and test set would lead us
to choose the model that overfits the training and test sets the
most. Therefore, our workflow to minimize overfitting followed
a hold-out set approach given below [40]:

1. Split the data into training, validation, and test sets.

2. Train all models on the training set.
3. Validate these models on the validation set based on R2.
4. For each outcome variable, choose models (maximum of

5) within 1 SE from the best model (known as the 1-SE
rule) [41,42].

5. Test these best models on the test set using R2.
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In this procedure, the training set contains the data of the first
week whereas the validation and test sets contain data of days
1 to 4 and days 5 to 7 of the second week, respectively.
Alternatively, as we used only 1 data instance per participant
when predicting depression, the data set was split such that 60%,
20%, and 20% of the participant data used for the training,
validation, and test sets, respectively, were stratified by gender.
By doing this, we extracted only the best models based on the
validation set and then used them on the test set to confirm if
they overfitted the test set. Results were measured by their

predicted R2 [43], a performance metric that is calculated as
follows:

where n represents the number of data points, Y is the vector of
the observed values, and is the vector of the predicted values.

In essence, this representation of R2 is a scaled version of the
commonly used mean squared error when applying machine
learning models or cross-validation.

Results

Missing Data
An important consideration in this type of data is missingness.
There are multiple reasons for this. First, participants were

prompted with only 14 beeps asking about SSQ in total, so
missing 1 beep could have led to the loss of valuable data.
Second, preprocessing and outlier removal techniques are
responsible for deleting even more data. This coincides with a
third major reason for missing data; the wake-up time was often
not found for several sensors. This is especially true for the light
sensor possibly because it could not detect enough instances
where the illuminance was higher than the threshold because
the threshold was too high, the phone was upside down, or the
phone disappeared inside the participant’s pocket quickly after
waking up; there could be other reasons as well. In our analyses,
missing data were not imputed but considered as missing at
random.

Descriptive Statistics
To obtain a better understanding of what the features encompass,
Figure 2 presents boxplots for each feature per sensor. The
displayed variation can be interpreted as how the values of the
features change based on what settings (excluding the prediction
model choices) are chosen for the multiverse parameters.
Therefore, this variability is not related to the variability of
features over participants; it purely highlights the robustness of
the features with regard to the multiverse choices.
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Figure 2. Boxplots showing how different settings in this multiverse study (for parameters see Table 2) affect each feature per sensor. The smaller the
range of the boxplot, the more robust a feature is to multiverse choices. The feature for physical activity performed the previous day (UserActive) is
not shown because this value does not vary with any multiverse parameter except in outlier analysis. Observe that the x-axis shows hours except in the
case of nInterruptions, which shows a count. Moreover, avgBedTime and avgWakeUpTime are influenced by the criterion for defining a night, namely
from 10 PM to 10 AM.

In general, the values within the features in Figure 2 vary
considerably, depending on the sensors and other multiverse
parameters. There are many outliers that can either represent
true patterns or that occur because of data anomalies. Because
of the explorative nature of this study and the many
combinations we attempted, we assumed the actual patterns to
be restricted to the boxes and whiskers, with outliers
representing rare behavior or, more likely, data errors. We will
now describe some of the key observations and patterns
regarding specific features.

First, notice that devAvgBedTime and devAvgWakeUpTime
are skewed toward 0. This occurs because these features are the
deviations from the mean bedtime or wake-up time. Deviations
for bedtime are usually not too high, but for the wake-up time,
they seem more problematic. For bedtime, the range for some
sensors is very small and skewed toward 0 (ie, at 10 PM),
indicating that on average, participants went to bed as soon as
the night started or possibly even earlier, no matter what values
the multiverse parameters have. On the other hand, the spread
for wake-up time is rather large, indicating that changing

multiverse parameters substantially impacts this feature. A
second observation is that SleepTime appears to be more stable
than TotalSleep, although this is not true for every sensor (eg,
screen state).

One of the aims of conducting this multiverse experiment was
to consider different thresholds for the light sensor and
accelerometer. The light sensor provides consistent results for
most features (ie, less spread), but this is mostly because almost
all participants’ bedtime is immediately at 10 PM. In other
words, the highest variability appears to stem from a fluctuating
wake-up time. For the accelerometer, a lower threshold
corresponds to a later bedtime, a later wake-up time, and longer
nightly interruptions. Furthermore, SleepTime is similar between
different light and accelerometer thresholds, whereas TotalSleep
is vastly different for the accelerometer but not for light.

Correlations
To better understand how different features relate to each other,
Figure 3 shows significant correlations between features,
between outcome variables, and between features and outcome
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variables. Correlations were extracted from mixed effects
models as the coefficients of fixed effects using standardized
inputs. The P values were calculated using analysis of variance.
All correlations have been corrected for multiple tests [44].
Figure 3 shows that significant correlations between variables
are scarce; for instance, UserActive is not related to any other

variable and the outcome variables NA and SSQ are also
sparingly related to other variables. In fact, NA is only related
to SSQ and the number of interruptions (nInterruptions) whereas
SSQ is also only related to NA, nInterruptions, and the deviation
from the average wake-up time (devAvgWakeUpTime).

Figure 3. Distribution of significant correlations between variables on the y-axis and in the facets. Note that in contrast to Figure 2, this plot does not
show AvgBedTime and AvgWakeUpTime because there is only a single value per participant. SSQ and NA (highlighted in red) are outcome variables
denoting the subjective sleep quality and negative affect, respectively. The variance in the boxplots represents how the correlation changes with different
values for the multiverse parameters (including different sensors). Without the boxplot, there was no significant correlation. This plot is symmetrical,
meaning that every relationship is also shown oppositely. Note that when the boxplot is reduced to a single bar, this likely means there is only a single
value (or less likely that there are multiple values very close together).

For depression, correlations were not extracted from an MLM
(and hence not shown in Figure 3) but rather as Pearson
correlations because there is only a single observation per
participant. For all variables, the mean was used to generate
correlations with depression scores, and multiple testing
correction was subsequently applied [44]. There was 1
significant negative correlation with depression and the feature

SleepTime (r=−0.46) using the accelerometer (1 m/s2), and 7
negative correlations with the outcome variable SSQ (r =−0.46

to −0.51) (0.25 to 1 m/s2). Furthermore, there was 1 significant
positive correlation between depression and NA (r=0.51) using
AAR.

Evaluation
As described previously, the data set was divided into training,
validation, and test sets. To gain a better understanding of how
each sensor and sleep feature relates to the output variables, we
trained separate models for each feature, sensor, and model
combination. By doing so, we could inspect their performance

(measured in terms of R2) on the validation set in relation to the
other multiverse parameters. After doing so, we selected the
best (maximum 5) models within 1 SE from the best model (ie,

the model with the highest R2 on the validation set) and tested
them on the test set to draw definitive conclusions.
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First, we present the results of our predictions of SSQ on the
validation set in Figure 4, where we can see the predictive
performance of different models and the impact of selecting a
specific sensor varying with other multiverse parameters (as
specified in Table 2). In this plot, it is clear that the MLMs
perform the best and the XGB models perform the worst in

terms of the predicted R2 on the validation set. Moreover, the

GAMs and SVMs perform similarly, having an R2 of
approximately 0 with extreme values on either side. The kNN

models show a slightly poorer performance, usually with an R2

below 0. In terms of more general patterns, we can see that the
models have generally overfitted the data; that is, the models

have achieved a higher R2 on the training set than on the
validation set. However, the boxes and whiskers of the boxplots
represent only the majority of the results, and even a single

outlier may represent a model that does not overfit and performs
well. After all, the best models that we selected to be tested on
the test set are probably “outliers” in these figures. As far as
sensors are concerned, the charging sensor seems to perform
slightly better, at least when using MLMs or XGB models but
not for others. The other sensors appear to be approximately
equivalent in performance. As observed in Multimedia Appendix
1, we replaced the sensors on the y-axis with features so that
we could obtain an idea of how different features affect the
outcome. As these boxplots are also separated based on the

models used, they have approximately the same R2 distribution,
as shown in Figure 4. The performances of features are relatively
similar. One might argue that nInterruptions generally performs
slightly better in combination with XGB models and MLMs,
but this effect is small.

Figure 4. "R2" distribution for predicting subjective sleep quality. The spread of the boxplots represents how the "R2" of predictions of subjective
sleep quality change with varying multiverse parameters, namely different sensors, features, models, number of adjacent windows, and outlier methods.
GAM: generalized additive model; kNN: k-nearest neighbors; MLM: multilevel model; SVM: support vector machine; XGB: extreme gradient boosting.

Second, the predictive performance regarding NA on the
validation set is represented visually in Figure 5. Again, for
most models, the MLMs appear to perform best as they show

the highest R2 on the validation set. Nevertheless, as indicated

by the high discrepancy in R2 values between the training and
validation set, models are once again overfitting. Similar to that

observed in the prediction of SSQ, the XGB models perform
the worst followed by the kNN models, and finally GAMs and

SVMs, showing a predictive R2 value of approximately 0. A
notable difference among these models is that there is little
variation among the MLMs, GAMs, and SVMs, meaning that
multiverse parameter choices have less impact than that
observed for the kNN and XGB models.

J Med Internet Res 2022 | vol. 24 | iss. 3 | e25643 | p. 10https://www.jmir.org/2022/3/e25643
(page number not for citation purposes)

Niemeijer et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. "R2" distribution for predicting negative affect. The spread of the boxplots represents how the "R2" of predictions of negative affect change
with varying multiverse parameters, namely different sensors, features, models, number of adjacent windows, and outlier methods. GAM: generalized
additive model; kNN: k-nearest neighbors; MLM: multilevel model; SVM: support vector machine; XGB: extreme gradient boosting.

When predicting NA, choosing a specific sensor does not seem
to matter, except for screen activity and Wi-Fi because these
performed much worse. Indeed, all MLMs using the Wi-Fi
sensor were found to be inoperable, indicating a serious problem
with these models (eg, not enough data, no convergence).
Compared to the rest of the sensors, screen activity and Wi-Fi
also performed much worse when using XGB models. When
finding the best performing feature, Multimedia Appendix 2
shows a trend similar to that of the sensors, meaning that there
is no single feature that is better than all the rest.

Finally, Figure 6 shows the performance distribution when
predicting depression in relation to other multiverse parameters.

Contrary to SSQ and NA, the model performance spread in

terms of R2 for depression is much greater, implying that the
selection of the multiverse parameters influences model
performance. There are considerable differences among sensors
too. For example, charging and AAR appear to perform better
across all models than the other sensors; that is, because their
spread is smaller, models using the charging or AAR sensor are

likely to perform better. On the other hand, the 1 m/s2

accelerometer has a much larger spread and a lower mean R2

than the other sensors.
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Figure 6. "R2" distribution for predicting depression. The spread of the boxplots represents how "R2" values when predicting depression change with
varying multiverse parameters, namely different sensors, features, models, number of adjacent windows, and outlier methods. GAM: generalized additive
model; kNN: k-nearest neighbors; MLM: multilevel model; SVM: support vector machine; XGB: extreme gradient boosting.

Multimedia Appendix 3 presents similar findings about the
features when predicting depression. That is, the predictions
are much worse than those for other outcome variables. The
nInterruptions feature appears to perform slightly better than
the others although this applies only to the spread, implying
that with this feature, models perform better on average but that
there may be models from other features performing much
better.

Although it is important to describe how different sensors and
features impact the outcome variables on average, our ultimate
objective is to find how we can best predict the outcome
variables from the available data. To this end, Figure 7 presents
the results of the best models per outcome variable.

Unsurprisingly, the sensors and features of these best models
are generally also the ones that performed the best on average
for those outcome variables. However, there is a remarkably

large gap between the R2 values on the test set and those on the
training and validation sets. For example, a kNN (k=7) model
for predicting SSQ using the screen state sensor, 5 adjacent
windows, isolation forests, and the feature devAvgWakeUpTime

achieved R2 values of 0.558 and 0.528 on the training and
validation sets, respectively. As this does not show much

overfitting, one would expect the test R2 to be similar. However,

the R2 on the test set is only −0.531, revealing the model to be
less than informative.
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Figure 7. "R2" distribution for predicting depression. The spread of the boxplots represents how "R2" values when predicting depression change with
varying multiverse parameters, namely different sensors, features, models, number of adjacent windows, and outlier methods. GAM: generalized additive
model; kNN: k-nearest neighbors; MAD: median absolute deviation; MLM: multilevel model; SVM: support vector machine; XGB: extreme gradient
boosting.

Figure 7 shows that SSQ can be predicted reasonably well;
MLMs using the charging sensor, 3 adjacent windows, and

isolation forests for detecting outliers achieved a test R2 of 0.303
to 0.348 with nInterruptions, devAvgWakeUpTime, or
SleepTime. All these features were positively related to SSQ,
having a slope of approximately 0.442–0.643 with a high 95%
CI –3.06 to 4.35. However, predicting NA proved to be more

challenging because we obtained a highest R2 of only 0.103 on
the test set, a value that is considerably lower than that obtained
on the training and validation sets. Nevertheless, it is worth
noting that all the best models for predicting NA are MLMs

using the accelerometer with a threshold of 1 m/s2. Of these
models, the ones using InterruptionsDuration and
devAvgBedTime were positively related to NA (slopes of
0.0449-0.279 and 0.427, respectively) whereas userActive was
negatively related (slope of 0.199-1.37). Finally, predicting
depression was the most difficult task because only 1 best model

yielded a barely informative result, namely the LM with an R2

of 0.025. The predictions for SSQ appear better because it is
more closely associated with objective sleep than the other
outcome variables, namely NA and depression.

Discussion

Principal Findings
Although various studies have used different methods and
sensors to successfully track sleep with mobile sensing
[14,25,26], it is not yet clear how these various approaches
impact the results. To this end, this study was designed to
provide a transparent and robust method for tracking sleep with
mobile sensing. By accounting for many choices in a multiverse
study design, we were able to separate and elucidate the various
effects of sensors, features, and models on sleep proxy measures,
thereby providing an important step forward for future
researchers. Principally—and in accordance with previous
research—we showed that it is possible to explain a reasonable
and an interesting proportion of the variance observed in SSQ
(or the related variable of daily negative mood) using mobile
sensing. Moreover, our multiverse analysis indicates which
combinations of multiverse parameters (shown in Table 2) can
do this best, at least in this sample. Although the results in this

study are slightly more pessimistic than those in other studies
concerning mobile sensing and sleep (ie, some studies showing
very high accuracies) [12,25,26], they cannot be compared
directly given that we applied a strict cross-validation plan.

From the outlined results, we can conclude that for predicting
SSQ, the charging sensor is overall the best performing and the
most robust sensor although this sensor has a significant
advantage because participants were instructed to leave their
smartphone charging at night. However, for predicting NA, we
found the accelerometer to be the best sensor despite its
previously noted limitations (ie, low sample rate and
measurements only along the x-axis). Based on previous
research [11,14], this finding suggests that the accelerometer is
a feasible option for sleep detection. Nevertheless, when
predicting person-level depression, we found that the results
varied considerably and were often less than informative. Even

the best performing sensor achieved an R2 of only 0.025 on the
test set, and hence we could not draw any conclusions from this.

Another aspect we accounted for in this study is using multiple
ways of constructing models (ie, we attempted multiple models
to see which one worked best). The results point out that MLMs
are clearly the best performing models for any outcome variable.
However, it should be noted that the analysis is between
participants whereas MLMs also use within-person information
(although large amounts of within-participant data were
missing). Likewise, LMs seem to be the primary choice for
predicting depression as well, suggesting that robustness must
be an important characteristic. Furthermore, GAMs and SVMs
showed reasonably similar performances but much worse than
that of MLMs. Finally, kNN and XGB models seemingly
performed the worst, with XGBs displaying excessive
overfitting.

Although not described in detail, Multimedia Appendix 1

presents the R2 distributions of the results split by feature. We
have already mentioned that no feature appears to be more
important than any other. Another inference supported by Figure
2 is that some features are more robust than others in this
multiverse analysis. Concretely, nInterruptions has less spread
than the other features, indicating that it is a relatively robust
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feature. This could be interesting for future studies in which
researchers have to manually select features.

Limitations
There are a number of limitations that should be considered
when interpreting the results of this study. The results of this
study are generally limited by the relatively small size of the
data set. This limitation poses a drawback because it makes the
models more prone to overfitting, although this risk was
mitigated by an elaborate hold-out set approach. Next, we list
3 distinct limitations that may have impacted the results.

First, we relied on self-reports from ESM as an estimate of
sleep. This, combined with the fact that participants did not
always answer the SSQ item in the morning, may have led to
odd or spotty patterns. Despite trying to minimize the impact
of this factor by predicting several outcome variables known
to be associated with sleep (ie, not only SSQ but also NA and
depression), we cannot be certain about the impact of this factor
on the research results.

The second limitation resulted from several sensor issues during
the trial. The most pressing issue is the low sample rate for the
accelerometer, charging, light, and Wi-Fi, averaging
approximately 1 measurement instance every 2.9 minutes.
Especially for the accelerometer, this is not enough data because
it only allows the sensors to record momentary changes instead
of tracking participants’contextual surrounds for longer periods,
as mentioned earlier. The accelerometer also did not collect the
y- and z-axes data, which further limits its use. Furthermore,
the way in which sensors collected data was directly influenced
by participants’ behavior in that they were instructed to keep
the smartphone charged at night and be connected to Wi-Fi.
This may mean the charging and Wi-Fi sensors are less
ecologically valid.

Finally, we assumed that a normal night of sleep is somewhere
between 10 PM and 10 AM the next day. Although this
assumption is probably true for most people, students may not
always follow a regular sleep schedule. Moreover, because some
sensors are prone to produce many false positives (eg, the light
sensor detecting the smartphone being in a participant’s pocket
as sleep), we felt it was necessary to reduce this at the cost of
cutting off a small portion of the participants’ sleep.

Contributions to Previous Work
Our work complements previous work described in various
ways. First and foremost, this study developed and implemented
a method to unravel the effects of distinct variables as well as
sensors and their thresholds for the prediction of SSQ, NA, and
depression. Such a method can guide future researchers
intending to conduct similar studies to further examine these
effects or help them choose which sensors to select for
estimating sleep. It also provides a tool for researchers when
they have to make choices based on the many different results
that exist when predicting sleep with mobile sensing, such as
the widely varying results in earlier studies [22-26]. Moreover,

it stresses the importance of making considerations and makes
researchers aware that such choices may have a significant
impact on their study, as suggested by the multiverse theory
[27] and previous studies [26]. In addition, this study can help
verify theories that link smartphone-recordable behaviors to
sleep and mood, such as the purported links among sleep,
depression, and stress [19].

Second, we showed that continuous SSQ and NA can be
reasonably predicted from sleep features whereas depression
cannot be predicted. Most studies reduce these features to a
discrete variable with only 1 or 2 categories [12,22], whereas
we took on the challenge to expand this to a continuous variable
between 0 and 100. Naturally, a continuously scaled variable
brings about more variation, but this variation can be
approximated.

Future Directions
When performing such an explorative study where it is not yet
clear how different variables relate to each other, it is important
to at least have enough data to work with. Future studies should
focus on obtaining a sufficiently large sample size to minimize
the necessity of a potential multiverse study or at least minimize
the risk of selecting a nonrepresentative sample. Additionally,
missing data posed a big challenge in this study because
participants did not respond to the first beep of the day.

Although this study has solely relied on SSQ and proxy
measures such as NA and depression, in future studies, it could
be useful to also collect self-reported bed- and wake-up times
to validate these features. After all, several other features were
based on these times; therefore, obtaining a better understanding
of their accuracy also helps in further improving these features.
Moreover, wearable devices are not as reliable as PSG, but they
are considerably less obtrusive and have already been adopted
by a sizable portion of the mainstream population to record
sleep. As such, they can be added in future studies to achieve
an additional high-quality estimate of sleep. Finally, if an
approach could be developed to use mobile sensing data to
estimate sleep (eg, through a multiverse approach), it should be
compared to PSG as a final measure of validation.

Conclusions
Sleep plays an important part in moods and mood disorders but
is difficult to track unobtrusively. Therefore, this study has
shown that it is feasible to track sleep with mobile sensing
although this depends strongly on which sensors, features, and
models are chosen. In fact, our approach demonstrated that most
combinations of multiverse parameters often form
noninformative models. This can be partly attributed to issues
with data collection and not having enough data for developing
personalized models, but further research is needed to validate
these problems. Moreover, SSQ predictions were better than
the other proxy measures (ie, NA and depression severity).
Nevertheless, the findings of this study are promising and
warrant further investigation into the use of mobile sensing for
tracking sleep.
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Multimedia Appendix 1
"R2" distribution for predicting subjective sleep quality. The spread of the boxplots represents how features change with varying
multiverse parameters, namely different sensors, number of adjacent windows, and outlier method.
[PNG File , 194 KB-Multimedia Appendix 1]

Multimedia Appendix 2
"R2" distribution for predicting negative affect. The spread of the boxplots represents how features change with varying multiverse
parameters, namely different sensors, number of adjacent windows, and outlier method.
[PNG File , 194 KB-Multimedia Appendix 2]

Multimedia Appendix 3
"R2" distribution for predicting depression. The spread of the boxplots represents how features change with varying multiverse
parameters, namely different sensors, number of adjacent windows, and outlier method.
[PNG File , 181 KB-Multimedia Appendix 3]
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