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Abstract

Background: Physical trauma–related mortality places a heavy burden on society. Estimating the mortality risk in physical
trauma patients is crucial to enhance treatment efficiency and reduce this burden. The most popular and accurate model is the
Injury Severity Score (ISS), which is based on the Abbreviated Injury Scale (AIS), an anatomical injury severity scoring system.
However, the AIS requires specialists to code the injury scale by reviewing a patient's medical record; therefore, applying the
model to every hospital is impossible.

Objective: We aimed to develop an artificial intelligence (AI) model to predict in-hospital mortality in physical trauma patients
using the International Classification of Disease 10th Revision (ICD-10), triage scale, procedure codes, and other clinical features.

Methods: We used the Korean National Emergency Department Information System (NEDIS) data set (N=778,111) compiled
from over 400 hospitals between 2016 and 2019. To predict in-hospital mortality, we used the following as input features: ICD-10,
patient age, gender, intentionality, injury mechanism, and emergent symptom, Alert/Verbal/Painful/Unresponsive (AVPU) scale,
Korean Triage and Acuity Scale (KTAS), and procedure codes. We proposed the ensemble of deep neural networks (EDNN) via
5-fold cross-validation and compared them with other state-of-the-art machine learning models, including traditional prediction
models. We further investigated the effect of the features.

Results: Our proposed EDNN with all features provided the highest area under the receiver operating characteristic (AUROC)
curve of 0.9507, outperforming other state-of-the-art models, including the following traditional prediction models: Adaptive
Boosting (AdaBoost; AUROC of 0.9433), Extreme Gradient Boosting (XGBoost; AUROC of 0.9331), ICD-based ISS (AUROC
of 0.8699 for an inclusive model and AUROC of 0.8224 for an exclusive model), and KTAS (AUROC of 0.1841). In addition,
using all features yielded a higher AUROC than any other partial features, namely, EDNN with the features of ICD-10 only
(AUROC of 0.8964) and EDNN with the features excluding ICD-10 (AUROC of 0.9383).

Conclusions: Our proposed EDNN with all features outperforms other state-of-the-art models, including the traditional diagnostic
code-based prediction model and triage scale.
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Introduction

Physical trauma–related mortality places a heavy burden on
individuals and society. Accurately estimating mortality risk
enhances treatment efficiency and reduces this burden. To date,
there are various models to predict the severity of physical
trauma patients [1-7]. Among them, the most popular and
accurate model is the Injury Severity Score (ISS) developed in
the 1970s and based on the Abbreviated Injury Scale (AIS), an
anatomical injury severity scoring system [1,8]. However, the
AIS requires specialists to code the injury scale by reviewing
a patient's medical record; therefore, applying the model to
every hospital is impossible. To overcome these shortcomings,
the following International Classification of Diseases
(ICD)–based severity models have been introduced: ICD-based
Injury Severity Score (ICISS)[9], trauma mortality models using
International Classification of Disease 10th Revision (ICD-10)
(TMPM-ICD10) [10], and Mortality Ratio-adjusted Injury
Severity Score (EMR-ISS) [11]. However, ICD-based models
are not as accurate as AIS-based models [8]. Since 2016, all
emergency medical institutions in Korea have introduced the
Korean Triage and Acuity Scale (KTAS), an emergency
department (ED) triage system composed of 5 levels [12].
However, the KTAS relies on the practitioner’s judgment and
may introduce bias and be prone to human error [13].

Artificial intelligence (AI) is widely used to find complex
associations between various features in medical applications
[14-16], such as individual injuries and mortality. We recently
proposed AI technology utilizing AIS codes that outperformed
conventional ISS [1], providing a favorable area under the
receiver operating characteristic (AUROC) of 0.908 [17]. Tran
et al [18] also used AI technology for mortality prediction using
the ICD-10 from the National Trauma Database (NTDB) data
set, but the AUROC value was not as high as that of our
previous proposed AI model.

We aimed to construct an AI model to predict in-hospital
mortality in physical trauma patients using the National
Emergency Department Information System (NEDIS) data set.
We hypothesized that an AI model based on ICD-10 with other
clinical features is a useful alternative. We compared the
predictive performance of our model with other ICD-10-based
models, such as the ICISS [9], EMR-ISS [11], and the AI-driven
ICD-10-only based model. Finally, we deployed our AI-driven
public website to predict in-hospital mortality in physical trauma
patients to benefit end users.

Methods

Ethics Approval
This study was conducted according to the TRIPOD
(Transparent Reporting of a Multivariable Model for Individual
Prognosis or Diagnosis) statement [19]. NEDIS data were
provided by the National Emergency Medical Center (data
acquisition number N20212920825).

Patients and Data Set for AI Model
The NEDIS data set was collected mandatorily from 2016 to
2019 from over 400 hospitals in South Korea. The inclusion
criteria were as follows: (1) physical trauma patients (but not
psychological) with a diagnostic code of S or T based on the
Korean version of the ICD-10; (2) patients admitted to the
intensive care unit (ICU) or general ward from the ED; and (3)
patients admitted to the ICU or general ward after surgery or a
procedure from the ED. The exclusion criteria were as follows:
(1) patients without diagnostic codes starting with S or T (eg,
S001, T063; all physical traumatic patients include S or T code.
The S code represents the trauma in a single body region, and
the T code represents the trauma in multiple or unspecified
regions); (2) patients with diagnostic code of frostbite
(T33-T35.6), intoxication (T36-T65), and unspecified injury or
complication (T66-T78, T80-T88); (3) patients transferred to
another hospital or discharged from the ED after treatment; (4)
patients transferred to another hospital or discharged without
notification to staffs at hospitals; (5) patients who died in the
ED before ICU or general ward admission; and (6) missing
information.

More specifically, we first collected 7,664,443 patients with a
nondisease identifier comprising trauma patients. Since our
primary outcome was to predict in-hospital mortality in trauma
patients, we had to exclude unrelated patients. We then excluded
all nonhospitalized patient information (n=6,464,432, 84.34%).
The second most commonly excluded data were from patients
transferred to another hospital (n=241,778, 3.15%). For
transferred patients, the NEDIS policy of deidentification is to
assign a new anonymous ID number; thus, the data is redundant.
In addition, we excluded deceased ED patients (n=49,357,
0.64%) due to insufficient information about diagnostic codes,
procedure codes, and other clinical features. Moreover, we
excluded escaped patients during hospitalization (n=889, 0.01%)
and patients with missing data (n=35,885, 4.68%), not including
mortality information. A final total of 778,111 patient data were
used for training and testing our AI model (Figure 1).
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Figure 1. Flowchart of the patient selection process.

We used the following variables in NEDIS data: age, gender,
intentionality, injury mechanism, emergent symptom,
Alert/Verbal/Painful/Unresponsive (AVPU) scale, initial KTAS,
altered KTAS, ICD-10 codes, procedure codes of surgical
operation or interventional radiology, and in-hospital mortality.
All included variables for the AI model are summarized in Table
1. A total of 938 AI model input features (categories) were
considered from 10 variables. The AVPU scale is a simplified
version of the Glasgow Coma Scale (GCS) [20,21] and includes
4 categories: A, alert; V, verbal responsive (drowsy); P, painful
response (stupor, semicoma); and U, unresponsive (coma).
KTAS was developed as a severity triage in the ED in 2012,
based on the Canadian Triage and Acuity Scale (CTAS) [12].
KTAS is a standardized triage tool to avoid complexity and
ambiguity and includes 5 categories: level 1, resuscitation; level
2, emergent; level 3, urgent; level 4, less urgent; level 5,

nonurgent. According to NEDIS policy, KTAS should be
conducted by a certified faculty, and the initial KTAS should
be assessed within 2 minutes of ED admission. The altered
KTAS should be assessed when the ED patient deteriorates
before moving to the operating room, ICU, or general ward.
Regarding ICD-10, we considered 856 codes starting with S or
T. The procedure codes, which are used to claim from the
National Health Insurance Review and Assessment Service,
include surgery and angioembolization and are more specifically
categorized as follows and summarized in Table S1 in
Multimedia Appendix 1: (1) head procedure; (2) torso
procedure-vascular; (3) torso procedure-abdomen; (4) torso
procedure-chest; (5) torso procedure-heart; and (6)
extracorporeal membrane oxygenation (ECMO). The primary
outcome was in-hospital mortality, defined as a patient with a
dead result code and discharged with medical futility in NEDIS.
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Table 1. Included variables of the Korean National Emergency Department Information System (NEDIS) for the artificial intelligence (AI) model.

DescriptionTypeVariablesValue, n

26 categoriesAge1 • 5-year-old unit, classification

2 categoriesGender2 • M: male
• F: female

5 categoriesIntentionality3 • 1: accidental, unintentional
• 2: self-harm, suicide
• 3: violence, assault
• 4: other specified
• 5: unspecified
• 6: no data

16 categoriesInjury mechanism4 • 1: traffic accident-car
• 2: traffic accident-bike
• 3: traffic accident-motorcycle
• 4: traffic accident-etc
• 5: traffic accident-unspecified
• 6: fall
• 7: slip down
• 8: struck
• 9: firearm/cut/pierce
• 10: machine
• 11: fire, flames or heat
• 12: drowning or nearly
• 13: poisoning
• 14: choking, hanging
• 15: etc
• 16: unknown
• 17: no data

2 categoriesEmergent symptoms5 • Y: emergency
• N: nonemergency

4 categoriesAVPUa scale6 • A: alert
• V: verbal response (drowsy)
• P: painful response (semicoma)
• U: unresponsive (coma)
• N: unknown

7 categoriesInitial KTASb7 • 1: Level 1 (resuscitation)
• 2: Level 2 (emergency)
• 3: Level 3 (urgency)
• 4: Level 4 (less urgency)
• 5: Level 5 (nonurgency)
• 6: etc
• 7: unknown
• 8: no data

5 categoriesAltered KTAS8 • 1: Level 1 (resuscitation)
• 2: Level 2 (emergency)
• 3: Level 3 (urgency)
• 4: Level 4 (less urgency)
• 5: Level 5 (nonurgency)
• 6: etc
• 7: no data

865 categoriesDiagnostic code at discharge9 • ICD-10c codes starting Sd or Te

6 categoriesProcedure code after hospitalized10 • Procedure code including surgery or interventional radiology

aAVPU: Alert/Verbal/Painful/Unresponsive.
bKTAS: Korean Triage and Acuity Scale.
cICD-10: International Classification of Disease 10th Revision.
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dRepresents trauma in a single body region.
eRepresents trauma in multiple or unspecified regions.

Data Split, Data Balancing, and Cross-Validation
The data set in this study comprised both training and testing
data (Table S2 in Multimedia Appendix 1). Data from 778,111
patients were divided into training and testing data with a ratio
of 8:2 in a stratified fashion. The testing set was used only to
independently test our developed AI model and not for training
or internal validation.

We first performed 5-fold cross-validation using the training
data to confirm its generalization ability. The training data set
(n=622,488, 80%) was randomly shuffled and stratified into 5
equal groups, of which 4 groups were selected from training
the model, and the remaining group was used for internal
validation. This process was repeated 5 times by shifting the
internal validation group. Our finalized AI model is described
in the subsequent sections and was used to evaluate performance
using the isolated testing data.

Since the number of survived patients (n=611,481, 98.23%)
was much higher than that of deceased patients (n=11,007,
1.77%), we upsampled the survived patient data using the
Synthetic Minority Oversampling Technique (SMOTE) during
the model update [22]. By balancing the 2 groups, we prevented
bias toward the survived patient data.

Feature Analysis
To analyze the effects on mortality prediction from 914 features,
we applied 3 machine-learning algorithms: Adaptive Boosting
(AdaBoost) [23], Extreme Gradient Boosting (XGBoost) [24],
and light gradient boosting machine (LightGBM) [25]. We also
considered 4 ensemble models: AdaBoost with XGBoost,
AdaBoost with LightGBM, XGBoost with LightGBM, and a
combination of the 3 models. Finally, among 7 machine learning
models, we chose the best prediction model and presented its
feature importance analysis, listing features in the order that
they contributed to the mortality prediction.

Performance evaluations were based on 5-fold cross-validation
using 5 metrics: sensitivity, specificity, accuracy, balanced
accuracy, and AUROC.

AI Prediction Model Development and Statistical
Analysis
We developed a deep neural network (DNN)–based AI model
using 914 features, including ICD-10 as an input layer. To find
the best model, we searched hyperparameters, such as layer
depth and width for fully connected (FC) layers. The last FC
output layer was fed into a sigmoid layer, which provided the
mortality probability. After the hyperparameter search, we found
the best model with a 9-layer DNN, which comprised an input
layer, 7 FC layers as hidden layers, and an output layer. The
input layer was fed into a series of 7 FC layers, consisting of
512, 256, 128, 64, 32, 16, and 8 nodes, respectively. We applied
dropout with a rate of 0.3 and L2 regularization for the FC
hidden layers. Figure 2 shows the process flow of the AI
development and DNN architecture. The prediction performance
of our proposed 9-layer DNN model was evaluated with 5-fold
cross-validation. Subsequently, for the final DNN-based AI
model, we adopted an ensemble approach to combine the 5
models from the 5-fold cross-validation. The 914 features were
inputs to 5 cross-validation models, and each provided mortality
probabilities. A total of 5 probabilities were averaged, known
as soft voting. Based on the ensemble DNN model, the
prediction performance was evaluated with the isolated testing
data set (n=155,623, 20%).

We trained the models with an Adam optimizer and binary
cross-entropy cost function with a learning rate of 0.001 and a
batch size of 32. We implemented the models using Python
(version 3.7.13) with TensorFlow (version 2.8.0), Keras (version
2.8.0), NumPy (version 1.21.6), Pandas (version 1.3.5),
Matplotlib (version 3.5.1), and Scikit-learn (version 1.0.2). All
statistical analyses were performed using R software version
4.1.2 (R Foundation for Statistical Computing). As appropriate,
proportions were compared using the chi-square test or Fisher
exact test. A P value <.05 was considered statistically
significant.
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Figure 2. Process flow of our artificial intelligence (AI) model development: data, deep neural network (DNN) architecture, ensemble DNN model,
and performance comparison. AdaBoost: Adaptive Boosting; EMR-ISS: mortality ratio-adjusted Injury Severity Score; ICD: International Classification
of Diseases; KTAS: Korean Triage and Acuity Scale; LightGBM: light gradient boosting machine; SRR: survival risk ratio; XGBoost: Extreme Gradient
Boosting.

Conventional Metrics Based on Diagnostic Code
We applied conventional metrics based on ICD-10. ICISS
utilizes survival risk ratios (SRRs) to calculate the probability
of survival [9]. SRR is defined as the number of survived
patients with a specific injury code divided by the number of
all patients with the specific same injury code. A patient's
probability of survival (Ps) is determined by multiplying all
SRRs of the injury codes from the patient [9]. The traditional
ICISS was calculated as the product of Ps for as many as 10
injuries [26]. Two different methods were performed to calculate
ICISS. First, the inclusive SRR was calculated for each injury

irrespective of the associated injury [9]. Second, the exclusive
SRR was calculated by the number of survivors who had an
isolated specific injury divided by the total number of patients
who only had that injury [9]. Thus, patients with multiple
injuries were excluded from the calculation of exclusive SRR
[9]. Regarding EMR-ISS, an injury severity grade similar to
AIS was produced from ICD-10 codes based on the quintile of
the EMR for each ICD-10 code [11]. The EMR-ISS was
calculated from 3 maximum severity grades using data from
the National Health Insurance data set, the Industrial Accident
Compensation Insurance data set, and the National Death
Certificate database from 2001 to 2003 [11].
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Results

Initial Findings
Of the 778,111 patients included in the final analysis, 13,760
(1.77%) died during hospitalization (13,667 had a deceased

code, and 93 were discharged with a medical futility code).
Table 2 shows a comparison of included variables between
deceased and surviving patients, and Table S3 in Multimedia
Appendix 1 shows the ICD-10 comparison between deceased
and surviving patients.
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Table 2. Comparison of included variables of the Korean National Emergency Department Information System (NEDIS) between deceased and survived
patients.

P valueSurvived (N=764,351), n (%)Deceased (N=13,760), n (%)Variables

<.001Age (years)

2139 (0.3)16 (0.1)<1

9706 (1.3)63 (0.5)1-4

16,345 (2.1)38 (0.3)5-9

16,788 (2.2)36 (0.3)10-14

25,776 (3.4)171 (1.2)15-19

31,000 (4.1)229 (1.7)20-24

33,241 (4.3)214 (1.6)25-29

32,151 (4.2)176 (1.3)30-34

38,611 (5.1)276 (2)35-39

42,013 (5.5)326 (2.4)40-44

55,126 (7.2)583 (4.2)45-49

66,276 (8.7)768 (5.6)50-54

78,447 (10.3)1055 (7.7)55-59

66,899 (8.8)1110 (8.1)60-64

52,900 (6.9)1155 (8.4)65-69

50,396 (6.6)1388 (10.1)70-74

58,334 (7.6)2028 (14.7)75-79

48,440 (6.3)1925 (14)80-84

27,670 (3.6)1320 (9.6)85-89

9723 (1.3)665 (4.8)90-94

21,08 (0.3)189 (1.4)95-99

226 (0)25 (0.2)100-104

25 (0)4 (0)105-109

9 (0)0 (0)110-114

2 (0)0 (0)115-119

Procedure code

<.0016419 (0.8)2473 (18)Head procedure

<.0014961 (0.6)880 (6.4)Torso procedure-vascular

<.0014544 (0.6)810 (5.9)Torso procedure-abdomen

<.0017228 (0.9)1209 (8.8)Torso procedure-chest

<.001127 (0)39 (0.3)Torso procedure-heart

<.00139 (0)183 (1.3)ECMOa

Initial KTASb

<.0012812 (0.4)3800 (27.6)Level 1

<.00149,234 (6.4)4209 (30.6)Level 2

<.001270,574 (35.4)3306 (24)Level 3

<.001346,663 (45.4)2020 (14.7)Level 4

<.00149,892 (6.5)235 (1.7)Level 5

.698301 (0)4 (0)Not classified

>.9913 (0)0 (0)Unspecified

J Med Internet Res 2022 | vol. 24 | iss. 12 | e43757 | p. 8https://www.jmir.org/2022/12/e43757
(page number not for citation purposes)

Lee et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


P valueSurvived (N=764,351), n (%)Deceased (N=13,760), n (%)Variables

<.00144,862 (5.9)186 (1.4)Missing data

Altered KTAS

<.0011921 (0.3)2938 (21.4)Level 1

<.00135,356 (4.6)3173 (23.1)Level 2

<.001241,201 (31.6)2784 (20.2)Level 3

<.001189,314 (24.8)873 (6.3)Level 4

<.00127,355 (3.6)108 (0.8)Level 5

>.995 (0)0 (0)Not classified

<.001269,199 (35.2)3884 (28.2)Missing data

Intentionality

<.001574,556 (75.2)12078 (87.8)Accidental, unintentional

<.0016235 (0.8)248 (1.8)Suicide, intentional self-harm

<.00112,989 (1.7)113 (0.8)Assault, violence

<.0011694 (0.2)132 (1)Other specified

<.00112,225 (1.6)548 (4)Unspecified

<.001156,652 (20.5)641 (4.7)Missing data

Injury mechanism

<.00198,320 (12.9)1154 (8.4)Traffic accident-car

<.00120,692 (2.7)450 (3.3)Traffic accident-bike

<.00131,957 (4.2)1020 (7.4)Traffic accident-motorcycle

<.00135,898 (4.7)1925 (14)Traffic accident-pedestrian, train,
airplane, ship, etc

<.001197 (0)18 (0.1)Traffic accident-unknown

<.00176,714 (10)2374 (17.3)Fall down

<.00116,8677 (22.1)3859 (28)Slip down

<.00160,518 (7.9)713 (5.2)Struck by person or object

<.00139,515 (5.2)159 (1.2)Firearm/cut (sharp or object)/piece

<.00116,991 (2.2)54 (0.4)Machine

<.0016587 (0.9)207 (1.5)Fire, flames, or heat

<.001203 (0)20 (0.1)Drowning or nearly drowning

<.0011811 (0.2)62 (0.5)Poisoning

<.001436 (0.1)146 (1.1)Choking, hanging

<.00135,461 (4.6)323 (2.3)Others-rape, electric

<.00113,722 (1.8)635 (4.6)Unknown

<.001156,652 (20.5)641 (4.7)Missing data

Emergent symptom

<.00169,7118 (91.2)13351 (97)Yes

<.00167,228 (8.8)409 (3)No

>.995 (0)0 (0)Unspecified

AVPUc scale

<.001579,669 (75.8)5403 (39.3)Alert

<.00112,085 (1.6)1393 (10.1)Verbal response (drowsy)

<.0015581 (0.7)3218 (23.4)Painful response (stupor, semicoma)
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P valueSurvived (N=764,351), n (%)Deceased (N=13,760), n (%)Variables

<.001847 (0.1)3049 (22.2)Unresponsive (coma)

<.001166,169 (21.7)697 (5.1)Unspecified response

Sex

<.001434,280 (56.8)9050 (65.8)Male

aECMO: extracorporeal membrane oxygenation.
bKTAS: Korean Triage and Acuity Scale.
cAVPU: Alert/Verbal/Painful/Unresponsive.

K-Fold Cross-Validation Results
Table 3 summarizes the 5-fold cross-validation results. Our
model used all 914 features, including ICD-10, and provided
the highest balanced accuracy (0.8718) and AUROC (0.9513)
values. Among the machine learning models, AdaBoost provided
the highest balanced accuracy (0.8603) and AUROC (0.9442).
Any ensemble models from the combination of AdaBoost,
XGBoost, and LightGBM did not improve accuracy above our
model or AdaBoost. Compared to our model, traditional methods
produced lower balanced accuracy and AUROC values. More
specifically, inclusive SRR resulted in a lower balanced accuracy

of 0.7888 and AUROC of 0.8266, while exclusive SRR resulted
in 0.7931 and 0.8737, and EMR-ISS yielded 0.7571 and 0.6108,
respectively. KTAS resulted in an even lower balanced accuracy
of 0.5372 and AUROC of 0.1057.

Of the models considering 866 features of ICD-10 only, DNN
demonstrated the highest balanced accuracy (0.8234) and
AUROC (0.8975), followed by AdaBoost, the ensemble of
AdaBoost and XGBoost, and the ensemble of AdaBoost and
LightGBM. However, the models generated much lower
balanced accuracy and AUROC values compared to models
considering 48 features, excluding ICD-10.
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Table 3. Results of the 5-fold cross-validation.

AUROCa, mean
(SD)

Balanced accuracy,
mean (SD)

Accuracy, mean
(SD)

Specificity, mean
(SD)

Sensitivity, mean
(SD)

Model

Using all 914 features (including ICD-10b)

0.9513 (0.0023)0.8718 (0.0036)0.8834 (0.0093)0.8838 (0.0097)0.8599 (0.0151)Proposed model (DNNc)

0.9442 (0.0020)0.8603 (0.0048)0.9010 (0.0005)0.9025 (0.0006)0.818 (0.0100)AdaBoostd

0.9354 (0.0018)0.8485 (0.0037)0.8854 (0.0010)0.8865 (0.0011)0.8105 (0.0085)XGBooste

0.9354 (0.0019)0.8486 (0.0032)0.8848 (0.0016)0.8861 (0.0018)0.8112 (0.0080)LightGBMf

0.9367 (0.0017)0.8496 (0.0034)0.8868 (0.0012)0.8882 (0.0013)0.8109 (0.0073)AdaBoost+XGBoost

0.9367 (0.0018)0.8497 (0.0035)0.8862 (0.00130)0.8875 (0.0014)0.8118 (0.0081)AdaBoost+LightGBM

0.9354 (0.0018)0.8484 (0.0035)0.8851 (0.0009)0.8865 (0.0010)0.8104 (0.0079)XGBoost+LigtGBM

0.9361 (0.0018)0.8489 (0.0033)0.8857 (0.0010)0.8871 (0.0011)0.8107 (0.0075)AdaBoost+XGBoost+LightGBM

Using 866 features (ICD-10 only)

0.8975 (0.0023)0.8234 (0.0037)0.8177 (0.0086)0.8175 (0.009)0.8294 (0.0153)DNN

0.8796 (0.0030)0.8039 (0.0057)0.8477 (0.0045)0.8493 (0.0048)0.7586 (0.0157)AdaBoost

0.8627 (0.0033)0.7757 (0.0055)0.8897 (0.0032)0.8939 (0.0035)0.6575 (0.0141)XGBoost

0.8635 (0.0037)0.7761 (0.0049)0.8896 (0.0022)0.8937 (0.0024)0.6585 (0.0115)LightGBM

0.8785 (0.0029)0.7780 (0.0027)0.8882 (0.0016)0.8922 (0.0017)0.6637 (0.0065)AdaBoost+XGBoost

0.8786 (0.0031)0.7779 (0.0032)0.8878 (0.0011)0.8918 (0.0012)0.6640 (0.0076)AdaBoost+LightGBM

0.8635 (0.0035)0.7761 (0.0048)0.8891 (0.0022)0.8932 (0.0024)0.6590 (0.0117)XGBoost+LigtGBM

0.8784 (0.0028)0.7774 (0.0029)0.8883 (0.0016)0.8924 (0.0017)0.6624 (0.0070)AdaBoost+XGBoost+LightGBM

Using 48 features (excluding ICD-10)

0.9398 (0.003)0.8537 (0.0068)0.9053 (0.0154)0.9072 (0.0161)0.8003 (0.0266)DNN

0.9380 (0.0025)0.8535 (0.0062)0.8908 (0.0022)0.8922 (0.0022)0.8148 (0.0125)AdaBoost

0.9328 (0.0022)0.8462 (0.0018)0.8623 (0.0032)0.863 (0.0033)0.8294 (0.0056)XGBoost

0.9328 (0.0021)0.8471 (0.0018)0.8614 (0.0032)0.8619 (0.0032)0.8323 (0.0044)LightGBM

0.9337 (0.0022)0.8469 (0.0019)0.8630 (0.0028)0.8635 (0.0029)0.8303 (0.0058)AdaBoost+XGBoost

0.9336 (0.0020)0.8474 (0.002)0.8628 (0.0027)0.8634 (0.0028)0.8314 (0.0052)AdaBoost+LightGBM

0.9328 (0.0021)0.847 (0.0020)0.8613 (0.0031)0.8618 (0.0032)0.8321 (0.0046)XGBoost+LigtGBM

0.9333 (0.0021)0.8471 (0.0022)0.8624 (0.0024)0.8630 (0.0024)0.8312 (0.0052)AdaBoost+XGBoost+LightGBM

Traditional methodsg

0.82660.78880.78930.68230.8953Inclusive SRRh

0.87370.79310.79360.75900.8272Exclusive SRR

0.61080.75710.75720.72760.7867EMR-ISSi

0.10570.53720.54950.13900.9353KTASj

aAUROC: area under the receiver operating characteristic.
bICD-10: International Classification of Disease 10th Revision.
cDNN: deep neural network.
dAdaBoost: Adaptive Boosting.
eXGBoost: Extreme Gradient Boosting.
fLightGBM: light gradient boosting machine.
gOnly yielded a single value, so no SD is reported.
hSRR: survival risk ratio.
iEMR-ISS: Mortality Ratio-adjusted Injury Severity Score.
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jKTAS: Korean Triage and Acuity Scale.

Ranked Feature Importance: Explainable AI
To analyze the effects of features, we first applied the data to
3 different machine learning algorithms: AdaBoost, XGBoost,
and LightGBM. As summarized in Table 3, the AdaBoost model

was the best classifier for predicting mortality in trauma patients.
We then performed the feature importance analysis (see Figure
3 for ranked normalized feature importance) to confirm the
contribution of each feature.

Figure 3. Results of the ranked normalized feature importance from the Adaptive Boosting (AdaBoost) model. KTAS: Korean Triage and Acuity Scale.

Based on the AdaBoost, gender had the highest importance
value, followed by age, unresponsive (coma), S721
(pertrochanteric fracture of the femur), S720 (fracture of neck
of femur), painful response (stupor, semicoma), injury
mechanism-slip down, and torso procedure-chest. Among the
914 features, only 71 (7.77%) features had nonzero values
indicating that the other 843 features did not contribute to
mortality prediction. Table S4 in Multimedia Appendix 1 shows
the complete ranked normalized feature importance values. All
features with the highest importance value showed a statistically
significant difference between the deceased and surviving group
(Table 2 and Table S3 in Multimedia Appendix 1).

Cross-Validation Result of DNNs Using a Different Set
of Features According to Importance
We investigated the cross-validation performance from our
DNN model with 2 input conditions: (1) the top 71 features
having nonzero feature importance values from the AdaBoost,
the best among the machine learning models; and (2) all 914
features (Table S5 in Multimedia Appendix 1). The DNN with
all 914 features provided a higher balanced accuracy of 0.8718
and AUROC of 0.9513 compared to the DNN with the top 71
features, which had a balanced accuracy of 0.8389 and AUROC
of 0.9386. Features with 0 values of feature importance can
contribute to mortality prediction. Sensitivity increased by more
than 0.1 for the former, whereas specificity decreased by less
than 0.05. For the latter, sensitivity increased to 0.8599 from
0.7480, and specificity decreased to 0.8838 from 0.9299.
Therefore, we considered all features in our AI model and
validated the performance with the isolated testing data.

Testing Data Results
With the testing data set (n=155,623), our proposed
ensemble-based 9-layer DNN showed a sensitivity of 0.8768,
specificity of 0.8625, accuracy of 0.8628, balanced accuracy of
0.8697, and AUROC of 0.9507. Furthermore, compared with
the cross-validation results, the model was neither overfitted
nor underfitted, with minimal differences between
cross-validation and testing data results: sensitivity of 0.8599
versus 0.8768, specificity of 0.8838 versus 0.8625, accuracy of
0.8834 versus 0.8628, balanced accuracy 0.8718 versus 0.8697,
and AUROC of 0.9513 versus 0.9507.

Our proposed ensemble of deep neural networks (EDNN) using
all 914 features demonstrated higher values of balanced accuracy
and AUROC than any other model (Table 4). Models with 48
features provided the next most accurate prediction results.
These results showed the same trend as the cross-validation
results. Figure 4 shows the AUROC curves for our model,
AdaBoost, XGBoost, and LightGBM, which are plotted
according to the following features: all 914 features, 48 features
excluding ICD-10, and 866 features with ICD-10 only. Our
model outperformed the traditional methods such as inclusive
SRR, exclusive SRR, EMR-ISS, and KTAS. Figure 5 shows
the AUROC curves for our model and 4 traditional models. The
calculated inclusive SRR and exclusive SRR are shown in Table
S6 in Multimedia Appendix 1. Finally, the model using the top
71 features from the AdaBoost also provided a lower balanced
accuracy of 0.8245 and AUROC of 0.9194, similar to the
cross-validation results.
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Table 4. Comparison of the prediction performances of the prediction models on the test data set.

AUROCaBalanced accuracyAccuracySpecificitySensitivityModel

Using all 914 features (including ICD-10b)

0.95070.86970.86280.86250.8768Proposed model (DNNc)

0.94330.86370.86540.86550.8619AdaBoostd

0.93310.84760.86530.86600.8292XGBooste

0.93320.84830.83690.83650.8601LightGBMf

Using 866 features (ICD-10 only)

0.89640.82620.81620.81590.8365DNN

0.87730.81080.83120.83190.7896AdaBoost

0.85640.80040.83360.83480.7660XGBoost

0.85650.80070.82760.82850.7729LightGBM

Using 48 features (excluding ICD-10)

0.93830.85650.87760.87840.8347DNN

0.93630.85070.86550.86600.8354AdaBoost

0.93180.84520.85610.85650.8339XGBoost

0.93180.84480.85920.85970.8299LightGBM

Traditional methods

0.86990.78980.89260.68310.8964Inclusive SRRg

0.82240.79050.87030.70780.8733Exclusive SRR

0.61710.75520.78630.72310.7874EMR-ISSh

0.18410.47400.91780.01210.9359KTASi

Others

0.91940.82450.93220.93620.7129DNN using top 71 features
from AdaBoost

aAUROC: area under the receiver operating characteristic.
bICD-10: International Classification of Disease 10th Revision.
cDNN: deep neural network.
dAdaBoost: Adaptive Boosting.
eXGBoost: Extreme Gradient Boosting.
fLightGBM: light gradient boosting machine.
gSRR: survival risk ratio.
hEMR-ISS: Mortality Ratio-adjusted Injury Severity Score.
iKTAS: Korean Triage and Acuity Scale.

Figure 4. Area under the receiver operating characteristic (AUROC) curves for our model, Adaptive Boosting (AdaBoost), Extreme Gradient Boosting
(XGBoost), and light gradient boosting machine (LightGBM): (left) using all 914 features including International Classification of Diseases 10th
Revision (ICD-10), (middle) using 48 features excluding ICD-10, and (right) using 866 features with ICD-10 only. DNN: deep neural network.
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Figure 5. Area under the receiver operating characteristic (AUROC) curves of our model and 4 traditional models. AUC: area under the curve; DNN:
deep neural network; EMR-ISS: mortality ratio-adjusted Injury Severity Score; KTAS: Korean Triage and Acuity Scale; SRR: survival risk ratio.

AI-Driven Public Website Development
We deployed our AI on a public website [27] to allow public
access to the mortality prediction results in trauma patients
(Figure S1 in Multimedia Appendix 1). Figure S1(a) shows a
user's web interface to enter information. A user inputs age,
gender, intentionality, injury mechanism, emergent symptoms,
AVPU scale, initial KTAS, altered KTAS, torso procedures
(chest, abdomen, vascular, and heart), head surgery, ECMO,
and ICD-10 codes. Especially for ICD codes, a user can input
multiple codes with a comma (eg, S072, S224, T083). As shown
in Figure S1(b), after entering information in the web
application, the user can immediately obtain the mortality
results. The prediction results also include the probability of
mortality.

Discussion

Principal Findings
Our AI model outperformed traditional ICD-10-based models
and KTAS. Traditional methods produced high sensitivity and
low specificity, with substantial bias in predicting mortality.

Prediction performance was optimal when using all features,
including ICD-10, as input features. The similarity between the
cross-validation result and the testing data set indicates that
overfitting or underfitting was minimal. In terms of ranked
normalized feature importance, gender had the highest value,
followed by age, coma, femur fracture, stupor, slip down, rib
fracture, and head procedure. We used a population-based data
set from all types of ED in South Korea, producing more robust
and reliable results. To the best of our knowledge, our study is
the first to demonstrate an AI model that drastically outperforms
conventional ICD-based models and triage scales using a
population-based data set. Our future goal is to construct a more
comprehensive model incorporating both NEDIS-based and
AIS-based AI [17].

Our proposed AI model has several advantages in clinical
practice. First, a specialist is not required for AIS coding, so
our AI model does not require additional burden. Second, our
AI model demonstrates the ability to augment the KTAS
provider's decision. Third, the feature importance used may
benefit clinical decision-making and future research. Deep
learning is generally considered a “black box,” hence the feature
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importance analysis based on a machine learning algorithm
provides meaningful insight to clinicians and researchers.
Finally, we aspire for the global application of our model and
have produced a publicly available web application for hospitals
to utilize for the benefit of the entire trauma system [28,29].

Currently, ISS and ICISS are the most popular risk estimation
models of trauma-related mortality. More complex models
containing physiologic and demographic parameters are
available [2,4,5,7], but none supersedes ISS or ICISS [1,9]. ISS
is simple to use, but AIS coding is time consuming and
expensive, whereas ICISS utilizes diagnostic code to claim
charges. Therefore, ICISS is more useful for population-based
data sets than ISS [8]. The results from ICISS in our study were
comparable to those from previous studies [26,30]. We also
applied EMR-ISS to the NEDIS data set, which showed good
performance in a previous study [11] but poor accuracy here.

Recently, several AI models were proposed to predict
trauma-related mortality. Previously, in a multicenter
retrospective study in South Korea, we investigated a deep
learning model using the AIS code for predicting mortality [17].
We reanalyzed the ISS system and redefine 46 new regions to
discriminate the risk among different internal organs. The DNN
with 46 features from the 46 new regions produced the highest
accuracy. We found that the AI model can augment the
performance of the AIS system. Recently, Tran et al [18]
reported a machine-learning model that predicted trauma-related
mortality using ICD-10. The authors used the NTDB data set
and compared machine learning with ISS and TMPM10 [10],
an ICD-10-based metric. However, the accuracy of each model
was comparable. In this study, our AI model drastically
outperformed ICISS and EMR-ISS. Kwon et al [31], in a
retrospective observational study using a NEDIS data set
including trauma and nontrauma patients, reported a deep
learning-based model that showed a higher accuracy than KTAS
for predicting in-hospital mortality. To the best of our
knowledge, our AI model is the most accurate model and
outperforms both diagnostic code-based metrics and triage scales
in trauma patients.

Limitations and Future Works
Our study has several limitations. First, this is a retrospective
study and may induce substantial selection and survival bias;
further prospective trials and validation are needed. Second, we
used procedure codes as 1 of the input features. However, they
are not practically available during ED admission. Thus, in a
prospective study, unconfirmed procedure codes may be used
for predicting in-hospitality mortality. Third, in this study, we
did not consider physiological signals, such as blood pressure,

heart rate, and body temperature. We tried to train and develop
an AI model using the information of physiological signals.
However, the model’s performance was poor because limited
physiological signals were recorded in NEDIS; only blood
pressure, heart rate, and temperature values at the time of
admission were recorded. We believe that time-series
physiological signals, such as electrocardiogram,
photoplethysmogram, and blood pressure waveform, could
improve our proposed model. Fourth, due to the structure of the
NEDIS data set, some data, such as age, are collected as
categorized data instead of continuous data. Thus, our proposed
AI model could enhance the prediction performance with age
as a continuous value. Fifth, some categorized input variables
in the injury mechanism may appear inappropriate. For instance,
the term “traffic accident-pedestrian, train, airplane, ship, etc”
is considered 1 variable. However, pedestrians are not associated
with an airplane and a ship. In addition, pedestrians have the
highest mortality in road traffic collisions. Thus, the term should
be separated into multiple variables. In future work, we plan to
separate the variable into multiple categories and investigate
the impact of each category. Sixth, we could not compare the
prediction performances from our AI model with those from
AIS code-based approaches such as ISS and NISS, as NEDIS
does not provide AIS codes. Recently, we presented an AI model
using AIS codes to predict in-hospital mortality [17]. The model
outperformed conventional methods such as ISS and NISS for
all accuracy metrics of sensitivity, specificity, balanced
accuracy, and AUROC. As in the previous study, this study
used ICD-10 and several clinical features instead of AIS codes
and showed that the AI model outperformed conventional
methods. Our goal is to construct a more comprehensive model
incorporating both NEDIS-based and AIS-based AI models.
Finally, our data did not include other races or data from other
countries. Currently, our public website includes the following
text: “This AI model was trained and evaluated from Korean
trauma patients and may not be applicable to patients in other
countries.” Thus, future external validation is warranted, wherein
we consider using global data to further improve our proposed
AI model.

Conclusions
Our proposed AI model shows high accuracy and outperforms
traditional diagnostic code-based prediction models and triage
scales. We believe that our population-based AI model can
facilitaite better understanding and practice in physical trauma
care. Moreover, this AI and data-driven prediction model may
minimize the bias and workload of humans. However, future
external validation and prospective studies are warranted to
prove the true effect size.
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