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Abstract

Background: The COVID-19 pandemic has created a pressing need for integrating information from disparate sources in order
to assist decision makers. Social media is important in this respect; however, to make sense of the textual information it provides
and be able to automate the processing of large amounts of data, natural language processing methods are needed. Social media
posts are often noisy, yet they may provide valuable insights regarding the severity and prevalence of the disease in the population.
Here, we adopt a triage and diagnosis approach to analyzing social media posts using machine learning techniques for the purpose
of disease detection and surveillance. We thus obtain useful prevalence and incidence statistics to identify disease symptoms and
their severities, motivated by public health concerns.

Objective: This study aims to develop an end-to-end natural language processing pipeline for triage and diagnosis of COVID-19
from patient-authored social media posts in order to provide researchers and public health practitioners with additional information
on the symptoms, severity, and prevalence of the disease rather than to provide an actionable decision at the individual level.

Methods: The text processing pipeline first extracted COVID-19 symptoms and related concepts, such as severity, duration,
negations, and body parts, from patients’ posts using conditional random fields. An unsupervised rule-based algorithm was then
applied to establish relations between concepts in the next step of the pipeline. The extracted concepts and relations were
subsequently used to construct 2 different vector representations of each post. These vectors were separately applied to build
support vector machine learning models to triage patients into 3 categories and diagnose them for COVID-19.

Results: We reported macro- and microaveraged F1 scores in the range of 71%-96% and 61%-87%, respectively, for the triage
and diagnosis of COVID-19 when the models were trained on human-labeled data. Our experimental results indicated that similar
performance can be achieved when the models are trained using predicted labels from concept extraction and rule-based classifiers,
thus yielding end-to-end machine learning. In addition, we highlighted important features uncovered by our diagnostic machine
learning models and compared them with the most frequent symptoms revealed in another COVID-19 data set. In particular, we
found that the most important features are not always the most frequent ones.

Conclusions: Our preliminary results show that it is possible to automatically triage and diagnose patients for COVID-19 from
social media natural language narratives, using a machine learning pipeline in order to provide information on the severity and
prevalence of the disease for use within health surveillance systems.
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Introduction

Overview
During the ongoing coronavirus pandemic, hospitals have been
continuously at risk of being overwhelmed by the number of
people developing serious illness. People in the United Kingdom
were advised to stay at home if they had coronavirus symptoms
and to seek assistance through the National Health Service
(NHS) helpline if they needed to [1]. Consequently, there is an
urgent need to develop novel, practical approaches to assist
medical staff. A variety of methods have been recently
developed that involve natural language processing (NLP)
techniques; the concerns of these methods range from the level
of the individual (see, for example, [2,3]) up to the population
level [4,5].

Herein, we take a diagnostic approach and propose an
end-to-end NLP pipeline to automatically triage and diagnose
COVID-19 cases from patient-authored medical social media
posts. The triage may inform decision makers about the severity
of COVID-19, and diagnosis could help in gauging the
prevalence of infections in the population. Attempting a clinical
diagnosis of influenza, or in our case a diagnosis of COVID-19,
purely based on the information provided in a social media post
is unlikely to be sufficiently accurate to be actionable at an
individual level, since the quality of this information will be
typically noisy and incomplete. However, it is not necessary to
have actionable diagnoses at the individual level in order to
identify interesting patterns at the population level, which may
be useful within public health surveillance systems. For
example, text messages from the microblogging site Twitter
were used to identify influenza outbreaks [6]. In addition,
Twitter data in conjunction with a US Centers for Disease
Control and Prevention (CDC) data set were used to predict the
percentage of influenza-like illness in the US population [7].

One of our key concerns is in the production of a high-quality
human-labeled data set on which to build our pipeline. Here,
we give a brief overview of our pipeline and how we developed
our data set. The first step in the pipeline was attained by
developing an annotation application that detects and highlights
COVID-19-related symptoms with their severity and duration
in a social media post, henceforth collectively termed as
concepts. During the second step, relations between symptoms
and other relevant concepts were also automatically identified
and annotated. For example, breathing hurts is a symptom,
which is related to a body part, the upper chest area.

One author manually annotated our data with concepts and
relations, allowing us to present posts highlighted with identified
concepts and relations to 3 experts, along with several questions,
as shown in Figure 1. The first question asked the experts to
triage a patient into 1 of the following 3 categories: Stay at
home, Send to a GP (where GP stands for general physician),
or Send to a hospital. The second question asked to diagnose
the likelihood of COVID-19 on a Likert scale of 1-5 [8].

The 3 experts are junior doctors working in the United Kingdom
who were redeployed to work on COVID-19 wards during the
first wave of the pandemic, between March and July 2020. Their
roles involved the diagnosis and management of patients with
COVID-19, including patients who were particularly unwell
and required either noninvasive or invasive ventilation. There
were some training sessions organized for doctors working in
COVID-19 wards. However, these were only provided toward
the end of the first wave, as there was initially little knowledge
of the virus and how to treat it. In the hospital, the doctors
followed local protocols, which were adjusted as more
experience was gained about the virus.

We also asked the doctors to indicate whether the highlighted
text presented is sufficient in reaching their decision in order
to understand its usefulness when we incorporate it in the
annotation interface. The annotations were found to be sufficient
in as many as 85% of the posts, on average, as indicated by the
doctors’ answers to question 3 in Figure 1.

The posts labeled by the doctors were then used to construct 2
types of predictive machine learning model using support vector
machines (SVMs) [9,10]; see the Step 4: Triage and Diagnosis
subsection in the Methods section. The triage models use
hierarchical binary classifiers, which consider the risk averseness
or tolerance of the doctors when making the diagnosis [11]. The
diagnostic models first calculate the probability of a patient
having COVID-19 from doctors’ ratings. The probabilities are
then used to construct 3 different decision functions for
classifying COVID and NO_COVID classes; these are detailed
in the Problem Setting subsection in the Methods section.

We trained the SVM models in 2 different ways: first with
ground-truth annotations and second using predictions from the
concept and relation extraction step described before. Predictions
obtained from the concept extraction step make use of
conditional random fields (CRFs) [12]; see the Step 1: Concept
Extraction subsection in the Methods section for implementation
details. Relations are obtained from these predicted concepts
using an unsupervised rule-based (RB) classifier [13]; see the
Step 2: Relation Extraction subsection in the Methods section.

We also discussed the feature importance obtained from the
constructed COVID-19 diagnostic models and compared it with
the most frequent symptoms from Sarker et al [4] and our data
set. We found that symptoms such as anosmia/ageusia (loss of
smell/taste) rank in the top 5 most important features, whereas
they do not rank in the top 5 most frequent symptoms; see the
Discussion section. Overall, we made several contributions as
follows:

• We showed that it is possible to take an approach that aims
at disease detection to augment public health surveillance
systems, by constructing machine learning models to triage
and diagnose COVID-19 from patients' natural language
narratives. To the best of our knowledge, no other previous
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work has attempted to triage or diagnose COVID-19 from
social media posts.

• We also built an end-to-end NLP pipeline by making use
of automated concept and relation extraction. Our

experiments showed that the models built using predictions
from concept and relation extraction produce similar results
to those built using ground-truth human concept annotation.

Figure 1. A patient-authored social media post is annotated with symptoms (light green), affected body parts (pale blue), duration (light yellow), and
severities (pink). The phrases in square brackets show relations between a symptom and a body part/duration/severity when the distance is greater than
1. This annotated post was presented to 3 doctors to triage and diagnose the author of the post by answering questions 1 and 2, respectively. GP: general
physician.

Related Work
Data derived from social media have been successfully used to
facilitate the detection of influenza epidemics [6,7]. In addition,
Edo-Osagie et al [14] provide a thorough review of the use of
Twitter in public health surveillance for the purpose of
monitoring, detecting, and forecasting influenza-like illnesses.
Since the start of the COVID-19 pandemic, a number of mobile
application–based, self-reported symptom tools have emerged
to track novel symptoms [15]. The mobile application in Menni
et al [16] applied logistic regression (LR) to predict the
percentage of probable infected cases among the total
application users in the United States and United Kingdom
combined. Mizrahi et al [17] performed a statistical analysis on
primary care electronic health record (EHR) data to find
longitudinal dynamics of symptoms prior to and throughout the
infection.

At an individual diagnostic level, Zimmerman et al [18] applied
classification and regression trees to determine the likelihood
of symptom severity of influenza in clinical settings. Moreover,

machine learning algorithms, such as decision trees, have shown
promising results in detecting COVID-19 from blood test
analyses [19]. Here, we focus on features extracted from a
textual source to triage and diagnose COVID-19 for the purpose
of providing population-level statistics in the context of public
health surveillance. Studies related to our work deploy features
obtained from online portals, telehealth visits, and structured
and unstructured patient/doctor notes from EHRs. In general,
COVID-19 clinical prediction models can broadly be categorized
into risk, diagnosis, and prognosis models [20].

In Judson et al [21], a portal-based COVID-19 self-triage and
self-scheduling tool was used to segment patients into 4 risk
categories: emergent, urgent, nonurgent, and self-care, whereas
the online telemedicine system in Liu et al [22] used LR to
predict low-, moderate-, and high-risk patients by utilizing
demographic information, clinical symptoms, blood tests, and
computed tomography (CT) scan results.

In Schwab et al [3], various machine learning models were
developed to predict patient outcomes from clinical, laboratory,
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and demographic features found in EHRs [23]. The authors
reported that gradient boosting (XGB), random forests, and
SVMs are the best-performing models for predicting COVID-19
test results, hospital admissions, and intensive care unit
admissions for positive patients, respectively. A detailed list of
clinical and laboratory features can be found in Wang et al [24],
where the authors developed predictive models for the inpatient
mortality in Wuhan using an ensemble of XGB models.
Similarly, in Vaid et al [25], mortality and critical events for
patients using XGB classifiers were predicted. Finally, a critical
review on various diagnostic and prognostic models of
COVID-19 used in clinical settings can be found in Wynants
et al [20].

In Wagner et al [26], COVID-19 symptoms from unstructured
clinical notes in the EHRs of patients subjected to COVID-19
polymerase chain reaction (PCR) testing were extracted. In
addition, COVID-19 SignSym [27] was designed to
automatically extract symptoms and related attributes from free
text. Furthermore, the study by López-Úbeda et al [28] utilized
radiological text reports from lung CT scans to diagnose
COVID-19. Similar to our approach, López-Úbeda et al [28]
first extracted concepts using a popular medical ontology [29]
and then constructed a document representation using word
embeddings [30] and concept vectors [28]. However, our
methodology differs from theirs with respect to the extraction
of relations between concepts, and moreover, our data set,
comprising posts obtained from medical social media, is more
challenging to work with, since social media posts exhibit
greater heterogeneity in language than radiological text reports.

Finally, Sarker et al [4] published a COVID-19 symptom lexicon
extracted from Twitter, which we compared our work to in the
Discussion section.

Methods

Data
We collected social media posts discussing COVID-19 medical
conditions from a forum called Patient [31]. This a public forum
that was created at the onset of the coronavirus outbreak in the
United Kingdom. We obtained permission from the site
administrator to scrape publicly available posts dated between
April and June 2020. In addition, all user IDs and metadata were
removed from the posts for the purpose of the study. After the
posts were anonymized, and duplicates were removed, we
randomly selected 500 distinct posts. The first author annotated
these posts with the classes shown in Figure 2. The class labels
represent symptoms and the related concepts: (1) duration; (2)
intensifier, which increases the level of symptom severity; (3)
severity; (4) negation, which denotes the presence or absence
of the symptom or severity; and (5) affected body parts. We
also annotated relations between a symptom and other concepts
that exist at the sentence level. For example, the relation between
a symptom and a severity concept is denoted as (SYM,
SEVERITY). The posts were then marked with concepts in
different colors, and the relations were placed right after the
symptom in square brackets, as shown in Figure 1. Each marked
post was presented to the doctors using a web application, and
they were asked 3 questions independently; see Figure 1. We
called the doctors’ answers to questions 1 and 2 as the
COVID-19 symptom triage and diagnosis, respectively. Thus,
for each post, we had 3 independent answers from 3 doctors,
which we denoted as A, B, and C, respectively; these
corresponded to the last 3 authors of the paper and were assigned
randomly.

Figure 2. Frequency distribution of annotated classes/concepts from the text are shown. We have also shown the percentage of each class after discounting
the OTHER labels. The average number of tokens per post was 130.17 (SD 97.83). BPOC: body part, organ, or organ component; SYM: symptoms.

Measurement of Agreement
To measure the agreement between the answers
(recommendations and ratings) of the 3 doctors to questions 1

and 2 of Figure 1, we first calculated the proportion of observed
agreement (ρo), as suggested by de Vet et al [32], who stipulated
that Cohen κ is actually a measure of reliability rather than
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agreement; we observed that ρo was high in all cases, as can be
seen in Table 1. We noted that the paradoxical behavior of
Cohen κ can arise when the absolute agreement (ρo) is high
[33]. This may occur when there is a substantial imbalance in
the marginal totals of the answers, which we observed in the
answers to question 1. Consequently, in addition to Cohen κ,
we deployed a common solution to this problem, called the AC1
statistic devised by Gwet and coworkers [34,35].

We found that for question 1, the AC1 measure showed
moderate agreement (in the middle of the moderate range)
between A and B (0.55) and substantial agreement between A
and C (0.72); see Landis and Koch [36] for the benchmark scale
for the strength of agreement. For question 2, it turned out that

said paradox did not occur, resulting in similar values for κ and
AC1. The agreement between A and B (κ=0.64, AC1=0.67)
and between B and C (κ=0.64, AC1=0.67) was substantial,
while the agreement between A and C (κ=0.40, AC1=0.40) was
on the boundary of fair and moderate; see Table 1.

It is important to note that COVID-19 is a novel virus disease,
for which the doctors did not have prior experience or training
before the first wave of the pandemic, and thus one would expect
some difference of opinion. (We bear in mind that in our setting,
the doctors can only see the posts and thus cannot interact with
the patients as they would in a normal scenario.) Moreover,
there are probable differences in risk tolerances between the
doctors, which would lead to potentially different decisions and
diagnoses.

Table 1. Pairwise agreement between pairs of doctors’ answers to questions 1 and 2; see Figure 1 for an example.

Question 2Question 1Pair

AC1κρ oAC1κρ o

0.670.640.730.550.260.65AB

0.670.640.730.530.140.63BC

0.400.400.510.720.280.77AC

Problem Setting

Triage Classification for Question 1
We mapped the doctors’ recommendations from question 1 to
ordinal values; the options Stay at home, Send to a GP, or Send
to a hospital were transformed to the values 1, 2, and 3,
respectively. To combine recommendations from 2 or more
doctors, we first took their average. This result was rounded to
an integer in 1 of 2 ways: either by taking the floor or by taking
the ceiling. Considering the risk attitude prevalent among
medical practitioners [11], we categorized the ceiling of the
average to be risk averse, denoted by, for example, AB(R-a),
and the floor to be risk tolerant, denoted by, for example,
AB(R-t). Thus, for each patient’s post, we had in total 11
recommendations from 3 doctors for question 1. We constructed
a hierarchical classification model for each of these
recommendations, where the goal was to classify a post into 1
of the 3 options.

Diagnosis Classification for Question 2
To diagnose whether a patient has COVID-19 from their post,
we first estimated the probability of having the disease by
normalizing the rating (ie, given a rating, r, the probability of
COVID-19, Pr(COVID|r), which we termed the ground-truth
probability (GTP), was simply Pr(COVID|r) = (r – 1)/4.

Given our GTP estimates were discrete, we investigated 3
decision boundaries, denoted by LE, LT, and NEQ, based on a
threshold value of 0.5 to classify a post as follows:

• LE: If Pr(COVID|r)≤0.5, then NO_COVID, else COVID.
• LT: If Pr(COVID|r)<0.5, then NO_COVID, else COVID.
• NEQ: If Pr(COVID|r)<0.5, then NO_COVID, elseif

Pr(COVID|r)>0.5, then COVID.

Note that NEQ ignores cases on the 0.5 boundary.

Methodology
A schematic of our methodology to triage and diagnose patients
based on their social posts is shown in Figure 3. Here, the circles
denote the steps followed in the pipeline. We now detail each
of these steps.

Figure 3. A block diagram of the COVID-19 triage-and-diagnosis text processing pipeline. CRF: conditional random field; RB: rule based; SVM:
support vector machine.
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Step 1: Concept Extraction
In the first step, we preprocessed each patient’s post by splitting
it into sentences and tokens using General Architecture for Text
Engineering (GATE) software’s (University of Sheffield) [37]
built-in NLP pipeline. For each token in a sentence, we built
discrete features that signal whether the token is a member of
1 of the following dictionaries: (1) Symptom, (2) Severity, (3)
Duration, (4) Intensifier, and (5) Negation. The dictionaries
were built by analyzing the posts while annotating them. We
also utilized the MetaMap system [29], assuming that it contains
all the necessary technical terms, to map tokens to 3 useful
semantic categories: Sign or Symptom; Disease or Syndrome;
and Body Part, Organ, or Organ Component. Due to the
assumption regarding medical terms, the system does not expect
any new additional terms, and thus we were justified in
extracting concepts and relations in preprocessing steps. The
preprocessed text was then used to build a concept extraction
module to recognize the classes, shown in Figure 2, by applying
a CRF [12]. A detailed description of our CRF training
methodology can be found in Hasan et al [38]. The extracted
concepts were then used for our next step to recognize the
relations between concepts.

Step 2: Relation Extraction
The semantic relation between a symptom and other concepts,
which we formally termed modifiers, was resolved using an
unsupervised RB classifier algorithm. We first filtered all
symptom and modifier pairs from a sentence within a predefined
distance and then selected the closest modifier to a symptom to
construct a relation. In total, we extracted 5 kinds of relations
as follows: (SYM, SEVERITY), (SYM, DURATION), (SYM,
BPOC), (SYM, NEGATION), and (SYM, ?)—here, SYM and
BPOC refer to symptoms, and body part, organ, or organ
component, respectively.

The severity modifiers were mapped to a scale of 1-5; the
semantic meaning of the scale was very mild, mild, moderate,
severe, and very severe, respectively. The duration modifiers
were also mapped to real values in chunks of weeks. So, for
example, 10 days was mapped to the value 1.43.

Step 3: Vector Representation
Fixed-length vector representations suitable as input for SVM
classifiers were built as follows:

• Symptom-only vector representation: Let <S0, S1, . . . , Sn>
be a vector of symptoms constructed from the symptom
vocabulary; for our data set, the number of unique symptom
words/phrases was n=871. To construct the vector
representation for a post, we extracted the concept, SYM,
and the relation (SYM, NEGATION) and set Si to 1, 0, or

–1 according to whether the symptom was present, not
present, or negated, respectively.

• Symptom-modifier relation vector representation: The
symptom-modifier relation vector is a much larger vector
than the symptom-only vector and comprises 3 appended
vectors containing (1) the absence or presence of 110 unique
body parts, (2) the absence or value of a symptom duration,
and (3) the absence, negation, or value or a symptom
severity.

Step 4: Triage and Diagnosis
We utilized SVM classification and regression models to triage
and diagnose patients’ posts, respectively, from the vector
representations described earlier. For question 1, the
recommendation from a doctor or a combination of doctors was
the class label of the post; see the Problem setting subsection
in the Methods section for a description. To build a binary
classifier, we first combined the Send to a GP and Send to a
hospital recommendations to represent a single class, Send. The
SVM was trained to distinguish between the Stay at home and
the Send options; we called this SVM classifier 1. Next, the
posts labeled as Stay at home were discarded and SVM classifier
2 was built utilizing the remaining posts to classify the Send to
a GP and Send to a hospital recommendations. This resulted
in a hierarchical classifier for COVID-19 triage.

For diagnosing COVID-19 cases, we deployed a variant of the
SVM, called support vector regression (SVR) [9], to estimate
the probability of COVID-19. We used the GTP that was derived
from answers to question 2 as the dependent variable. SVR
takes as input a high-dimensional feature vector, such as a
symptom-only or a symptom-modifier relation vector
representation, as described earlier. Classification was performed
using the 3 decision functions, LE, LT, and NEQ, described
previously.

Results

Evaluation
We evaluated the performance of the CRF and SVM
classification algorithms using the standard measures of
precision, recall, and macro- and microaveraged F1 scores [39].
Macroaveraged scores were computed by considering the score
independently for each class and then taking the average, while
microaveraged scores were computed by considering all the
classes together. As our data set was not balanced with COVID
and NO_COVID classes, as can be seen in Figure 4, and we
wished to give equal weight to all instances, we reported
microaveraged scores for the SVR classification. In contrast,
in the case of concept extraction, the Other class dominated.
So, in this case, we reported the macroaveraged scores for the
CRF classification results.
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Figure 4. Support ratio of triage classes across models for question 1 classification tasks. Absolute numbers for the "Send to a hospital" class in test
sets were as follows: A=10, B=12, AB(R-a)=14, AB(R-t)=5, BC(R-a)=6, AC(R-a)=5, and ABC(R-a)=9; the value for the remaining models was 0. GP:
general physician.

Experimental Setup
For the CRF, we reported 3-fold cross-validated macroaveraged
results. Specifically, we trained each fold by a Python wrapper
[40] for CRFsuite; see Okazaki [41]. For relation extraction,
we ran our unsupervised RB algorithm on the 500 posts and
calculated the F1 scores by varying distances considering the 2
cases with and without stop words.

We constructed SVM binary classifiers, SVM classifier 1 and
SVM classifier 2, using the Python wrapper for LIBSVM [42]
implemented in Sklearn [43] with both linear and Gaussian
radial basis function (RBF) kernels [10]. Similarly, SVR [44]
was implemented using LIBSVM and was built with both linear
and RBF kernels. The hyperparameters (C=10 for the penalty,
γ=0.01 for the RBF kernel, and ε=0.5 for the threshold) were
discovered using a grid search [43].

We simulated 2 cases for COVID-19 triage and diagnosis. First
SVM and SVR models were trained with the ground truth to
examine the predictive performance when they are deployed as
stand-alone applications. Second, when trained with the
predictions from the CRF and RB classifier, they resembled an
end-to-end NLP application. To obtain a comparable result, the
models were always tested with the ground truth. As a measure
of performance, we reported macro- and microaveraged F1

scores for SVM classifiers and SVR, respectively.

Evaluation Outcomes
The concept and relation extraction phases produced excellent
and good predictive performances, respectively; see Tables 2
and 3. The triage classification results from question 1 are shown
in Tables 4 and 5; the full enumeration can be seen in the first
column. When we trained the models with the
symptom-modifier vector representations from the ground truth,
the results of SVM classifier 1 and SVM classifier 2 were in
the range of 72%-93% and 83%-96%, respectively. The
symptom-only vector representations produced results in the
range of 71%-94% and 79%-95%. These results suggested that
we can achieve good predictive performance for classifying
Stay at home and Send and for Send to a GP and Send to a

hospital. In general, risk-tolerant models achieved better
performance than risk-averse models. However, since in the
test set, posts with the label Send to a hospital were missing for
some models (as can be seen from Figure 5), we could not report
them. We reported macroaveraged F1 score results since question
1 was framed as a decision problem, where weights for the
classes are a priori equal. The results obtained after training
with CRF predictions were in similar ranges for both
representations and classifiers. This is important, because it
indicated that an end-to-end NLP application is likely to produce
similar predictive performance.

Regarding question 2, when we trained the models with the
symptom-modifier vector representation from the ground truth,
the results of COVID-19 diagnosis were in the range of
72%-87%, 61%-76%, and 74%-87% for the LE, LT, and NEQ
decision functions, respectively; see Table 6. The symptom-only
vector representation produced results in the range of 70%-88%,
59%-79%, and 74%-87% for the LE, LT, and NEQ decision
functions, respectively.

In general, NEQ models perform better due to the omission of
borderline cases where the GTPs are exactly 0.5. The support
ratios for each model for different decision functions are shown
in Figure 4. When we trained the models with the
symptom-modifier vector representation from the CRF
predictions, the results were in the range of 68%-86%,
64%-76%, and 73%-87% for the LE, LT, and NEQ decision
functions, respectively. This indicated that for diagnosis as well
as triage, an end-to-end NLP application is likely to perform
similarly to stand-alone applications. Here, we reported
microaveraged F1 scores since, in our data set, NO_COVID
cases dominated; this largely resembled the natural distribution
in the population, where people who tested positive for
coronavirus are a relatively low percentage in the whole
population, even when the prevalence of the virus is high.

Finally, we trained our models using a linear kernel but found
that the RBF dominates in most of the cases; however, linear
kernels are useful in finding feature importance [45].
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Table 2. Concept extraction using CRFa on 3-fold cross-validation.

SupportF1 scoreRecallPrecisionLabel

13000.950.970.94SYMb

4370.790.790.80SEVERITY

3560.870.830.92BPOCc

6670.890.910.87DURATION

4940.920.970.88INTENSIFIER

3380.860.890.83NEGATION

168920.980.980.99OTHER

—d0.890.890.89Macroaverage

aCRF: conditional random field.
bSYM: symptoms.
cBPOC: body part, organ, or organ component.
dNot applicable.

Table 3. Relation extraction using RBa classifier results on 3-fold cross-validation.

Without stop wordsWith stop wordsDistance

F1 scoreRecallPrecisionF1 scoreRecallPrecision

0.690.640.740.680.630.742

0.710.670.750.710.670.753

0.720.690.750.720.690.754

0.730.710.740.730.710.755

0.730.720.740.730.720.746

0.730.730.730.730.730.737

aRB: rule based.
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Table 4. Question 1: hierarchical classification results for the RBFa kernel using the symptom-modifier relation vector.

SVM classifier 2SVMb classifier 1Model

F1 scoreRecallPrecisionF1 scoreRecallPrecision

Trained on the ground truth

0.830.950.730.860.910.82A

0.890.990.810.750.770.73B

———c0.910.980.85C

0.880.960.800.720.750.70AB(R-a)

0.921.000.850.890.960.84AB(R-t)

0.961.000.920.730.750.72BC(R-a)

———0.920.990.86BC(R-t)

0.941.000.890.830.870.79AC(R-a)

———0.930.980.88AC(R-t)

0.930.990.890.730.760.70ABC(R-a)

———0.930.990.88ABC(R-t)

Trained on the CRFd predictions

0.800.910.720.850.890.81A

0.890.990.810.740.740.74B

———0.900.960.85C

0.880.960.810.710.710.73AB(R-a)

0.921.000.840.880.940.84AB(R-t)

0.961.000.920.720.710.74BC(R-a)

———0.930.980.88BC(R-t)

0.941.000.890.830.850.81AC(R-a)

———0.930.980.88AC(R-t)

0.941.000.890.720.720.72ABC(R-a)

———0.930.980.89ABC(R-t)

aRBF: radial basis function.
bSVM: support vector machine.
cNot applicable.
dCRF: conditional random field.
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Table 5. Question 1: hierarchical classification results for the RBFa kernel using the symptom-only vector.

SVM classifier 2SVMb classifier 1Model

F1 scoreRecallPrecisionF1 scoreRecallPrecision

Trained on the ground truth

0.790.850.740.870.910.83A

0.890.980.810.760.810.71B

———c0.920.970.87C

0.890.960.830.720.750.69AB(R-a)

0.921.000.850.890.940.85AB(R-t)

0.950.990.920.750.790.71BC(R-a)

———0.930.980.88BC(R-t)

0.941.000.890.830.860.80AC(R-a)

———0.940.980.90AC(R-t)

0.951.000.900.710.740.68ABC(R-a)

———0.940.980.90ABC(R-t)

Trained on the CRFd predictions

0.780.820.740.870.890.84A

0.890.980.820.770.790.74B

———0.900.950.86C

0.870.920.830.730.760.72AB(R-a)

0.900.980.840.900.930.87AB(R-t)

0.950.990.920.750.780.72BC(R-a)

———0.920.970.87BC(R-t)

0.941.000.890.830.860.80AC(R-a)

———0.920.950.89AC(R-t)

0.930.990.890.730.760.71ABC(R-a)

———0.920.950.90ABC(R-t)

aRBF: radial basis function.
bSVM: support vector machine.
cNot applicable.
dCRF: conditional random field.

Figure 5. Support ratio of diagnosis classes across models and 3 decision functions for question 2 classification tasks.
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Table 6. Question 2: microaveraged F1 score results for different models and decision functions. Here, A, B, and C are 3 medical doctors (abbreviated
as Dr) who took part in the experiment.

Symptom-only vectorSymptom-modifier vectorModel

NEQLTLENEQLTLE

Trained on the ground truth

0.740.590.700.780.610.72A

0.770.620.780.760.610.78B

0.870.750.880.870.750.87C

0.750.650.740.740.660.72AB

0.860.790.850.840.760.84BC

0.830.740.830.810.730.81AC

0.770.670.750.760.670.74ABC

Trained on the CRFa predictions

0.740.790.500.760.640.68A

0.740.570.780.770.640.76B

0.860.740.870.870.750.86C

0.740.660.710.730.650.70AB

0.860.780.850.830.760.83BC

0.810.730.800.820.740.80AC

0.770.690.740.760.690.72ABC

aCRF: conditional random field.

Discussion

Principal Findings
This study demonstrates the potential to triage and diagnose
COVID-19 patients from their social media posts. We presented
a proof-of-concept system to predict a patient’s health state by
building machine learning models from their narrative. The
models were trained in 2 ways: using (1) ground-truth labels
and (2) predictions obtained from the NLP pipeline. Trained
models are always tested on ground-truth labels. We obtained
good performances in both cases, which indicates that an
automated NLP pipeline could be used to triage and diagnose
patients from their narrative; see the Evaluation Outcomes
subsection in the Results section. In general, health professionals
and researchers could deploys triage models to determine the
severity of COVID-19 cases in the population and diagnostic
models to gauge the prevalence of the pandemic.

Comparison With Prior Work
To quantify the important predictive features in the training set,
we experimented with COVID-19 diagnosis using linear kernel
SVR regression. More specifically, we used the symptom-only
vector representation constructed from the ground truth. We
summed feature weights for each Si in <S0, S1, . . . , Sn> from
the 7 models and the 3 decision functions; see the Methods
section. The features were then mapped to the categories found
in the Twitter COVID-19 lexicon complied by Sarker et al [4].
The top 5 important features in our data set were cough,
anosmia/agusia, dyspnea, pyrexia, and fatigue. Mizrahi et al

[17] quoted 4 of these symptoms as the most prevalent
coronavirus symptoms, strongly correlating with our findings.

To compare our importance ranking with that of Sarker et al’s
[4] frequent categories, we compiled the corresponding
frequencies of our 5 most important symptoms. Normalized
weights and frequencies were then plotted in Figure 6. The
top-left stacked bar chart compares our 5 most important features
with Sarker et al’s [4] frequencies. Cough was the most
important symptom from our data set, where it was the
second-most frequent. Anosmia/ageusia ranked second in our
importance list, while it was seventh in the most frequent list.
Pyrexia came first and fourth in both the frequent and
importance lists, respectively.

The top-right chart in Figure 6 shows a comparison between
Sarker et al’s [4] frequency ranking and our importance ranking.
Here, we selected the top 5 most frequent symptoms from Sarker
et al’s [4] frequency list and normalized them. These are pyrexia,
cough, body ache, fatigue, and headache. We took the
corresponding importance weights of these symptoms and

plotted them in a stacked bar chart. Here, headache ranked 22nd

in our importance ranking, while it was 5th in the frequency
ranking. We found a large difference between the 2 rankings,
implying that the top-most frequent symptoms are not
necessarily the most important ones.

Next, we compared our most important feature weights with
our data set’s frequency ranking using the methods described
earlier. From the bottom-left stacked bar chart of Figure 6, we
observed that anosmia/ageusia were relatively low in order in
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the frequency ranking (ie, 11th). As in Sarker et al’s [4] ranking,
cough came second in our data set’s frequency ranking.

Finally, the bottom-right chart in Figure 6 refers to the
comparison between our data set’s frequency and importance

rankings for the corresponding symptoms. We observed that

anxiety ranked 4th in the frequency list, while it was low (ie,

23rd) in the importance ranking.

Figure 6. Feature comparison between our most important features and Sarker et al’s [4] most frequent symptoms (top row) and between our most
important features and our most frequent symptoms (bottom row). The feature importance rankings are obtained from an SVM linear kernel using the
symptom-only vector representation. SVM: support vector machine.

Limitations
It is worth reiterating that social media posts, which are known
to be noisy, are not on a par with the consultation that a patient
would have with a doctor. We stress that the aim of this study
is to extract useful information at a population level, rather than
to provide an actionable decision for an individual via social
media posts. Our manually annotated data set has 2 main
limitations. First, having only 3 experts limited the quality of
our labeling, although we deem this study to be a proof of
concept. A larger number of experts, including more senior
doctors, would be beneficial in a follow-up study. The
robustness of our results could be further improved by both
increasing the size of our data set and introducing posts from
several alternate sources. Given that the posts come from social
media, it is not clear whether the results could be used as such
in a diagnostic system, without combining them with actual

consultations. However, it is worth noting that medical social
media, such as the posts we used herein, may uncover novel
information regarding COVID-19.

Conclusion
The coronavirus pandemic has drawn a spotlight on the need
to develop automated processes to provide additional
information to researchers, health professionals, and decision
makers. Medical social media comprises a rich resource of
timely information that could fit this purpose. We have
demonstrated that it is possible to take an approach that aims
at the detection of COVID-19 using an automated triage and
diagnosis system in order to augment public health surveillance
systems, despite the heterogeneous nature of typical social media
posts. The outputs from such an approach could be used to
indicate the severity and estimate the prevalence of the disease
in the population.
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GP: general physician
GTP: ground-truth probability
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NLP: natural language processing
RB: rule based
RBF: radial basis function
SVM: support vector machine
SVR: support vector regression
SYM: symptoms
XGB: gradient boosting
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