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Abstract

Background: Hearing loss affects 1 in 5 people worldwide and is estimated to affect 1 in 4 by 2050. Treatment relies on the
accurate diagnosis of hearing loss; however, this first step is out of reach for >80% of those affected. Increasingly automated
approaches are being developed for self-administered digital hearing assessments without the direct involvement of professionals.

Objective: This study aims to provide an overview of digital approaches in automated and machine learning assessments of
hearing using pure-tone audiometry and to focus on the aspects related to accuracy, reliability, and time efficiency. This review
is an extension of a 2013 systematic review.

Methods: A search across the electronic databases of PubMed, IEEE, and Web of Science was conducted to identify relevant
reports from the peer-reviewed literature. Key information about each report’s scope and details was collected to assess the
commonalities among the approaches.

Results: A total of 56 reports from 2012 to June 2021 were included. From this selection, 27 unique automated approaches
were identified. Machine learning approaches require fewer trials than conventional threshold-seeking approaches, and personal
digital devices make assessments more affordable and accessible. Validity can be enhanced using digital technologies for quality
surveillance, including noise monitoring and detecting inconclusive results.

Conclusions: In the past 10 years, an increasing number of automated approaches have reported similar accuracy, reliability,
and time efficiency as manual hearing assessments. New developments, including machine learning approaches, offer features,
versatility, and cost-effectiveness beyond manual audiometry. Used within identified limitations, automated assessments using
digital devices can support task-shifting, self-care, telehealth, and clinical care pathways.

(J Med Internet Res 2022;24(2):e32581) doi: 10.2196/32581

KEYWORDS

audiology; automated audiometry; automatic audiometry; automation; digital health technologies; digital hearing health care;
machine learning; remote care; self-administered audiometry; self-assessment audiometry; user-operated audiometry; digital
health; hearing loss; digital hearing; digital devices; mobile phone; telehealth

J Med Internet Res 2022 | vol. 24 | iss. 2 | e32581 | p. 1https://www.jmir.org/2022/2/e32581
(page number not for citation purposes)

Wasmann et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:Jan-Willem.Wasmann@radboudumc.nl
http://dx.doi.org/10.2196/32581
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Background
Hearing loss affects 1.5 billion persons worldwide and is
expected to increase by another billion by 2050 [1,2]. Hearing
testing is the first step toward appropriate and timely treatment.
Unfortunately, most persons affected with hearing loss are
unable to access hearing assessments, with less than one hearing
health professional for every million people in regions such as
Africa [2,3]. Increasingly automated approaches (all aspects of
the method associated with automated audiometry), including
machine learning, are being developed and made available to
provide self-administered hearing assessments. The term
automated audiometry refers to all hearing tests that are
self-administered from the point the test starts. More
specifically, in this review, we define automated audiometry as
calibrated pure-tone threshold audiometry in any setting (ie,
hearing health care, occupational health, and community
settings) that is self-administered from the point the test starts.
Machine learning refers to model-based approaches that learn
from examples (data) instead of being programmed with rules
[4]. As the direct involvement of professionals is not required,
automated approaches enable health care pathways with the
potential to increase accessibility, efficiency, and scalability.
Digital (health) technologies, including apps, smartphones,
tablets, and wearables, can acquire data remotely; expand the
reach and precision of clinicians; and facilitate more
personalized hearing health care within a network of distributed
expertise [5,6]. Recent examples of automated hearing
assessments include clinical grade and consumer-grade
applications [7]. General global health trends suggest that
increased availability of diagnostic tools could lower health
care costs and improve quality of life [8]. For example, in
Parkinson disease, remote care based on wearables provides
ecologically valid methods for monitoring and evaluating
symptoms [9,10]. In tuberculosis screening in low-resource
settings, an automated diagnosis can increase the sensitivity of
identifying persons at risk while reducing costs [11].
Self-assessment using eHealth vision tools improves access to
diagnosis and facilitates timely diagnosis, although consistent
criteria for referring to the clinical pathway and validity and
reliability of eHealth tools are still a concern [12].

Timely detection and treatment of hearing loss are essential to
enable optimal outcomes and quality of life across the life span
[2]. Untreated hearing loss restricts language development and
educational potential in children and is associated with a more
rapid cognitive decline in adults [13]. It may lead to social
isolation, lower socioeconomic status, increased social
disparities, and decreased health, resulting in lower quality of
life at the individual level and substantial costs at the community
level [14,15]. Importantly, treating hearing loss in midlife has
been identified as the largest potentially modifiable risk factor
for developing dementia in later life [16]. The global annual
cost of untreated hearing loss is US $980 million [14]. Global
health investment models indicate a significant return on
investment in both hearing diagnosis and treatment [2]. The
capacity of the entire clinical pathway should be increased as
a bottleneck looms if the accessibility of diagnosis is increased

faster than the availability of affordable treatment and
rehabilitation.

Automated self-test options are important for detecting and
diagnosing hearing loss to direct timely and appropriate
treatments. The overwhelming majority of treatments are for
permanent age-related and noise-induced hearing loss; however,
a significant portion of the population requires medical treatment
for hearing loss [1]. The onset of the COVID-19 pandemic has
further emphasized the importance of self-testing approaches
[17,18]. Automation on digital devices is a powerful enabler of
alternative diagnostic pathways that can include home-based
testing, low-touch service models outside traditional clinic
settings, and decentralized community-based models that rely
on task shifting to minimally trained facilitators [19].

Automation in hearing assessment is not a new concept and
dates back to >7 decades [20]. In recent years, it has resurged
with the convergence of digital technologies and machine
learning approaches. The primary tool for hearing assessment
is pure-tone audiometry, which describes the degree of hearing
loss relative to normal hearing, expressed in decibels hearing
level across specific frequencies (125-8000 Hz). Pure-tone
audiometry can also differentiate the type of hearing loss, that
is, sensorineural or conductive, when bone conduction and air
conduction transducers are used. Machine learning–based
threshold-seeking approaches, known as Bayesian active
learning, have demonstrated their potential to optimize
efficiency and increase the precision of automated hearing
assessments [21]. The increased efficiency comes from the
ability of these methods to target trials to those areas of the
frequency space where the estimation has the greatest
uncertainty [22,23].

Objective
In 2013, a systematic review that included 29 reports on
automated audiometry showed that automated procedures have
comparable accuracy with that of manual procedures when
performing air conduction audiometry. Although a few validated
automated procedures that included automated bone conduction
audiometry had been reported, machine learning–based
audiometry approaches had not been reported yet, and
approaches were rarely validated in children or hard-to-test
populations [24]. Since 2013, there has been significant work
and innovation in this area, which calls for an update and
extension of the previous review. This study aims to provide
the current status of automation and machine learning
approaches in hearing assessment using validated pure-tone
audiometry with potential indicators of accuracy, reliability,
and efficiency of these approaches.

Methods

We conducted a systematic scoping review of the peer-reviewed
literature on automated and machine learning approaches to
validate pure-tone threshold audiometry using digital
technologies by considering accuracy, reliability, and efficiency.
This review followed the methodological framework outlined
by Arksey and O’Malley [25].
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Identifying Potentially Relevant Records
A search across the electronic databases of PubMed, IEEE, and
Web of Science was conducted to identify relevant reports from
the peer-reviewed literature. Complementary and redundant
search terms were applied to ensure thorough coverage and
cross-checking of the search findings. In the PubMed database,
medical subject headings and relevant keywords were collected
to determine all records related to the study aim. The following
synonyms of, and closely related terms to, automated audiometry
were used: automatic audiometry, self-administered audiometry,
self-assessment audiometry, and user-operated audiometry. The
complete set of terms and the applied search strategy are
provided in Multimedia Appendix 1. The IEEE database is
engineering oriented, and only relevant keywords based on
audiometry were used, as it was assumed that any result in
audiometry would be highly associated with automated
audiometry. The Web of Science database is known to index
the PubMed and IEEE databases and was explored using search
terms similar to the PubMed search. After preliminary
explorations to identify appropriate keywords, we conducted a
search on July 8, 2020, and updated it on January 12, 2021, and
July 6, 2021. The search included all reports that met the
inclusion criteria published from January 1, 2012, to June 30,
2021. The start date was chosen as we regard this scoping review
as an extension and generalization of a previous (systematic)
review by Mahomed et al [24], which included studies up to
July 20, 2012.

Selecting Relevant Records
Reports had to meet the following three inclusion criteria: (1)
the report had to be about automated or machine learning and
pure-tone frequency-specific threshold audiometry, (2) it had
to be written in English, and (3) the automated threshold
audiometry had to be compared against the gold standard or
reasonable standard. The gold standard is defined as manual
audiometry in a sound booth according to the International
Organization for Standardization standards. Automated
audiometry also needed to be performed inside a sound booth,

and the results needed to be compared with the gold standard.
A reasonable standard for validation was defined as either a
within-subject comparison between the gold standard and the
automated audiometry in an unconventional setting (eg, a quiet
room) or a within-subject comparison between a validated
automated audiometry approach and an experimental approach
of audiometry in the same unconventional setting.

We excluded reports on screening audiometry (eg, provided
pass or refer as an outcome) rather than threshold audiometry,
review papers, and studies reporting approaches that were not
compared with the gold or reasonable reference standard.

The first phase of screening was based on the title. If the title
indicated that content was within the scope of the research
question (ie, automated or machine learning approaches in
diagnostic hearing assessment), the report was included in the
second screening phase. In the second phase, the abstracts of
the remaining reports were assessed using the inclusion and
exclusion criteria stated earlier.

Two researchers (LP and JWW) conducted the abstract
screening. They were blinded from each other to avoid
confirmation bias. After the screening, the researchers discussed
any disagreements to reach an agreement. When in doubt, the
report was admitted to the third, full-text review phase. In this
phase, all the remaining reports were reviewed in full to
determine whether the inclusion criteria were met. As can be
seen in the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) flow diagram (Figure 1), the
resulting selection of reports was complemented by additional
reports. After some reports were clustered as having identical
approaches (explained in Collating Approaches, Summarizing,
and Reporting the Results), additional reports were added to
avoid missing validation data of these clustered approaches.
These additional reports were published before the inclusion
date criteria (from before January 1, 2012) or did not appear in
the search and were added based on the reference lists of the
already included reports.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of the screening process.

Extracting Data Items
A template for grading the reports was agreed upon by all the
authors (Multimedia Appendix 2 [26]). Two researchers (LP
and JWW) independently extracted information directly relevant
to the scoping review question. In cases of disagreement, a
consensus was reached after discussion between the 2
researchers. The compulsory data fields were test frequency
and intensity range; response method; test equipment, including
the type of transducers; calibration; hardware; test quality
control; accuracy; reliability; efficiency; validation; and test
population. In the report by Mahomed et al [24], the accuracy
and reliability of manual and automated approaches
demonstrated equivalent performances. Time efficiency had
primarily been reported by comparing the testing times of
manual and automated audiometry [27-29]. The reports on
machine learning audiometry explicitly used the number of
trials or stimuli needed to converge to a certain precision (eg,
5 dB) as a performance outcome [23,29]. Therefore, we added
time efficiency as a necessary parameter. Where available,
accuracy and reliability were expressed in decibels using the
overall root mean square deviation (RMSD) between the
automated approach and the gold (or reasonable) standard. On
the basis of the study by Margolis et al [30] and the minimum
acceptable accuracy recommended by clinical guidelines [31],
RMSD values of 6 dB and 10 dB were chosen as criteria for
desired and minimal accuracy, respectively. To establish a
benchmark for an acceptable test duration, the mean testing
time for conventional manual bilateral audiometry (air 7 and

bone 5 frequencies) was estimated (Multimedia Appendix 3
[27-29,31,34,38]). For manual bilateral air conduction, based
on the benchmark measurement times, a mean testing time of
5 to 10 minutes was considered acceptable, and for manual
bilateral air and bone conduction, 10 to 20 minutes was
considered acceptable. If testing times exceeded these ranges
by >5 minutes, the time efficiency was assessed as a potential
issue.

Data collected from the reports provided key information about
the scope and details of each report, enabling the authors to
assess commonalities between the approaches.

Collating Approaches, Summarizing, and Reporting
the Results
When multiple reports described the same underlying approach,
these reports were pooled into one approach cluster. The first
report describing an approach and subsequent studies that
validated or extended the approach were included. The name
of the approach, citations to the initial report, or common
authorships were used to cluster the reports. The grading table
was completed for each cluster separately to provide a structure
for the subsequent content analysis. In the last part of the grading
table, under the heading Validation Approach, all validation
studies are described together. For every approach cluster, a
key contribution to the audiological field was derived from the
associated reports. A key contribution is a finding or claim made
by the authors significant to the approach in general, stated in
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either the conclusion or the discussion section of a report in
accordance with their objective.

Results

Overview
A total of 64 reports were included in this study. Of the 64
reports, 56 (88%) were included according to the inclusion and

exclusion criteria, and 8 (13%) were added to the approach
clusters. After clustering identical approaches, 27 approach
clusters remained, including 2 that used machine learning.
Extracted data items and grading of results on approaches are
provided in Multimedia Appendix 4 [21,23,27-30,32-89]. The
specifications of the reported accuracy, reliability, and time
efficiency are described in Table 1.

Table 1. Review of the accuracy, test–retest reliability, and time efficiency for automated and machine learning audiometry approaches (2012-2021;
N=27 approach clusters).

Time efficiencyReliability (test–retest)AccuracyType of transducer

Values, n
(%)

Reported findingValues, n
(%)

Reported find-
ing

Values, n
(%)

Reported find-
ing

Air conduction (n=23 approach clusters)

10 (43)Acceptable testing time per (partial) audiogram4 (17)RMSD<6 dB4 (17)RMSDa<6 dBb

2 (9)Acceptable testing time and number of trials
per audiogram

1 (4)RMSD<10 dB7 (30)RMSD<10 dB

1 (4)Acceptable testing time and number of trials
per frequency

9 (39)Statistical
equivalence

9 (39)Statistical
equivalence

1 (4)Testing time potential burden9 (39)Not reported3 (13)No statistical
equivalence

9 (39)Not reportedN/AN/AN/AN/Ac

Bone conduction (n=1 approach cluster)

1 (100)Not reported1 (100)Test–retest not
reported

1 (100)Statistical
equivalence

Both air and bone conduction (n=3 approach clusters)

Air conduction

2 (67)Acceptable testing time per audiogram1 (33)RMSD<6 dB2 (67)RMSD<6 dB

N/AN/A2 (67)RMSD<10 dB1 (33)RMSD<10 dB

Bone conduction

N/AN/A1 (33)RMSD<6 dB1 (33)RMSD<10 dB

N/AN/A2 (67)Test–retest not
reported

2 (67)Statistical
equivalence

Air and bone conduction

1 (33)Acceptable testing time per audiogramN/AN/AN/AN/A

aRMSD: root mean square deviation.
bdB: decibels.
cN/A: not applicable.

Accuracy
Accuracy is represented as a comparison against the gold
standard or reasonable standard. Most of the automated
techniques (14/27, 52%) expressed accuracy in RMSD. Other
types of analyses used average differences and SD (10/27, 37%),
average thresholds and SD (1/27, 4%) [32], linear regression
and correlation coefficients (1/27, 4%) [33], and analysis of
variance (1/27, 4%) [34]. The types of analysis used can be seen
in Multimedia Appendix 5 [23,32-37,39,40,43,45,48-50,57-59,
65,67,68,70,74,77,81,83-85].

Test–Retest Reliability
Test–retest reliability was reported for some automated and
machine learning audiometry approaches. Of the 27 approaches,
17 (63%) did not report on test–retest reliability, and 7 (26%)
expressed it in RMSD. Other statistical methods used were
average differences and SD (6/27, 22%), Pearson product
moment correlation coefficients (2/27, 7%) [35,36], standard
of variance (1/27, 4%) [37], and repeated analysis of variance
(1/27, 4%) [34].
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Test Efficiency
Of the 27 approaches, 17 (63%) reported a measure for test
efficiency based on the test duration. Test efficiency expressed
in testing time seems to be a standard metric, similar across
studies and defined as the time from presenting the first stimulus
until the final response of the participant, expressed in seconds
or minutes. However, there were disagreement among reports
on what to include in the measurement and what groups to use
as a reference. Reported time-efficiency measures included the
recorded time per frequency, recorded time per unilateral or
bilateral air conduction audiogram (between 2 and 7 frequencies)
in normal hearing or people with hearing impairment, or full
air and bone conduction audiograms in people with hearing
impairment. Of the 27 approach clusters, 13 (48%) approach
clusters reported acceptable testing times; 3 (11%) approach
clusters indicated the number of trials in addition to the testing
time for either a bilaterally masked air audiogram [29], unilateral
air audiogram [23], or per frequency [38]; 1 (4%) approach
cluster that applied Bekesy tracking reported the testing time
but was not in the acceptable range [39]; and 10 (37%) approach
clusters did not report anything about the testing time.

Test Parameters and Specifications
All tests were self-administered from the point at which the test
started. Approximately 15% (4/27) of approaches had the option
of switching to a manual audiometry mode. Table 2 summarizes
an overview of the test parameters and specifications of the 27
approach clusters, and Table 3 highlights the key contributions.
Most of the approaches used adaptive procedures that relied
only on the previous response (here referred to as partially
adaptive procedures).

The most common example was the (modified)
Hughson-Westlake staircase procedure (20/27, 74%), which is
based on the classical method of limits [91]. Other partially
adaptive procedures applied the method of adjustment, such as
the Bekesy tracking method [39] or the coarse-to-fine focus
algorithm [40]. There was a single report of an approach that
did not define the threshold-seeking method but had a built-in
protocol to alternate between ears during testing [35]. In
contrast, fully adaptive procedures used a complete set of all

previous responses. Examples include Bayesian active learning
procedures (also referred to as machine learning audiometry;
2/27, 7%) [21,23] and maximum likelihood estimation (2/27,
7%) [37,38]. All machine learning audiometry methods applied
active Bayesian model selection, which is a type of shallow
machine learning that uses individual models. They apply
supervised learning, as every data point is labeled by the
participant [22].

Most of the approaches (20/27, 74%) used conventional
calibration according to the International Organization for
Standardization standards. Of the 27 approaches, 6 (22%) used
an unconventional calibration technique. Patel et al [32]
determined a reference equivalent threshold level for air
conduction for a specific phone–headphone combination using
manual audiometry as a reference. Masalski et al [41] used
reference levels for calibration for smartphone and transducer
combinations, collected under uncontrolled conditions in people
with normal hearing. Other calibration techniques set the volume
of the device to 50% [42], comparing and adjusting the output
level to the input using a sound level meter [34,43], or using
Thévenin-equivalent probe calibration [39].

Of the 27 approaches, 22 (82%) were validated in people with
normal hearing and hearing impairment. Approximately 7%
(4/56) of studies were performed in people with normal hearing
[34,36,38]. One of the approach clusters was only validated in
a population with hearing impairments using hearing aids as
transducers [40]. Automated audiometry was applied across a
range of populations. All approaches were applied to adults,
except in the study by Patel et al [32] that only included children.
Approximately 30% (8/27) approaches were validated in
children, including 50% (4/8) of approaches that designed a
child-friendly user interface [32,44-46]. Other test populations
were older people [47], veterans [48], and persons exposed to
occupational noise [49] or ototoxic substances [50]. Automated
audiometry has also been applied as an alternative to traditional
manual audiometry in low-resource environments [51-53]. The
user interface plays an important role in making self-testing
feasible in all populations and may require an iterative design
process (including clinical pilot studies) [52,54].
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Table 2. Description of test parameters and specifications for automated audiometry approaches (2012-2021; N=27).

Descriptions of approach clusters, n (%)Test parameters and specifications

Threshold-seeking method (underlying algorithm to determine the thresholds)

20 (74)Hughson-Westlake (modified)

2 (7)Machine learning

1 (4)Bekesy tracking

4 (15)Other method

Test range (limits of the frequency that can be tested)

18 (67)Clinical frequency range (125 Hz-8000 Hz)

4 (15)Extended high frequencies range (125 Hz-16,000 Hz)

5 (19)Reduced frequency range

Test range (limits of intensity that can be tested)

14 (52)Intensity range (0-100 dBa hearing level)

10 (37)Reduced intensity range

3 (11)Intensity range not reported

Masking (needed to prevent responses from the nontest ear and obtain the true threshold of the test ear)

9 (33)Automated masking

1 (4)Manual masking

13 (48)No masking

4 (15)Masking not reported

Response method (method of recording participants’ responses to test stimuli)

9 (33)Forced choice

13 (48)Single response

3 (11)Forced choice and single response

2 (7)Not reported

Transducers (method of presenting stimuli, eg, insert phone or supra- or circumaural headphones)

23 (85)Air conduction transducers

3 (11)Air and bone conduction transducers

1 (4)Only bone conduction transducer

Calibration (unconventional calibration methods are explained in the text)

20 (74)Conventional calibration

6 (22)Unconventional calibration

1 (4)Calibration not reported

Digital devices (reported hardware needed to run the test)

2 (7)Portable audiometer

9 (33)Computer based

1 (4)Web-based (requires connectivity)

1 (4)Smartphone- or tablet-based

Quality control measures (indicators of the reliability of the test)

5 (19)Detect false responses

6 (22)Have noise control

7 (26)Detect false responses and have noise control

9 (33)Quality control measures not reported

Validation (highest level of validation reported for each approach cluster)
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Descriptions of approach clusters, n (%)Test parameters and specifications

22 (82)Gold standard

4 (15)Reasonable standard

1 (4)Proof of concept

Test population (hearing status)

3 (11)Normal hearing only

1 (4)Hearing loss only

23 (85)Normal hearing and hearing loss

Test population (age)

17 (63)Adults only

1 (4)Children only

9 (33)Adults and children

adB: decibels
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Table 3. Key contributions of the automated and machine learning approaches to the audiological field.

Key contributions to the fieldApproach cluster
(name)

Approach cluster (lead au-
thor of first report, reports)

It has the potential to be used in test environments such as examination rooms as a clinical tool for
identifying hearing loss via air conduction separating people with normal and impaired hearing.

OtoKioskBean et al [55]

It is a hearing test that runs on a hearing aid, which has statistical equivalence to manual audiometry.SHSAaChen et al [40]

Portable devices that use calibrated headphones result in much higher accuracies than uncalibrated
devices.

—bColsman et al [36]

The reliability of audiometer apps should not be assumed. Issues of accuracy and calibration of
consumer headphones need to be addressed before such combinations can be used with confidence.

—Corry et al [34]

It is a proof of concept for smartphone-based bone conduction threshold testing.EarboneDewyer et al [33]

It is an iOS-based software app for automated pure-tone hearing testing without the need for addi-
tional specialized equipment, yielding hearing test results that approach those of conventional au-
diometry.

EartrumpetFoulad et al [43,51,56]

They are automated (remote) hearing tests to provide clinicians information for ototoxicity monitor-
ing.

Oto-IDJacobs et al [50,57]

It includes tablet-based audiometry using game design elements that can be used to test and screen
for hearing loss in children who may not have adequate access to resources for a traditional hearing
screening.

Kids Hearing
Game

Kung et al [45]

A self-testing system comprising a notebook computer, sound card, and insert earphones is a valid,
portable, and sensitive instrument for hearing thresholds self-assessment.

—Liu et al [58]

It is an application that detects increased levels of ambient noise when it is programmed to stop the
testing.

AgilisManganella et al [35]

AMTAS is designed to fit into the clinical care pathway, including air and bone conduction, and
incorporates a quality assessment method (QUALIND) that predicts the accuracy of the test.

AMTAScMargolis et al [30,46,59-61]

It is developed and well-suited to provide increased access to hearing testing and support home
telehealth programs.

Home Hearing
Test

Margolis et al [48,62,63]

It is an automated method that uses smartphone model–specific reference sound levels for calibration
in the app. Biological reference sound levels were collected in uncontrolled conditions in people
with normal hearing.

—Masalski and Krecicki
[41,64,65]

WHATS is a mobile wireless automated hearing test system in occupational audiometry for obtaining
hearing thresholds in diverse test locations without the use of a sound booth.

WHATSdMeinke et al [66,67]

It is a novel, subjective, test-based approach used to calibrate a smartphone–earphone combination
with respect to the reference audiometer.

HearTestePatel et al [32]

Specific Bekesy tracking patterns were identified in people who experienced difficulty converging
to a reliable threshold.

—Poling et al [39]

Bayesian active learning methods provide an accurate estimate of hearing thresholds in a continuous
range of frequencies.

—Schlittenlacher et al [23]

A user-operated, 2-alternative, forced choice in combination with the method of maximum likelihood
does not require specific operating skills; repeatability is acceptable and is similar to conventional
audiometry.

—Schmidt et al [37]

MLAG is a Bayesian active learning method that determines the most informative next tone, leading
to a fast audiogram procedure and threshold estimation in a continuous range of frequencies, with
the potential to measure additional variables efficiently.

MLAGfSong et al [21,29,68,69]

It is an active noise control technology to measure outside the sound booth.—Sun et al [70]

It is an automated portable diagnostic audiometer using improved passive attenuation and real-time
environmental noise monitoring, making audiometry possible in unconventional settings.

KUDUwaveSwanepoel et al
[27,47,53,71-75]

It is a smartphone-based automated hearing test applicable in low-resource environments.HearTestgSwanepoel et al
[28,52,54,76-80]

It is an approach that is applicable to the initial evaluation of patients with sudden sensorineural
hearing loss before a standard audiogram is available.

UhearSzudek et al [42,81,82]

Method of adjustment and the Hughson–Westlake method embedded in automated audiometry can
be considered equivalent in accuracy to conventional audiometry.

—Van Tasell and Folkeard
[83]
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Key contributions to the fieldApproach cluster
(name)

Approach cluster (lead au-
thor of first report, reports)

NEWT, which is incorporated inside an active communication earplug, serves as a reliable and ef-
ficient method of measuring auditory thresholds, especially in the presence of high background
noise.

NEWThVinay et al [38,49]

It is a proof-of-concept study of several self-administered, automated hearing measurements at
home, showing statistical equivalency to conventional audiometry in the clinic.

—Whitton et al [84]

It is a method for threshold hearing assessments outside conventional sound booths and with an in-
terface suitable for children.

ShoeboxYeung et al [44,85-89]

aSHSA: smartphone-based hearing self-assessment.
bNot available.
cAMTAS: Automated Method for Testing Auditory Sensitivity.
dWHATS: Wireless Automated Hearing Test System.
eSmartphone-based hearing test app (not yet commercialized).
fMLAG: Machine Learning Audiogram.
gAutomated hearing test commercialized by the hearX group.
hNEWT: The New Early Warning Test.

Discussion

Principal Findings
In 2013, evidence for automated audiometry demonstrated
similar reliability and accuracy as that of manual audiometry.
However, especially for children and bone conduction, the
number of reports was limited [24]. In less than a decade, 22
novel approaches and developments across 5 existing approaches
had appeared in 56 publications, adding to the 29 papers
published before 2013. Promising new developments include
the use of machine learning techniques for more time-efficient
hearing assessment (2/27, 7%), use of tablets or smartphones
as audiometer interface (15/27, 56%), and child-friendly user
interfaces (4/27, 15%), including game design elements. The
number of approaches that include bone conduction is still
limited (4/27, 15%)—only 7% (2/29) more approaches were
reported compared with the number reported in 2013 [24].

Accuracy
The required accuracy, reliability, and efficiency depend on the
clinical aims and consequences. The ultimate aim of the
automated hearing assessment is to deliver clinically actionable
estimates of hearing status (ie, the clinician or patient acts
appropriately for treatment, given the diagnostic test results).
In fully adaptive procedures, the level of precision and
confidence needed to conclude the assessment can be set to any
level by choosing the proper termination criteria, resulting in
different trade-offs. A study by Schmidt et al [37], for instance,
aimed for high accuracy and reliability, whereas a study by
Heisey et al [29] aimed for high efficiency with machine
learning audiometry. Overall, a shift in the type of analysis to
demonstrate the accuracy has been observed. In this review, the
2 major types of analysis included were RMSD (14/27, 52%)
and average differences and SD (10/27, 37%). In the report by
Mahomed et al [24], accuracy was primarily expressed in
average differences (11/27, 41%) or thresholds and SD (11/27,
41%). In our view, RMSD is the preferred indicator for accuracy
as it has clinical relevance [31], assuming it has already been
demonstrated that there is no bias between the automated and

manually determined hearing thresholds (eg, signed differences).
In traditional clinical terms, automation is equal in accuracy to
manual audiometry if the difference is within 6 dB RMSD. Of
the 27 automated approaches, 6 (22%) meet this strict accuracy
criterion. However, for many applications, the less strict 10 dB
RMSD criterium is sufficient, which was achieved by 26%
(7/27) additional automated approaches.

For bone conduction measurements, the accuracy was inherently
lower than that of air conduction measurements because of
conductor placement [30]. However, this reduced accuracy is
typically sufficient to address the clinical question of whether
conductive or mixed hearing loss is present, as well as choose
and evaluate appropriate treatment. The technical feasibility of
bone conduction assessments outside of a clinical setting (sound
booth) remains difficult. Alternatively, this clinical question
can be addressed with other tests, including tympanometry,
otoscopy, or a combination of air conduction thresholds for tone
and speech stimuli [90]. At least 13 automated techniques had
accuracy comparable with that of traditional manual air
conduction audiometry, as expressed in RMSD.

A limitation to the impact of achieved test accuracy is the high
variation in the interpretation of audiograms by clinicians,
regardless of whether those audiograms are determined using
an automated or manual approach [92]. Automation can assist
clinicians and patients in interpreting the measurement by
data-driven automated reporting of accuracy and reliability
(including signaling for suspicious outcomes) such as
QUALIND [60] or by automated classification for diagnostic
purposes (including the type and degree of hearing loss).
Examples of automated classification include AMCLASS [93],
Autoaudio [94], and data-driven audiogram classification [95].

Reliability
RMSD is also increasingly used as a measure of test–retest
reliability. Of the 27 approaches that reported test–retest
reliability, 8 (30%) used RMSD as a measure, whereas in 2013,
this was only used in 2 (2/29, 7%) studies. Furthermore, 41%
(11/27) of approaches did not report on test–retest reliability or
used a measure of statistical equivalence that did not allow us
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to assess the accuracy. Advances in automated audiometry that
increase reliability include procedures to identify invalid
responses (5/27, 19%), monitoring environmental noise (6/27,
22%), or both (7/27, 26%) to warn for invalid test conditions,
making these tests applicable in more populations and
environments. The reliability can be increased, for instance, by
alternative response methods, including the forced-choice
paradigm [37], or by using machine learning to account for
lapses of attention [23]. Digital (health) technologies, including
smartphones and tablets, lend themselves to quality control
measures for increased reliability with the host of integrated
sensors [6].

Efficiency
A fair indicator of efficiency is the overall time required to
conduct a test. Most approaches (20/27, 74%) used the modified
Hughson–Westlake procedure, of which some (7/20, 35%)
showed a similar test duration to manual audiometry. Maximum
likelihood procedures demonstrated a 45% reduction in test
time in people with normal hearing [38]. Bayesian active
learning methods can be extended by adding variables that share
some interrelationships using a conjoint estimator that exploits
nonlinear interactions between the variables [96]. The resulting
machine learning–based automated procedures demonstrated a
30% to 70% reduction in test time compared with manual
audiometry for air conduction audiograms in people with normal
hearing and hearing impairment [29]. No machine learning
approaches had incorporated bone conduction. Therefore,
time-efficiency gains compared with full audiogram procedures
are not available; however, one can assume that these will yield
similar time-efficiency gains. Another indicator of test efficiency
is the number of stimuli required to achieve the desired accuracy.
This indicator is helpful in optimizing the threshold-seeking
part of the approach. Reporting the equivalent time gains under
operational conditions is recommended as this can be readily
compared with other efficiency gains, including the reduced
traveling time if a visit to the outpatient clinic can be replaced
for an at-home test or time savings by automating other parts
of the clinical care pathway such as interpretation of the
outcome. Other aspects of efficiency beyond time that should
be considered are cost reductions when enabling task shifting
of professionals or the ability to test outside the sound booth.

Future Developments
To obtain an overall indicator of the technical maturity of an
approach, developers should be encouraged to use the
technology readiness level (TRL) to report the development
phase of a technology. TRLs were initially developed in the
aerospace industry to estimate the maturity of technology from
basic concepts to flight-proven products [97]. To apply TRLs
to automated audiometry, further adjustments can be made to
fit the hearing health care sector to the version of biomedical
TRLs created by the US Army Medical Research and Materiel
Command [98]. For those approaches that are ready for
operational use, certification (eg, Conformité Européenne and
the United States Food and Drug Administration) can further
stimulate clinical adoption and iterative improvements based
on clinical feedback. In order to be cost-effective, timely, and
responsive, certification for digital self-care approaches may

need to be less stringent than those for clinical care. A study by
Yeung et al [12] proposed alternative procedures for (fast)
certification to keep up with the rapidly developing field of
visual eHealth tools. Their recommendations might also be
applicable to automated hearing assessments, including a rating
by health agencies or nongovernmental organizations (eg, a
repository of trusted approaches; see Psyberguide [99] as an
example of mental health apps reviewed by experts) or adopting
the Clinical Laboratory Improvement Amendments model to
ensure that approaches comply with the basic requirements of
usability, privacy, and security [12]. Following similar
certification procedures in the visual and auditory domains may
facilitate diagnosis across medical domains. In addition,
standards on minimum quality and consensus on what metadata
are needed in health applications to describe the test conditions
and facilitate interpretation are currently missing.

Limitations
This scoping review included peer-reviewed reports from widely
used and recognized scientific databases. A potential limitation
is that some of the commercialized automated approaches may
have been developed without peer-reviewed reports. Therefore,
some automated approaches could be more mature than
previously reported. There is no gold standard for reporting
audiometry validation studies, which limits a consistent
comparison among approaches. Finally, automated procedures
may well be embraced by early adopters first, which could lead
to projections on suitability that are overly optimistic for users
with poorer digital proficiency.

Conclusions and Recommendations
Since 2013, an increasing number of automated audiometry
approaches on digital devices have demonstrated similar
accuracy, reliability, and time efficiency as conventional manual
audiometry. New developments offer features, versatility, and
cost-effectiveness beyond manual audiometry. Fully adaptive
procedures, including machine learning techniques, seek hearing
thresholds more efficiently. Inexpensive digital devices such
as smartphones can be turned into audiometers, increasing
accessibility and availability. Higher reliability is achievable
by signaling invalid test conditions, and child-friendly user
interfaces offer a solution to the hard-to-test population. These
approaches can be implemented in the clinical care pathway,
remote or virtual hearing health care, community-based services,
and occupational health care to address the global need for
accessible hearing loss diagnosis.

For successful adoption, standardized measures of accuracy,
reliability, and efficiency are needed for comparative purposes.
Certification and independent reviews may help prospective
users select trustworthy approaches. Further reliability can be
achieved by determining which difficult-to-test populations
may not be appropriate for automated testing and how to detect
and then triage these patients to specialized centers. More
user-friendly and failsafe procedures that include remote
surveillance and quality control can support automated hearing
assessment at scale in specific populations and in concert with
diagnostic assessments in other medical domains, including
visual health and mental well-being [12,99]. Further contextual
information, such as standardized metadata, is needed to help
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clinicians interpret the context and limitations of test outcomes.
If researchers and clinicians deal carefully with their limitations,
automated hearing assessments can be designed such that they
form an effective part of service delivery for many people who
have or are at risk of hearing loss. Automated audiometry can

be part of existing care pathways and also enable new service
models, including task shifting to community health workers
delivering decentralized care, virtual hearing health care, and
over-the-counter or direct-to-consumer hearing aid dispensing.
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Abbreviations
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RMSD: root mean square deviation
TRL: technology readiness level
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