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Abstract

Background: Human voice has increasingly been recognized as an effective indicator for the detection of cognitive disorders.
However, the association of acoustic features with specific cognitive functions and mild cognitive impairment (MCI) has yet to
be evaluated in a large community-based population.

Objective: This study aimed to investigate the association between acoustic features and neuropsychological (NP) tests across
multiple cognitive domains and evaluate the added predictive power of acoustic composite scores for the classification of MCI.

Methods: This study included participants without dementia from the Framingham Heart Study, a large community-based
cohort with longitudinal surveillance for incident dementia. For each participant, 65 low-level acoustic descriptors were derived
from voice recordings of NP test administration. The associations between individual acoustic descriptors and 18 NP tests were
assessed with linear mixed-effect models adjusted for age, sex, and education. Acoustic composite scores were then built by
combining acoustic features significantly associated with NP tests. The added prediction power of acoustic composite scores for
prevalent and incident MCI was also evaluated.

Results: The study included 7874 voice recordings from 4950 participants (age: mean 62, SD 14 years; 4336/7874, 55.07%
women), of whom 453 were diagnosed with MCI. In all, 8 NP tests were associated with more than 15 acoustic features after
adjusting for multiple testing. Additionally, 4 of the acoustic composite scores were significantly associated with prevalent MCI
and 7 were associated with incident MCI. The acoustic composite scores can increase the area under the curve of the baseline
model for MCI prediction from 0.712 to 0.755.

Conclusions: Multiple acoustic features are significantly associated with NP test performance and MCI, which can potentially
be used as digital biomarkers for early cognitive impairment monitoring.
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Introduction

Alzheimer disease (AD) is a chronic neurodegenerative disease
characterized behaviorally by memory loss, language
impairment, motor problems, loss of executive function, and
emotional distress, which can progress to severe levels. There
are currently no definitive disease-modifying treatment methods
[1], but general consensus is that early detection is critical.
Interventions through the reduction of modifiable risk factors
may serve to delay, attenuate, or even prevent disease onset and
progression [2,3]. Mild cognitive impairment (MCI) is a
prodromal stage of AD in which cognitive decline does not
affect essential functions of daily life [4], but some individuals
may have difficulty remembering events and situations, as well
as problems with executive function [5]. The detection of MCI
is critical to initiate current interventions that may slow down
the neurodegenerative process [6] and participate in clinical
trials that may lead to effective treatments.

At present, diagnosis relies largely on some combination of
clinical examination [7], neuroimaging (eg, magnetic resonance
imaging [8] and positron emission tomography [9]), and
neuropsychological (NP) testing [10]. Fluid biomarkers are
being developed as alternatives to expensive and burdensome
imaging through the analysis of cerebrospinal fluid [11] and
blood analysis [12]. Although substantial advancements have
been made in developing pathological indicators of AD (eg,
imaging and fluid biomarkers), surprisingly little has been done
to develop better cognitive assessment methods beyond the
traditional NP tests. The well-documented heterogeneity of
cognition has made the accurate diagnosis of MCI elusive
[13,14].

Producing speech is a cognitively complex task [15], and
recording speech is relatively easy given the widespread
accessibility to recording devices. Research has found that
language deficits may occur in the prodromal stages [16] of
cognitive impairment, which present years prior to clinical
diagnosis [17,18], potentially making it an effective indicator
for MCI. Meanwhile, the development of speech feature
extraction technology offers the possibility of quantifying voice
signal properties from multiple dimensions. It empowers the
comprehensive description of specific pathologies by voice
features. The lexical, acoustic, and syntactic features extracted
from the human voice have been shown to be significantly
associated with dementia [19,20]. Using voice-based biomarkers
as a screening method presupposes an economic solution for
the early diagnosis of MCI. Increasing evidence suggests that

the human voice could be used as a powerful resource to derive
pathologically appropriate biomarkers for dementia. Multiple
acoustic biomarkers have also been related to the future risk of
dementia [21].

Applying the findings of earlier research to a general population,
however, is difficult due to the small sample sizes and use of
cognitive assessment protocols that are not sufficiently
comprehensive. Further, voice analyses that include linguistic
features are difficult to generalize to other languages. There
remains a paucity of research determining the relationship
between acoustic features and NP tests that span across multiple
cognitive domains. In addition, a comprehensive characterization
of acoustic features that are associated with incident MCI is
warranted. The objective of this study was to investigate the
association of acoustic features and different NP test scores
across cognitive domains and how they compare in identifying
prevalent and incident MCI in the Framingham Heart Study
(FHS) community-based cohort.

Methods

Sample Selection
The original sample included 9253 observations from 5189
participants who completed at least one NP assessment that was
voice recorded. A subset of participants had multiple recordings
over the course of the study period. Each digital voice recording
and the corresponding NP tests were treated as 1 observation.
Exclusion criteria included those observations with missing
education information (n=492), prevalent dementia (n=313),
flagged as potential MCI but have not gone through dementia
review (n=551), and those whose voice recording was less than
10 minutes in length (n=23).

Ethics Approval
The Institutional Review Board of the Boston University
Medical Campus approved the procedures and protocols of the
Framingham Heart Study (FHS is H-32132). All participants
provided written informed consent.

NP Assessment
The details of FHS NP test administration have been reported
previously [22]. Multiple cognitive domains are measured by
18 different tests [23-27] including verbal memory, verbal
fluency, visual memory, attention and concentration, executive
function, abstract reasoning, visuoperceptual organization, and
language, as is illustrated in Table 1.
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Table 1. Cognitive domain and corresponding neuropsychological (NP) tests.

NP testCognitive domain

Verbal memory • Logical Memory—Immediate Recall
• Logical Memory—Delayed Recall
• Logical Memory—Recognition
• Paired Associate Learning—Immediate Recall
• Paired Associate Learning—Delayed Recall
• Paired Associate Learning—Recognition

Visual memory • Visual Reproduction—Immediate Recall
• Visual Reproduction—Delayed Recall
• Visual Reproduction—Recognition

Attention and concentration • Digit Span—Forward
• Trail Making Test A

Executive function • Digit Span—Backward
• Trail Making Test B

Abstract reasoning • Similarities

Language • Boston Naming Test—30-item version

Visuoperceptual organization • Hooper Visual Organization Test

Verbal fluency • Controlled Oral Word Association Test
• Category Naming Test—Animal

Voice Recordings
Since 2005, the FHS has been digitally recording all spoken
responses during NP test administration, which encompasses
the verbal interactions between the tester and the participant.
This study included digital voice recordings obtained from
September 2005 to March 2020. OpenSMILE software (version
2.1.3) [28] was used to extract an acoustic feature set [29], which
contains 65 low-level descriptors (LLDs) from these recordings.
This acoustic feature set covers a broad range of information
of the voice recordings including pitch, voice quality, loudness,
signal energy, waveform, auditory, fast Fourier transform
spectrum, spectral, and cepstral, which has been described in
detail in a prior study [30]. The feature set has also been used
in many fields, such as speech processing, music information
retrieval, and emotion recognition [31]. The description of these
features is summarized in Table S1 in Multimedia Appendix 1.
More details of these features can be found in the previous
publication [30]. There are some audio recordings with 1
channel (mono; n=4738), and the others were recorded with 2
channels (stereo; n=3136). For the recordings with 2 channels,
we included the first channel in the analysis. Each recording
was divided into segments of 20 milliseconds using a sliding
window approach with a shifting size of 10 milliseconds. The
LLD features were extracted from these segments. For each
recording, we further computed the mean of each LLD feature
to capture its high-level statistical features, which were then
normalized.

Ascertainment of MCI
The cognitive status of FHS participants included assessments
by NP tests. For those identified with possible cognitive
impairment, NP tests were administered on average about every

1 to 2 years. When potential cognitive impairment decline was
present, a clinical review was conducted by a panel with at least
one neurologist and one neuropsychologist. MCI diagnosis was
determined by the review panel, which required that the
participant exhibit evidence of a decline in cognitive
performance in 1 or more cognitive domains, have no records
indicating functional decline, and do not meet the criteria for
dementia [32]. The Clinical Dementia Rating scale [33] was
used to quantify the severity of impairment. In all, 2 outcomes
were considered in this study. The prevalent MCI cases were
subjects who were diagnosed with MCI before or at the time
when the voice was recorded. The incident MCI cases were all
subjects who were cognitively intact at baseline but were
diagnosed with MCI during the follow-up.

Statistical Analyses
To compare the difference between demographics and standard
NP test scores in MCI and normal control groups, Wilcoxon
rank sum test was used for continuous variables [34]. The
chi-square test was used to compare differences in frequencies
for categorical variables [35]. Log transformations were applied
for NP tests with skewed distributions to normalize them.
Normalized values of NP tests and acoustic features were used
in the analysis. Linear mixed-effects models were used to
quantify the association between each acoustic feature and NP
tests [36].

A set of acoustic composite scores was generated by regressing
each NP test against the group of acoustic features that were
significantly associated with each NP test. The acoustic
composite score is a weighted combination of acoustic features.
The weight of each acoustic feature in the composite score was
derived by training a linear mixed-effects effect model. For

J Med Internet Res 2022 | vol. 24 | iss. 12 | e42886 | p. 3https://www.jmir.org/2022/12/e42886
(page number not for citation purposes)

Ding et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


participant i, the acoustic composite score of an NP test is
defined as

where m is the number of acoustic features significantly
associated with the NP test, αj is the estimate of effect size for
the acoustics feature j derived from the linear mixed-effects
effect model, and Vij is the normalized acoustics feature j for
participant i. The association between normalized acoustic
composite scores with corresponding NP tests was assessed by
linear mixed-effects models.

The association of normalized acoustic composite scores with
prevalent MCI was assessed by logistic regression models.
Based on the regression coefficients, the odds ratios (ORs) and
95% CIs were estimated.

To determine the relationship between acoustic composite scores
and incident MCI, participants whose age at the voice recording
was <60 years (n=2718) and those with prevalent MCI (n=222)
were excluded. The first observation of each participant was
included in this analysis. The association between acoustic
composite scores with incident MCI was quantified by Cox
proportional hazards models (censored at the last date of contact
or death) [37]. All models were adjusted for age, sex, and
education. Bonferroni correction was used to adjust for multiple
tests.

We further evaluated the added predictability of the acoustic
composite score for incident MCI. Receiver operating
characteristic (ROC) analysis was performed to estimate the
area under the curve (AUC) using a random forest model. A
baseline model was constructed using age, sex, and education
as predictors. A second model was constructed using these
predictors and additional acoustic composite scores that were
found to be significantly related to specific NP tests. The mean
AUC of 10-fold cross-validation was computed for each model
for comparison. We also performed a secondary analysis by
including NP tests and clinical risk factors in the prediction of
incident MCI. The statistical analyses were performed using
Python software (version 3.9.7; Python Software Foundation).

Results

Our study included 7874 observations from 4950 participants
of FHS (age: mean 62, SD 14 years; 4336/7874, 55.07% women;
4279/7874, 54.34% self-reported college-level education or
higher). Most participants (2657/4950, 53.68%) had 1 voice
recording. Some participants (1775/4950, 35.86%) had 2
recordings, and the remaining participants (518/4950, 10.46%)
had 3 or more recordings. Among these observations, 453 of
these observations were diagnosed with MCI. The details of
sample characteristics are shown in Table 2.

We examined the association of acoustic features with NP tests.
As shown in Table 3, eight NP tests (Visual
Reproduction—Immediate Recall [VRi], Visual
Reproduction—Delayed Recall [VRd], Digit Span—Forward,
Digit Span—Backward, Similarities [SIM], Boston Naming
Test—30-item version, Controlled Oral Word Association Test

[FAS], and Category Naming Test—Animal) were associated
with more than 15 acoustic features. The mfcc_sma [2] was the
most significant acoustic feature with 3 NP tests (Boston
Naming Test—30-item version, FAS, and Category Naming

Test—Animal) after Bonferroni correction (P<7.7 × 10–4) that
represents Mel-frequency cepstral coefficient (MFCC) 2. The
details of associations between acoustic features and NP tests
are fully depicted in Table S2 in Multimedia Appendix 1. We
also summarized the acoustic features that were significantly
associated with NP tests across cognitive domains in Table S3
in Multimedia Appendix 1. It shows that visual memory was
associated with 49 acoustic features. Each cognitive domain
had an average of 28 associated acoustic features. In the
sensitivity analysis, besides age, sex, and education, we further
included employment as an additional covariate to examine the
stability of the association between acoustic features and NP
tests. As shown in Table S4 in Multimedia Appendix 1, similar
acoustic features were found to be associated with NP tests. In
addition, we also examined the correlation between acoustic
features and NP tests collected at the same time and a later time.
For each NP test conducted at the first exam, we compared its
correlation with acoustic features collected at the first exam and
the second exam. As shown in Table S5 in Multimedia Appendix
1, only moderate changes were observed between the 2 exams.

Acoustic composite scores were also generated using the
significant acoustic features for each NP test. As shown in Table
4, all these scores were significantly associated with their
corresponding NP tests.

We then performed association analysis of acoustic composite
scores with prevalent MCI. Table 5 shows that 4 acoustic
composite scores (acoustic_LMr, acoustic_TrailsB,
acoustic_FAS, and acoustic_CNT_Animal) were significantly
associated with prevalent MCI (OR ranging from 0.69 to 1.23;

P<3.1 × 10–3). Lower acoustics composite scores
(acoustic_TrailsB, acoustic_FAS, and acoustic_CNT_Animal)
were associated with higher OR of MCI after adjusting for age,

sex, and education (P<3.1 × 10–3). The most significant acoustic

composite score was for FAS Animal test (P=2.3 × 10–7).

We further examined the association of acoustic composite
scores with incident MCI by restricting the analysis to 2010
participants who were aged ≥60 years. Among them, 145
participants have incident MCI. As shown in Table 6, the
acoustic composite scores for Logical Memory—Immediate
Recall (LMi), VRi, VRd, Visual Reproduction—Recognition
(VRr), SIM, Trail Making Test B (TrailsB), and Hooper Visual
Organization Test (HVOT) tests were significantly associated

with incident MCI (P<3.1 × 10–3). Higher acoustic composite
scores for VRi, VRd, SIM, and TrailsB tests were associated
with higher MCI risk. The other 3 scores were negatively
associated with MCI risk with hazard ratio lower than 1 after
adjusting for age, sex, and education. We further built 2 Cox
regression models for incident MCI to show the contribution
of acoustic features. Model 1 includes age, sex, and education
as predictors. Model 2 includes age, sex, education, and all
significant associated acoustic composite scores with incident
MCI. The change in Akaike information criterion [38] with the
addition of acoustic composite scores to the model was
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calculated. We observed a smaller Akaike information criterion
for model 2, suggesting that the model better fit the prediction.

The added predictive power of acoustic_LMi, acoustic_VRi,
acoustic_VRd, acoustic_VRr, acoustic_SIM, acoustic_TrailsB,
and acoustic_HVOT for incident MCI were evaluated by
comparing the AUC of different models. Model 1 only included
age, sex, and education as the predictors of incident MCI.
Besides age, sex, and education, Model 2 included 7 composite
scores that were significantly associated with incident MCI as
the predictors. Model 3 included age, sex, education, and 18
NP tests as predictors. Figure 1 shows that the AUC of MCI
prediction can be improved from 0.712 (model 1) to 0.755
(model 2) by including acoustic composite scores of LMi, VRi,

VRd, VRr, SIM, TrailsB, and HVOT tests. As shown in Figure
S1 in Multimedia Appendix 1, the model with NP tests reached
AUC=0.761, which is comparable to the one including
demographic factors and acoustic composite scores (DeLong
test P=.97). However, both models showed significant
improvement over model 1 that included only demographic
factors (DeLong test P=.03 and P=.03 for model 2 and model
3, respectively). These results indicate that the acoustics
composite scores have similar predictive power to traditional
NP tests. Compared to the burden of conducting NP tests, the
prediction model based on acoustic features relied minimally
on NP expertise; these results suggest the feasibility of
developing real-time cognitive screening tools.
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Table 2. Baseline characteristics.

P valuecNCb (n=7421)MCIa (n=453)Total observation (N=7874)Variable

<.00161 (14)81 (8)62 (14)Age (years), mean (SD)

.84Gender, n (%)

4084 (55.03)252 (55.63)4336 (55.07)Women

3337 (44.97)201 (44.37)3538 (44.93)Men

<.001Education, n (%)

149 (2.01)53 (11.70)202 (2.57)No high school

1295 (17.45)118 (26.05)1443 (18.33)High school

1816 (24.47)134 (29.58)1950 (24.77)Some college

4161 (56.07)148 (32.67)4279 (54.34)College and higher

NPd test score, mean (SD)

<.00112.58 (3.48)8.53 (3.76)12.35 (3.62)LMie

<.00111.62 (3.65)6.93 (4.11)11.36 (3.83)LMdf

<.0019.57 (1.23)8.59 (1.72)9.52 (1.28)LMrg

<.0018.85 (2.76)4.48 (2.23)8.61 (2.91)VRih

<.0018.19 (2.99)3.11 (2.30)7.91 (3.17)VRdi

<.0013.18 (0.96)1.89 (1.06)3.11 (1.01)VRrj

<.00114.71 (3.45)10.02 (2.79)14.45 (3.58)PASik

<.0018.68 (1.38)6.56 (1.60)8.56 (1.47)PASdl

<.0019.88 (0.45)8.83 (1.74)9.82 (0.64)PASrm

<.0016.75 (1.30)6.06 (1.20)6.71 (1.31)DSfn

<.0014.97 (1.30)4.12 (1.01)4.92 (1.30)DSbo

<.00117.08 (3.40)12.63 (4.30)16.83 (3.61)SIMp

<.00127.43 (2.56)23.66 (4.14)27.22 (2.81)BNT30q

<.0010.40 (0.14)0.66 (0.21)0.42 (0.15)TrailsAr

<.0010.82 (0.29)1.54 (0.50)0.85 (0.34)TrailsBs

<.0013.27 (0.13)3.06 (0.22)3.26 (0.15)HVOTt

<.00140.50 (12.26)28.76 (11.68)39.85 (12.52)FASu

<.00119.91 (5.46)12.22 (4.37)19.48 (5.68)CNT_Animalv

aMCI: mild cognitive impairment.
bNC: normal control.
cSignificant associations were claimed if P<.05/18≈.002.
dNP: neuropsychological.
eLMi: Logical Memory—Immediate Recall.
fLMd: Logical Memory—Delayed Recall.
gLMr: Logical Memory—Recognition.
hVRi: Visual Reproduction—Immediate Recall.
iVRd: Visual Reproduction—Delayed Recall.
jVRr: Visual Reproduction—Recognition.
kPASi: Paired Associate Learning—Immediate Recall.
lPASd: Paired Associate Learning—Delayed Recall.
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mPASr: Paired Associate Learning—Recognition.
nDSf: Digit Span—Forward.
oDSb: Digit Span—Backward.
pSIM: Similarities.
qBNT30: Boston Naming Test—30-item version.
rTrailsA: Trail Making Test A.
sTrailsB: Trail Making Test B.
tHVOT: Hooper Visual Organization Test.
uFAS: Controlled Oral Word Association Test.
vCNT_Animal: Category Naming Test—Animal.
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Table 3. The most significant acoustic feature for each neuropsychological (NP) test.

P valueaSEEffect sizeThe most significant acoustic featureSignificant acoustic features, nNP test

2.7 × 10–70.00950.0490audSpec_Rfilt_sma [25]7LMib

1.9 × 10–50.00940.0402audSpec_Rfilt_sma [25]3LMdc

2.3 × 10–40.01080.0397audSpec_Rfilt_sma [23]3LMrd

8.4 × 10–660.00820.1409mfcc_sma [11]49VRie

3.7 × 10–440.00820.1137mfcc_sma [11]43VRdf

1.7 × 10–40.0095–0.0358pcm_fftMag_spectralRollOff75.0_sma10VRrg

N/AN/AN/AN/Ai0PASih

N/AN/AN/AN/A0PASdj

2.3 × 10–100.0112–0.0709audSpec_Rfilt_sma [1]7PASrk

4.8 × 10–170.01070.0898audSpec_Rfilt_sma [6]44DSfl

1.2 × 10–80.01100.0624audSpec_Rfilt_sma [5]30DSbm

2.4 × 10–100.0084–0.0530pcm_fftMag_spectralRollOff75.0_sma24SIMn

3.2 × 10–100.00690.0433mfcc_sma [2]23BNT30o

1.4 × 10–60.0075–0.0363pcm_fftMag_spectralSkewness_sma15TrailsAp

3.1 × 10–40.0074–0.0269pcm_fftMag_spectralSkewness_sma1TrailsBq

3.6 × 10–70.0093–0.0472F0final_sma5HVOTr

3.6 × 10–130.00730.0534mfcc_sma [2]26FASs

2.6 × 10–180.00820.0715mfcc_sma [2]34CNT_Animalt

aSignificant associations were claimed if P<.05/65≈7.7 × 10–4.
bLMi: Logical Memory—Immediate Recall.
cLMd: Logical Memory—Delayed Recall.
dLMr: Logical Memory—Recognition.
eVRi: Visual Reproduction—Immediate Recall.
fVRd: Visual Reproduction—Delayed Recall.
gVRr: Visual Reproduction—Recognition.
hPASi: Paired Associate Learning—Immediate Recall.
iN/A: not applicable.
jPASd: Paired Associate Learning—Delayed Recall.
kPASr: Paired Associate Learning—Recognition.
lDSf: Digit Span—Forward.
mDSb: Digit Span—Backward.
nSIM: Similarities.
oBNT30: Boston Naming Test—30-item version.
pTrailsA: Trail Making Test A.
qTrailsB: Trail Making Test B.
rHVOT: Hooper Visual Organization Test.
sFAS: Controlled Oral Word Association Test.
tCNT_Animal: Category Naming Test—Animal.
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Table 4. Association between acoustic composite scores and corresponding neuropsychological tests.

P valueaSEEffect sizeAcoustic composite score

6.6 × 10–100.00940.0579acoustic_LMib

1.1 × 10–30.00950.0310acoustic_LMdc

6.8 × 10–40.01050.0358acoustic_LMrd

3.3 × 10–690.00860.1510acoustic_VRie

6.5 × 10–360.00860.1079acoustic_VRdf

3.0 × 10–30.0098–0.0291acoustic_VRrg

1.3 × 10–130.01140.0841acoustic_PASrh

1.8 × 10–400.00970.1298acoustic_DSfi

6.2 × 10–80.01020.0553acoustic_DSbj

5.1 × 10–160.00890.0719acoustic_SIMk

1.4 × 10–100.00710.0458acoustic_BNT30l

3.0 × 10–60.00880.0408acoustic_TrailsAm

3.1 × 10–40.0075–0.0269acoustic_TrailsBn

1.7 × 10–30.00900.0284acoustic_HVOTo

1.4 × 10–250.00790.0827acoustic_FASp

6.5 × 10–80.00980.0529acoustic_CNT_Animalq

aSignificant associations were claimed if P<.05/16≈3.1 × 10–3.
bLMi: Logical Memory—Immediate Recall.
cLMd: Logical Memory—Delayed Recall.
dLMr: Logical Memory—Recognition.
eVRi: Visual Reproduction—Immediate Recall.
fVRd: Visual Reproduction—Delayed Recall.
gVRr: Visual Reproduction—Recognition.
hPASr: Paired Associate Learning—Recognition.
iDSf: Digit Span—Forward.
jDSb: Digit Span—Backward.
kSIM: Similarities.
lBNT30: Boston Naming Test—30-item version.
mTrailsA: Trail Making Test A.
nTrailsB: Trail Making Test B.
oHVOT: Hooper Visual Organization Test.
pFAS: Controlled Oral Word Association Test.
qCNT_Animal: Category Naming Test—Animal.
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Table 5. Association between acoustic composite scores and prevalent mild cognitive impairment.

P valueaOdds ratio (95% CI)Acoustic composite score

2.6 × 10–11.09 (0.94-1.26)acoustic_LMib

7.4 × 10–21.14 (0.99-1.31)acoustic_LMdc

1.6 × 10 –31.23 (1.08-1.40)acoustic_LMrd

4.7 × 10–11.05 (0.92-1.19)acoustic_VRie

3.2 × 10–11.07 (0.94-1.21)acoustic_VRdf

4.6 × 10–10.94 (0.80-1.10)acoustic_VRrg

3.6 × 10–20.9 (0.81-0.99)acoustic_PASrh

1.1 × 10–21.17 (1.04-1.32)acoustic_DSfi

3.5 × 10–10.94 (0.83-1.07)acoustic_DSbj

3.1 × 10–10.94 (0.84-1.06)acoustic_SIMk

2.0 × 10–10.92 (0.82-1.04)acoustic_BNT30l

9.6 × 10–21.12 (0.98-1.28)acoustic_TrailsAm

1.0 × 10 –50.69 (0.59-0.81)acoustic_TrailsBn

1.4 × 10–10.91 (0.81-1.03)acoustic_HVOTo

3.9 × 10 –80.72 (0.64-0.81)acoustic_FASp

2.3 × 10 –70.70 (0.61-0.80)acoustic_CNT_Animalq

aSignificant associations were claimed if P<.05/16≈3.1 × 10–3.
bLMi: Logical Memory—Immediate Recall.
cLMd: Logical Memory—Delayed Recall.
dLMr: Logical Memory—Recognition.
eVRi: Visual Reproduction—Immediate Recall.
fVRd: Visual Reproduction—Delayed Recall.
gVRr: Visual Reproduction—Recognition.
hPASr: Paired Associate Learning—Recognition.
iDSf: Digit Span—Forward.
jDSb: Digit Span—Backward.
kSIM: Similarities.
lBNT30: Boston Naming Test—30-item version.
mTrailsA: Trail Making Test A.
nTrailsB: Trail Making Test B.
oHVOT: Hooper Visual Organization Test.
pFAS: Controlled Oral Word Association Test.
qCNT_Animal: Category Naming Test—Animal.
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Table 6. Association between acoustic composite scores and incident mild cognitive impairment.

P valueaHazard ratio (95% CI)Acoustic composite score

5.1 × 10 –50.60 (0.47-0.77)acoustic_LMib

2.9 × 10–20.76 (0.59-0.97)acoustic_LMdc

3.9 × 10–30.74 (0.61-0.91)acoustic_LMrd

1.1 × 10 –31.28 (1.10-1.48)acoustic_VRie

2.4 × 10 –31.25 (1.08-1.44)acoustic_VRdf

6.0 × 10 –80.44 (0.33-0.59)acoustic_VRrg

2.0 × 10–11.11 (0.95-1.30)acoustic_PASrh

1.6 × 10–11.11 (0.96-1.29)acoustic_DSfi

2.9 × 10–11.09 (0.93-1.27)acoustic_DSbj

1.7 × 10 –41.37 (1.16-1.61)acoustic_SIMk

6.4 × 10–31.23 (1.06-1.43)acoustic_BNT30l

7.9 × 10–30.75 (0.61-0.93)acoustic_TrailsAm

2.5 × 10 –82.03 (1.58-2.60)acoustic_TrailsBn

1.7 × 10 –30.78 (0.67-0.91)acoustic_HVOTo

6.1 × 10–20.87 (0.76-1.01)acoustic_FASp

8.6 × 10–20.85 (0.70-1.02)acoustic_CNT_Animalq

aSignificant associations were claimed if P<.05/16≈3.1 × 10–3.
bLMi: Logical Memory—Immediate Recall.
cLMd: Logical Memory—Delayed Recall.
dLMr: Logical Memory—Recognition.
eVRi: Visual Reproduction—Immediate Recall.
fVRd: Visual Reproduction—Delayed Recall.
gVRr: Visual Reproduction—Recognition.
hPASr: Paired Associate Learning—Recognition.
iDSf: Digit Span—Forward.
jDSb: Digit Span—Backward.
kSIM: Similarities.
lBNT30: Boston Naming Test—30-item version.
mTrailsA: Trail Making Test A.
nTrailsB: Trail Making Test B.
oHVOT: Hooper Visual Organization Test.
pFAS: Controlled Oral Word Association Test.
qCNT_Animal: Category Naming Test—Animal.
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Figure 1. The receiver operating characteristic curves of 2 models to predict incident mild cognitive impairment. AUC: area under the curve.

Discussion

Principal Findings
Relating acoustic features with NP test performance is
potentially a novel way for screening at the preclinical stages
of AD and other dementias. This paper clarifies the relationship
between comprehensive acoustic features and NP test
performance on large cohort data. Representations relative
spectra–style filtered auditory spectrum (spectral), MFCC
(cepstral), and magnitude of spectral features (spectral) are 3
categories of acoustic features that were significantly associated
with NP test performance. Representations relative spectra–style
filtered auditory spectrum is a filtered representation of an audio
signal that is robust to additive and convolutional noise [39].
MFCC is a standardized technique for audio feature extraction
[40]. It helps in reducing the frequency information of the input
speech signal into coefficients, which represent audio based on
the perception of human auditory systems. Prior studies have
detected changes of these features in people with
neurodegenerative processes [41-43]. The acoustic composite
score generated for each NP test was a linear combination of
LLD features, which are clinically easily interpretable. As stated
in the results above, 4 acoustic composite scores were
significantly associated with prevalent MCI, and 7 were also
found to be significantly associated with incident MCI.
Furthermore, the score corresponding to TrailsB test is

significantly associated with both prevalent MCI and incident
MCI.

Results could expand current evidence regarding the predictive
ability of digital voice on MCI that are critical to monitor early
cognitive decline. The added predictive ability of acoustic
features was evaluated by constructing random forest models
with baseline features and additional acoustic composite scores.
The model with baseline features and 7 acoustic composite
scores corresponding to LMi, VRi, VRd, VRr, SIM, TrailsB,
and HVOT tests could achieve an AUC of 0.755 for incident
MCI prediction. Monitoring acoustic features outside of the
clinical settings offers a more convenient way to aid in the
assessment of cognitive health than traditional methods.
Increasing evidence suggests that the human voice can be a
predictor of cognitive decline before a clinical diagnosis of AD
is made [44]. It has been used to screen for MCI [45], dementia
[46], and other neurodegenerative diseases such as Parkinson
[47] and Huntington disease [48] because of its ease of
administration and clinical assessment capability. Moreover,
the easy acquisition of voice in daily life makes it an ideal
measure for long-term monitoring of cognitive status. However,
there is a lack of research about the relationship between
acoustic features and NP tests that reflect multiple cognitive
functions. Our study could provide some construct validity for
this point. In this study, we recorded voice for NP tests that
require verbal responses. Although some NP tests do not require
verbal responses, these tests might tap some cognitive domains
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similar to those that require verbal responses. We therefore
included these tests as well to capture potential application of
acoustic characteristics to assess different cognitive domains.
Each NP test might require multiple cognitive domains to
complete, which might be shared with other NP tests with subtle
differences. Given the rich information from human voice, our
study suggests that acoustic features might serve as a new data
modality to test this nuance.

Notably, the association between acoustic features and a
standard epidemiologic NP test procedure was examined based
on participants from a community-based cohort with a diverse
range of ages and health conditions. The large volume of voice
data provides a more robust representation of participants. Each
voice recording lasts, on average, around an hour and contains
a wealth of information. The longitudinal collection of data
provides a great opportunity to assess the cognitive health of
participants throughout the entire course of the disease and
prospectively reveals a temporal relationship between acoustic
features and MCI. It is worth to noting that 4 of the acoustic
composite scores (acoustic_LMr, acoustic_TrailsB,
acoustic_FAS, and acoustic_CNT_Animal) were significantly
associated with prevalent MCI, but 7 acoustic composite scores
(acoustic_LMi, acoustic_VRi, acoustic_VRd, acoustic_VRr,
acoustic_SIM, acoustic_TrailsB, and acoustic_HVOT) were
associated with incident MCI. It seems that the voice
characteristics differentiating prevalent MCI cases from patients
who are still cognitively intact are different from the voice
characteristics that are predictive of future risk of cognitive
impairment. Future research is needed to further investigate the
potential mechanisms that underlie these features and help to
account for the MCI prevalence and incidence difference.
Further, this study found differences in acoustic features between
TrailsA and TrailsB, which provides confirmatory evidence
that acoustic features are differential for different cognitive
domains. TrailsA, as a measure of simple attention compared
to the more complex executive functions measured by TrailsB
[49], would be expected to have different acoustic features that
would be aligned with motor control and perceptual complexity

[50] in the latter and not the former. These differential results
suggest that acoustic features might provide a way to detect
such subtle differences across cognitive domains. The patterns
of acoustic features that are accurately representative of the
comprehensive range of cognitive domains will be further
explored in future studies.

This study also has some limitations. First, the use of NP tests
to diagnose MCI may have led to some circularity and an
overestimation of the diagnosis performance [32]. Second,
despite that diagnoses are arrived at through a careful
adjudication process, there may be some misclassification of
MCI. Third, although the FHS collected the voice recordings
in a well-controlled environment, there might still be some other
factors affecting the quality of voice that were not taken into
account. Fourth, this study did not consider linguistic features,
which has been shown to be effective in predicting cognitive
status. Although we recognize that the inclusion of linguistic
features might further improve the prediction of incident MCI,
we chose to focus on acoustic features because they are much
more generalizable to a broader population, including potentially
to other languages. Linguistic features are much more likely to
be biased by language, culture, and education. Finally, FHS
participants were mostly of European ancestry and English
speakers; therefore, the applicability of our findings to
populations of another race and ethnicity needs to be examined.

Conclusion
We examined the association of acoustic features with specific
cognitive functions—prevalent and incident MCI—in a large
community-based population. Overall, this study’s establishment
of a relationship between MCI risk and human voice features
provides foundational evidence for an alternative cognitive
assessment approach that is cost-effective and easy to administer
for detecting cognition-related disorders. Multiple acoustic
features were significantly associated with NP test performance
and MCI and could be potentially used as a digital biomarker
for early cognitive impairment monitoring.
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