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Abstract

Background: Autism spectrum disorder (ASD) is a widespread neurodevelopmental condition with a range of potential causes
and symptoms. Standard diagnostic mechanisms for ASD, which involve lengthy parent questionnaires and clinical observation,
often result in long waiting times for results. Recent advances in computer vision and mobile technology hold potential for
speeding up the diagnostic process by enabling computational analysis of behavioral and social impairments from home videos.
Such techniques can improve objectivity and contribute quantitatively to the diagnostic process.

Objective: In this work, we evaluate whether home videos collected from a game-based mobile app can be used to provide
diagnostic insights into ASD. To the best of our knowledge, this is the first study attempting to identify potential social indicators
of ASD from mobile phone videos without the use of eye-tracking hardware, manual annotations, and structured scenarios or
clinical environments.

Methods: Here, we used a mobile health app to collect over 11 hours of video footage depicting 95 children engaged in gameplay
in a natural home environment. We used automated data set annotations to analyze two social indicators that have previously
been shown to differ between children with ASD and their neurotypical (NT) peers: (1) gaze fixation patterns, which represent
regions of an individual’s visual focus and (2) visual scanning methods, which refer to the ways in which individuals scan their
surrounding environment. We compared the gaze fixation and visual scanning methods used by children during a 90-second
gameplay video to identify statistically significant differences between the 2 cohorts; we then trained a long short-term memory
(LSTM) neural network to determine if gaze indicators could be predictive of ASD.

Results: Our results show that gaze fixation patterns differ between the 2 cohorts; specifically, we could identify 1 statistically
significant region of fixation (P<.001). In addition, we also demonstrate that there are unique visual scanning patterns that exist
for individuals with ASD when compared to NT children (P<.001). A deep learning model trained on coarse gaze fixation
annotations demonstrates mild predictive power in identifying ASD.

Conclusions: Ultimately, our study demonstrates that heterogeneous video data sets collected from mobile devices hold potential
for quantifying visual patterns and providing insights into ASD. We show the importance of automated labeling techniques in
generating large-scale data sets while simultaneously preserving the privacy of participants, and we demonstrate that specific
social engagement indicators associated with ASD can be identified and characterized using such data.
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Introduction

Background
Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by social impairments, communication
difficulties, and restricted and repetitive patterns of behavior.
Currently, 1 in 44 children in the United States have been
diagnosed with ASD, with males 4 times more likely to be
affected than females [1,2]. ASD usually manifests in infants
and children and presents a wide range of symptoms that vary
in intensity from person to person. The heterogeneity of ASD
presents a major diagnostic challenge, with clinicians typically
employing a combination of lengthy parent questionnaires and
clinical observation to evaluate children.

Standard diagnostic mechanisms for ASD are often accompanied
by a range of issues that result in long waiting times for results
[3-5]. However, in recent years, significant strides have been

made in the fields of computer vision and mobile technology,
giving rise to the possibility of using home videos of a child's
natural behaviors to identify characteristics linked with ASD
and enable a more accurate and timely diagnosis [6].

We previously created a mobile app called GuessWhat, which
yields video data of children engaged in socially motivated
gameplay with parents in a natural home environment [7-13].
The app presents a charades game, encouraging kids to act out
a series of given prompts, such as emotions, sports, or chores.
During a game, parents will open the GuessWhat app and place
the smartphone on their foreheads, with the front-facing camera
pointing at the child; the child then proceeds to act out the
prompt displayed on the device while the parent attempts to
predict the answer, as shown in Figure 1. The game ends when
the 90-second time limit is exceeded. At this point, the parent
can view the video recording of the child and is then given the
option to share this data with our research team.

Figure 1. GuessWhat Mobile app. (A) The parent places the mobile phone in a fixed location, allowing the recording of a semistructured gameplay
video. (B) The children are presented with a variety of charades prompts, such as emotions and animals.

The data collection pipeline employed by GuessWhat provides
several benefits that make the obtained information amenable
to computational analysis. First, although children are
performing varied tasks in diverse environments, GuessWhat
videos encourage inherent structure, with factors such as the
position of the phone camera, location of the child relative to
the camera, and game-based social interactions between the
parent and child remaining generally consistent between videos.
In addition, as children are in a home environment and are
unencumbered by bulky hardware such as eye trackers or head
mounts, they can interact with their parents and surroundings
in a natural manner. As a result, we hypothesize that computer
vision algorithms can be designed to monitor socially motivated
facial engagement in children during gameplay, allowing
effective identification of behaviors, eye contact events, and
social interactions potentially correlated with the ASD
phenotype.

In this work, we used computational techniques to analyze these
videos and identify differences in social interactions between
children with ASD and neurotypical (NT) children. We

specifically analyzed 2 common social engagement signals that
are included in standard clinical diagnostic instruments and can
be identified through computer vision methodologies: (1) gaze
fixation patterns, which represent the regions of an individual’s
visual focus and (2) visual scanning methods, which refer to
the ways in which individuals scan their surrounding
environment. We performed these tasks without sharing
participant videos or private patient information with human
annotators.

Ultimately, the development of this system can help improve
diagnosis of ASD through automated detection of impaired
social interactions, mitigating the problems associated with
limited diagnostic resources for neurodevelopmental disorders,
especially in regions where access to care is limited [14]. This
work also demonstrates the usefulness of game-based
approaches and automated labeling methods in preserving
privacy, generating large diagnostic data sets, and improving
human understanding of complex conditions.
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Prior Work
Researchers have demonstrated the usefulness of video data in
providing diagnostic insights into gaze and engagement
behaviors associated with ASD. Prior work can generally be
divided into three categories: (1) manual annotation methods,
(2) eye-tracking systems, and (3) use of structured environments.

Manual Annotation Methods
Some studies have used human annotators to label social
interaction and engagement information in video frames. Several
prior works, such as those by Tariq et al and Leblanc et al,
performed manual annotation of behavioral features in home
videos, which enabled the creation of classifiers that could
identify ASD with high accuracy [15-20]. Chorianopoulou et
al collected structured home videos from participants and had
expert annotators label the data set with the actions, emotions,
gaze fixations, utterances, and overall level of engagement in
each video; this information was then used to train a classifier
to identify specific engagement features that could be correlated
with ASD [21]. Rudovic et al trained a large and generalizable
neural network to estimate engagement in children with ASD
from different cultural backgrounds [22]. Engagement labels
were manually annotated by trained individuals. Although these
methods enable the creation of human-vetted, accurate data sets,
such approaches require large numbers of trained annotators
when implemented on a large scale, which is expensive and
time-consuming. In addition, these techniques may compromise
the privacy of participants by providing annotators with access
to video footage, although some methods have been developed
to address privacy concerns with crowdsourced annotations
[23,24].

Eye-Tracking Systems
Several studies have used eye trackers to identify patterns in
gaze and engagement behaviors that may be indicative of ASD
or other developmental conditions [25-28]. Pusiol et al showed
that deep learning models trained on data collected from a
head-mounted eye tracker and camera could be used to classify
idiopathic developmental disorder and fragile X syndrome with
high precision [29]. Similarly, Riby et al used eye trackers to
show that individuals with ASD had atypical gaze patterns when
watching movies and cartoons [30]. To counteract artificial
movements often associated with facial eye trackers, Noris et
al developed a nonintrusive eye-tracking device mounted on a
hat that recorded a child's interactions with an interviewer; the
study concluded that children with ASD were more inclined to
look downward during social interaction than their NT peers
[31]. Despite the accuracy and quality of gaze data collected
from such systems, eye trackers require custom hardware that
can often be expensive and inaccessible, especially for
individuals living in resource-limited regions. As a result, these
approaches are unlikely to be accessible to the general
population.

Use of Structured Environments
Hashemi et al explored the use of computer vision algorithms
to identify behaviors associated with ASD [32]. A trained

clinician administered a series of predefined, structured tasks
involving toys and other visual stimuli, while a video camera
captured footage of the child's response. A computer vision
system that analyzed the child's body orientation and facial
movement was able to evaluate the child's engagement with
high accuracy. Similarly, Chang et al used the front-facing
camera of a mobile device to capture gaze scanning patterns as
children watched strategically designed short movies [33].
Automated computer vision techniques were then used to
identify differences in gaze patterns between children with ASD
and NT individuals. Egger et al also used mobile phones to
collect videos of ASD and NT children engaging with short
movies. Visual stimuli in movies were carefully designed based
on neuroscience principles, and children’s emotional and
behavioral responses were computationally analyzed [34]. These
works demonstrate effective methods for analyzing engagement
patterns without the use of manual annotations or external
eye-tracking hardware; however, these studies were conducted
with highly structured tasks (eg, carefully selected movies and
toys) and controlled environmental factors (eg, Hashemi et al
and Chang et al controlled the room lighting and distance of
the camera from the participant's face). As a result, the ability
of these techniques to translate to natural nonclinical
environments and unstructured tasks remains to be explored.
In addition, these works do not evaluate engagement and
behaviors in social situations.

Our Contributions
To the best of our knowledge, this is the first study that attempts
to obtain diagnostic insights into ASD from social gameplay
videos without the use of eye-tracking hardware, manual
frame-level annotations, and structured scenarios or
environments. We show that semistructured gameplay videos
collected on mobile devices reveal specific regions of gaze
fixation as well as visual scanning patterns that differ between
individuals with ASD and NT children during social gameplay.
With further research and development, our system can be
deployed as a diagnostic tool in diverse settings on a large scale.

Methods

Data Collection
We used the GuessWhat mobile app to collect videos of children
engaged in gameplay with a parent. Participants were recruited
using social media advertisements and research email lists
maintained by the study team. Approximately 1000 individuals
proceeded to download the GuessWhat app, and we collected
449 videos from 95 children for this study. The participants
ranged in age from 2 to 15 years and included 68 children (15
females, 53 males) diagnosed with ASD as well as 27 NT
children (9 females, 18 males). Each child contributed a mean
of 4.7 videos (SD 7.3), resulting in a total data set size of
1,084,267 individual frames and 11.1 hours of footage, presented
in Figure 2. All parents consented to share their videos with our
research team and completed a survey to provide the age, sex,
and diagnostic status of their children.
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Figure 2. Data set information. These graphs show the breakdown of our data set by age, diagnosis, and sex. In our data set, 1 NT male failed to provide
his age, and this information has been excluded from this figure. ASD: autism spectrum disorder; NT: neurotypical.

Data Preprocessing
Although the semistructured format of our video data set
presents numerous advantages, home videos are naturally
heterogeneous in quality; this results in several challenges that
must be addressed prior to computational analysis. Specifically,
excessive camera movement and poor lighting conditions
rendered some frames in our data set too blurry for use.
Moreover, other adults or siblings would often join in gameplay,
resulting in multiple faces in the frame and making identification
of the participating child challenging. Another major challenge
arises from the lack of fine-grained annotations and ground truth
labels; although the lack of eye-tracking hardware enables
natural child motions and interactions, this also results in a lack
of calibration information for obtaining accurate gaze locations.

We began our analysis with extensive quality control and data
preprocessing. To preserve privacy, we annotated our data set
solely using computational methods. We first used Amazon
Rekognition, a powerful off-the-shelf computer vision platform
developed by Amazon, to perform noisy labeling of key features
in each still frame, including 30 facial landmarks and facial
bounding boxes. Frames with 0 or greater than 2 faces were
removed from the data set. We then used an open-source facial
landmark annotation platform called OpenFace to obtain

automated estimates of gaze directions [35,36]. Each frame with
an identifiable face was assigned a coordinate pair (x,y)
representing the direction of the individual's gaze. The value of
x ranges from –1 (indicating a leftward gaze) to 1 (indicating a
rightward gaze); similarly, the value of y ranges from –1
(indicating a downward gaze) to 1 (indicating an upward gaze),
as shown in Figure 3. As these coordinates were assigned with
respect to the smartphone camera, a frame in which an individual
is gazing straight ahead into the camera is assigned a coordinate
pair of (0,0). If the OpenFace model demonstrated low
confidence in gaze estimation values (defined as confidence
below 75%) because of occluded eyes or insufficient image
quality, the frame was removed from the data set; as a result,
we expected the final annotations to be of high quality, but the
presence of some noise and incorrect labels was to be expected.
This procedure resulted in a total of 619,620 annotated frames,
representing 520,536 frames from children with ASD and 99,084
frames from NT children.

Finally, to discretize gaze annotation data, we divided the
coordinate map into 16 distinct areas of interest (AOIs), as
shown in Figure 3. All gaze coordinates that fell within the
bounds of a particular AOI were grouped together. Such an
approach allowed us to identify trends in an individual's gaze
fixations and scanning patterns.

Figure 3. Gaze annotations. (A) Gaze coordinates range between –1 and 1 on the x- and y-axes. (B) To categorize gaze coordinates into discrete regions,
we divided the gaze map into 16 buckets. Each area of interest is labeled with corresponding row and column letters.

J Med Internet Res 2022 | vol. 24 | iss. 2 | e31830 | p. 4https://www.jmir.org/2022/2/e31830
(page number not for citation purposes)

Varma et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Differential Pattern Analysis

Gaze Fixation Patterns
Gaze fixation, which occurs when one's gaze is held on a single
target for an extended period, plays an important role in social
interaction by signaling communicative intent and enabling
interpersonal relationships. In a dyadic social interaction,
individuals usually fixate their gaze on the target's eyes.
However, individuals with ASD often face difficulty with
maintaining eye contact and instead tend to focus their visual
attention on other regions of the target's face. Several studies
involving eye trackers and visual stimuli have shown that
children with ASD tend to fixate on the mouth or other body
parts; this has even been observed in children aged as young as
2 to 6 months who were later diagnosed with ASD [37-39]. Eye
contact avoidance, which is explicitly examined in standard
clinical diagnostic examinations, can result in decreased facial
identification and social engagement.

To determine the gaze fixation patterns of individuals during a
single 90-second game, we used the coarse gaze annotations
obtained from our preprocessed data set. For each video in our
data set, we computed the percentage of time that the child
fixated his or her gaze on each of the 16 predefined AOIs. A
2-sided permutation test was used at every AOI to identify
statistically significant differences between the ASD and NT
populations, with the null hypothesis that the fixation times for
both populations followed an equivalent distribution; we
calculated the difference in the mean fixation times for 100,000
rearrangements of the 2 groups. Bonferroni correction was
applied to account for multiple hypothesis tests. It is important
to note that because the AOIs are correlated, the Bonferroni
correction is extremely stringent and will reduce the likelihood
of Type 1 errors.

Visual Scanning Patterns
Humans tend to transition their gaze between various objects
in their environments when encountering visual stimuli, a
phenomenon called visual scanning. The patterns and
frequencies with which humans scan their surroundings can
provide insight into how individuals process the world around
them. In the context of social interaction, prior research has
shown that individuals with ASD vary in the way that they scan
a target's facial landmarks during a social scenario, which may
contribute to difficulty with interpreting emotional or nonverbal
cues. This was shown by Pelphrey et al, who demonstrated that
when presented with images of faces, NT individuals typically
transitioned their gaze between core features, such as the eyes
and nose, whereas individuals with ASD appeared to scan
nonfeature areas of the face, such as the forehead and cheeks
[40]. A similar study conducted by Chawarska and Shik on
toddlers corroborated these findings, providing evidence of
atypical scanning patterns in children with ASD when compared
to their age-matched NT peers [41]. Understanding these
patterns can reveal differences in the way that individuals with
ASD process visual stimuli and interact in social situations.

Modeling gaze transition patterns as a graph problem can
provide insight into the regions that children focus on while
scanning their environments [42]. For each 90-second video of
gameplay, we constructed a network consisting of 16 nodes nAA,
nAB, …, nDC, nDD, with each node representing a predefined
AOI. When a child shifts his or her gaze between locations on
the 16-AOI gaze map, an undirected edge e=(ni, nj) is drawn
between the 2 corresponding nodes. Edges are weighted by the
number of transitions that occur during the game. The graph
can then be converted to a 16 × 16 adjacency matrix, as depicted
in Figure 4.

Figure 4. Graph model of gaze transitions. We modeled the gaze transitions in each gameplay video as a graph, which was then used to generate a 16
× 16 adjacency matrix.
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We computed adjacency matrices for all gameplay videos and
normalized each matrix by dividing each entry by the total
number of transitions. Then, we computed the average of all
matrices associated with the NT individuals in our data set,
resulting in a single 16 × 16 matrix depicting the mean
percentage of transitions occurring between each pair of AOIs
in a single game. This process was repeated for the gameplay
videos associated with the ASD cohort. We conducted 2-sided
permutation tests at each location in the transition matrix to
determine if there were significant differences in the transition
types between the 2 groups.

Deep Learning Model
Next, we used deep learning techniques to measure the
predictive power of gaze fixation patterns. We began by
converting fixation data points into feature matrices that could
serve as the input to our classifiers. We first extracted the
sequence of gaze coordinates from each video using the coarse
annotation procedure described in the previous section. This
resulted in a vector of n ordered pairs (x,y) for every video,
where n represents the number of valid frames in the video, and
x and y are the gaze fixation coordinates ranging from –1 to 1.

We then matched each ordered pair with its associated AOI, as
demonstrated in Figure 3. This yielded a vector of n AOIs,
representing the regions of the gaze map that each individual
fixated on during a game. Next, each of the 16 predefined AOIs
was assigned a number from 0 to 15 in alphabetical order, with
0 representing AA and 15 representing DD; this formed a vector
of n integers, which we will refer to as v.

We used a sliding window approach to divide v into separate
vectors using 2 predefined parameters, namely window and
shift. The window parameter w represents the number of frames
included in a single feature vector; in our experiments, this value
ranged from 50 to 500 frames, which roughly corresponds to 2
to 20 seconds of video content. The shift parameter s defines
the number of elements by which the window slides between
feature vectors, and we experimented with shift values between
10 and 100. These parameters allowed us to extract feature
vectors from v consisting of w elements, with vectors separated
by exactly s frames; note that if s<w, vectors will contain
overlapping elements. Finally, we converted each w vector into
a w × 16 feature matrix, with each AOI integer encoded by a
one-hot vector. A demonstrative example is shown in Figure 5.

Figure 5. Gaze fixation feature representation. In this demonstrative example, we begin with a video consisting of 9 frames. Gaze coordinates are
matched with corresponding area of interest (AOI) regions. Using a window of 4 and a shift value of 2 divides vector v into 3 feature vectors. Each
feature vector is then one-hot encoded. All input feature matrices are assigned the same label.

We then used deep learning models to determine if gaze fixation
patterns could be predictive of ASD. We assigned 324 videos
(275 ASD, 49 NT) in our data set to the training set, 71 videos
(62 ASD, 9 NT) to the validation set, and 54 videos (43 ASD,
11 NT) to the held-out test set, ensuring that all videos
corresponding to a single child were assigned to the same set.
Input feature matrices were constructed using the approach
described above. A binary label l ∈ {0,1} was assigned to each
matrix to represent the diagnosis of the child in the associated
video, with 1 representing the presence of ASD.

To exploit the temporal nature of our data set, we used long
short-term memory (LSTM) networks, which are a type of

recurrent neural network that can model long-term dependencies.
A w × 16 feature matrix served as the input to an LSTM model
with w cells; each cell accepted a one-hot encoded 16-feature
vector as the input. We used the Adam optimizer with a learning
rate of 0.001, a batch size of 5, and a weighted binary
cross-entropy loss function. The last cell of the LSTM network
was connected to a fully connected layer with a single class
output followed by a sigmoid nonlinearity; this resulted in a
final value ranging between 0 and 1. This value was rounded
to the closest integer to determine the final prediction, as
observed in Figure 6.
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Figure 6. Model architecture. The model consists of a long short-term memory network with w cells. Each cell accepts a one-hot vector of size 16,
represented in the figure by xi, and outputs a cell state ci and a hidden state hi. The final cell is connected to a fully connected layer, which generates a
single class output. FC: fully connected layer; LSTM: long short-term memory.

Finally, to characterize model performance, we report four
metrics: macroaveraged recall, macroaveraged precision,
weighted-average recall, and weighted-average precision. As
our data set exhibits class imbalance with cases outnumbering
controls, these metrics provide the most accurate representation
of model performance. Macroaveraged statistics compute the
arithmetic mean of performance on each class, whereas
weighted-average statistics compute the weighted mean. We
performed all parameter experiments on our validation set and
evaluated our final best-performing models on the held-out test
set.

Ethics Approval
This study was approved by the Stanford Institutional Review
Board (eProtocol number: 39562).

Results

Gaze Fixation Patterns Differ Between ASD and NT
We first analyzed gaze fixation patterns to determine if regions
of focus differ between children with ASD and NT children

during a single 90-second game. Coarse gaze annotations, which
were obtained using the automated labeling procedure described
in the Methods section, were grouped into 16 AOIs, and the
percentage of time that the child fixated on each region was
computed. Figure 7 shows the mean percentage of time that the
ASD and NT cohorts fixated on each AOI during a game. As
shown by the heat maps, children mostly fixated on the 4 central
locations BB, BC, CB, and CC, which are located closest to the
camera of the mobile phone. The distributions show that several
differences exist between the 2 populations; children with ASD
were most likely to fixate on locations BB and CB, whereas NT
children spent much of the 90-second game focusing on
locations BB and BC. We conducted a 2-sided permutation test
at each AOI with 100,000 permutations of the data, setting a
Bonferroni-corrected significance threshold of 0.0031 to account
for the 16 hypothesis tests. A significant difference in fixation
distributions between the 2 cohorts was observed at location
BC (P<.001).

Figure 7. Gaze fixation results. The heat maps located at the upper left and lower left show the mean percentage of time that an individual fixated his
or her gaze on each area of interest (AOI). The bar charts and the box and whisker plots show the distribution of fixation times across all videos. ASD:
autism spectrum disorder; NT: neurotypical.
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Visual Scanning Patterns Differ Between ASD and NT
Next, we used graph methods to analyze the ways in which
participants scanned their environments during gameplay. We
modeled the gaze transitions in each gameplay video as a
network and computed the mean adjacency matrices for the
ASD and NT populations, which are shown in Figure 8; a cell
of the matrix in row i and column j represents the mean
percentage of gaze transitions in a single 90-second game that
occur between AOI i and AOI j. We conducted permutation
tests with 100,000 permutations at each of the 61 nonzero,

unique locations in the adjacency matrices; as the matrix is
symmetric, the distributions for each distinct transition pair
were tested for significance exactly once. We then used a
Bonferroni-corrected significance threshold of 0.0008 to account
for 61 hypothesis tests. Our results show that a significant
difference exists in the percentage of gaze transitions between
regions BB and BC (P<.001). As shown by the heat maps in
Figure 8, 9.4% of the gaze transitions made by an individual
with ASD occur between BB and BC; however, for NT children,
13% of the gaze transitions made during a 90-second game
occur between BB and BC.

Figure 8. Gaze transition heat maps. These heat maps show the percentage of gaze transitions that occur between each pair of AOIs during a 90-second
game. AOI: area of interest; ASD: autism spectrum disorder; NT: neurotypical.

Gaze Fixation Patterns Provide Mild Predictive Power
We measured the classification performance of models trained
on gaze fixation patterns. Gaze fixation coordinates were
encoded as one-hot vectors and passed as input to an LSTM
network, which generated a single class output representing the
likelihood of ASD. LSTM models were trained with a range of
window and shift parameter values and evaluated on the

validation set. Our results from the validation set allowed us to
identify our top 3 models, which were trained with parameters
(1) w=100, s=10; (2) w=200, s=10; and (3) w=500, s=10. These
networks were then evaluated on the held-out test set. In Table
1, we provide precision and recall values for an LSTM model
trained with those values of the window w and shift s that
achieved the best performance on the validation set.

Table 1. Classifier performance on held-out test set with gaze fixation features.

Weighted-average precisionWeighted-average recallMacroaveraged precisionMacroaveraged recallShift (s)Window (w)

0.6610.6560.5950.59810100

0.6350.6620.5770.56110200

0.6240.6250.5770.57610500

The model with parameters w=100 and s=10 demonstrated the
best performance. Macroaveraged statistics are lower than
weighted-average statistics, suggesting that the accuracy of
prediction differs between the 2 classes. In summary, the results
suggest that gaze fixation patterns can provide mild predictive
power.

Discussion

In this study, we used computational techniques to analyze home
videos and obtain diagnostic insights into ASD. We collected
a large data set of semistructured videos featuring children
engaged in gameplay with a parent, and we analyzed 2 key
markers of social engagement that have been shown to differ
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between children with ASD and their NT peers: (1) gaze fixation
and (2) visual scanning. For each marker, we identified
statistically significant differences between the 2 cohorts and
demonstrated that this information could be useful in identifying
the presence of ASD.

Our study demonstrates the potential that mobile tools hold for
quantifying visual patterns and providing insights into ASD.
Despite the presence of high heterogeneity and varying quality
in our data set, the automated labeling techniques and deep
learning classifiers used in this work were able to extract usable
signals and identify differences in gaze fixation and visual
scanning patterns between the 2 cohorts. These methods also
enabled us to preserve participant privacy by avoiding the use
of human annotators. Our findings support prior works that have
identified social and visual engagement differences between
individuals with ASD and NT individuals [37-41], and we
demonstrate here that these variations can be identified using
mobile tools. In contrast to previous video-based diagnostic
approaches, we demonstrate that diagnostic insights can be
obtained without the use of manual annotation methods,
eye-tracking systems, or structured environments.

This work has some limitations. First, due to the class imbalance
in our data set, the predictive accuracy of ASD differs from that

of the control individuals; this is reflected in Table 1, which
shows variations between macroaveraged statistics and
weighted-average statistics. Additional data set augmentations
will be necessary to correct this issue in future. In addition, due
to camera motion and variation in the location of the smartphone
relative to the parent's face, the gaze fixation maps are difficult
to interpret qualitatively, and AOIs cannot be definitely matched
to a parent's specific facial regions.

Future directions for this work include expanding the size of
the experimental population; analyzing additional motion-based
features in gameplay videos, such as limb movements and
coordination; performing qualitative human-centered
investigations or pragmatic randomized controlled trials to
evaluate clinical usability; and evaluating the real-world
diagnostic capabilities of our approach across diverse
environmental settings [43-47].

Overall, this study demonstrates the usefulness of game-based
mobile apps and heterogeneous video data sets in aiding in the
diagnosis of ASD. With further research and development, the
system described in this work can ultimately serve as a low-cost
and accessible diagnostic tool for a global population.
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