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Abstract

Background: Respiratory syncytial virus (RSV) is a major cause of respiratory infection in children. Despite usually following
a consistent seasonal pattern, the 2020-2021 RSV season in many countries was delayed and changed in magnitude.

Objective: This study aimed to test if these changes can be attributed to nonpharmaceutical interventions (NPIs) instituted
around the world to combat SARS-CoV-2.

Methods: We used the internet search volume for RSV, as obtained from Google Trends, as a proxy to investigate these
abnormalities.

Results: Our analysis shows a breakdown of the usual correlation between peak latency and magnitude during the year of the
pandemic. Analyzing latency and magnitude separately, we found that the changes therein are associated with implemented NPIs.
Among several important interventions, NPIs affecting population mobility are shown to be particularly relevant to RSV incidence.

Conclusions: The 2020-2021 RSV season served as a natural experiment to test NPIs that are likely to restrict RSV spread, and
our findings can be used to guide health authorities to possible interventions.

(J Med Internet Res 2022;24(12):e42781) doi: 10.2196/42781
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Introduction

Respiratory syncytial virus (RSV) is the leading cause of lower
respiratory tract infection in children worldwide. Preterm
gestation and several other underlying conditions particularly
increase the risk of hospitalization and severe disease [1].
Although no specific treatment exists, prophylactic
administration of monoclonal antibodies, when timed correctly,
mitigates some of the risks. The American Academy of
Pediatrics guidelines limit the duration of treatment with
monoclonal antibodies to 5 months, with maximal benefit

derived when treatment is initiated prior to the onset of the local
RSV season [1]. Seasonality—including the start, peak, and
end weeks—in RSV has been studied extensively and generally
follows a set pattern within each country, with little variation
from year to year. For the start week, even relatively major
variations, when they rarely occur, do not exceed 1 month [2].
This regularity is key for proper timing of prophylaxis
administration [1]. Beyond timing, a consistent spatiotemporal
pattern of RSV epidemics has been established in previous years
[3]. As there is no known animal reservoir of human RSV,
transmission occurs solely through close contact with other
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humans [4]. Changes in human behavior, therefore, are likely
integral to the dynamics and seasonality of RSV epidemics.

Nonpharmaceutical interventions (NPIs) are policy-based
strategies used to mitigate the effects of infectious diseases.
When vaccines are unavailable, NPIs are the primary recourse
for reducing transmission rate and decreasing the burden on
health care systems. NPIs may be grossly categorized as
personal, communal, or environmental [5]. While the latter 2
may be reasonably implemented across an entire population, it
is difficult to enforce adherence to personal NPIs in very young
children. This is a particularly important consideration in RSV,
where young children are the primary at-risk group.

Surveillance of RSV outbreaks is not uniformly rigorous across
the world [6]. Changes in health-seeking behaviors and viral
surveillance during the COVID-19 pandemic further complicate
the interpretation of epidemiological data [7]. However, previous
research has shown that the volume of search engine queries
can serve as a proxy for the incidence of respiratory diseases
[8-11]. Initial attempts to harness internet search data to monitor
viral incidence were shown to be naïve. For instance, Google
Flu Trends, a system that predicted the influenza load from the
Google search volume for specific terms, was shown to
overestimate these loads [12]. However, work since then has
improved the models that predict loads of influenza-like illness
from these data [13,14]. In the case of RSV, the Google query
volume for the term “RSV” has been demonstrated to be a good
proxy for RSV incidence [15]. This correlation has been used
to draw conclusions regarding the dynamics of RSV
transmission when epidemiological data are insufficient [15,16].

In 2020, countries around the world instituted various NPIs to
combat the COVID-19 pandemic [17]. Researchers have
reported that the 2020-2021 RSV season was exceptional, in

that its peak was both delayed and changed in magnitude
[16,18-20]. Here, we re-establish the correlation between RSV
incidence and internet search data and use the latter as a proxy
to investigate the association of the various NPIs instituted in
response to the COVID-19 pandemic with the abnormalities of
the 2020-2021 RSV season.

Methods

Data Sources
Nonsentinel observational data on RSV incidence were obtained
from the European Centre for Disease Prevention and Control’s
Surveillance Atlas of Infectious Diseases, an interactive tool
that pools data collected from its member states through the
European Surveillance System [21]. Data included in the study
range from week 40 of 2014 to week 42 of 2021.

Search query volume data were gathered from Google Trends
using the Google Trends Anchor Bank package [22]. Search
query volume data for the Google Trends topic “Respiratory
syncytial virus” were gathered for the period between week 9
of 2016 and week 43 of 2021.

Data on NPIs were taken from Worldwide Non-pharmaceutical
Interventions Tracker for COVID-19 (WNTRAC). Briefly,
WNTRAC is a comprehensive data set consisting of over 7000
NPIs implemented worldwide since the start of the COVID-19
pandemic. WNTRAC includes NPIs implemented in countries
across the world, classifying them into a taxonomy of 16 NPI
categories. NPI events are automatically extracted daily from
Wikipedia articles using natural language processing techniques
and are manually validated to ensure accuracy and veracity [17].
WNTRAC data up to December 17, 2021, are included in this
study. Figures 1 and 2 provide a schematic overview of the data
collection and processing.

Figure 1. Data sources and process used to validate correlation between RSV incidence and the internet search volume for RSV. ECDC: European
Centre for Disease Prevention and Control; RSV: respiratory syncytial virus.
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Figure 2. Data sources and processing used to generate the final data set. NPI: nonpharmaceutical intervention; WNTRAC: Worldwide Non-pharmaceutical
Interventions Tracker for COVID-19.

Preprocessing of RSV Incidence Data
The original European Centre for Disease Prevention and
Control data included 27 countries. Of these, 11 countries were
excluded because they contained fewer than 150 weekly data
points. An additional 4 countries were excluded because they
contained no data for 2021, leaving a matrix of epidemiological
data for 12 countries available for confirming the correlation
between epidemiological and search trends data.

Weekly search trend data were collected for 31 countries using
Google Trends Anchor Bank. Only countries with sufficient
Google Trends data were included in the study. An effort was
made to include countries from both hemispheres and various
continents to improve generalizability. Data were smoothed to
remove noise by calculating a rolling average with a 5-week
moving window. Annual peaks were identified by calculating
the local maxima of each country’s weekly RSV incidence using
a minimum horizontal distance of 35 samples between adjacent
peaks (ie, a minimum of 35 weeks had to be present between
adjacent peaks; this was achieved with the
scipy.signal.find_peaks function, distance=35). Of the 31
countries for which search data were gathered, 8 were also
present in the epidemiological data and could be used in the
correlation analysis.

To allow comparison of the deviation from average of peak
latency (ie, the extent to which the peak was delayed) and
magnitude among different countries, standard scores were
calculated for each in accordance with the function Z = (x – μ)
/ σ, where Z is the standard score, x is the observed peak week
or peak magnitude for 2021, μ is the mean peak per week
divided by the magnitude as calculated on the basis of prior
years included in the study, and σ is the SD value of the peak
week divided by the magnitude as calculated on the basis of
prior years included in the study. These standard scores represent
the 2 target features (ie, outcome variables) used in the study.

Preprocessing of NPI Data
NPI data for the countries included in the study were obtained
from WNTRAC. Several NPI types were recategorized to make
them amenable to representation in a tabular format; namely,
NPIs with unique values (eg, specific countries from which
there were travel restrictions) and restrictions on mass
gatherings. The NPIs with unique features were reorganized as
either “some” or “all” based on whether they referred to
restrictions pertaining to specific countries or blanket restrictions
on all countries, respectively. Restrictions on mass gatherings,
which originally displayed a specific numerical limit, were
binned, grouping restrictions on gatherings of 10 or less, 10-100,
100-250, 250-500, and ≥500 persons. The NPI “changes in
prison-related policies” was removed as it was instituted in very
few countries and because symptomatic RSV predominantly
affects young children. Additionally, the NPIs “declared state
of emergency” and “contact tracing for COVID-19 patients”
were deemed unrelated to the dynamics of the RSV outbreak
and were therefore removed from the data set to decrease the
effect of multicollinearity. NPI subtypes “other” and “na” were
combined and recategorized as “unspecified” in the interest of
interpretability, with no subsequent change in performance.

Rather than considering all NPIs instituted throughout the study
period, NPIs included in the final matrix were limited only to
those interventions instituted during the 3 months preceding the
expected (average calculated over the past years included in the
study) peak week.

Statistical Analysis
Spearman correlation analysis was used to calculate the
correlation between epidemiological and search data. Correlation
between peak magnitude and latency was determined by fitting
a linear regression model.

Linear regression models were fitted to each of the two main
target variables, peak latency and peak magnitude, after a subset
of highly performing features was chosen through sequential
backward selection. Backward selection was implemented using
the scikit-learn SequentialFeatureSelector with default
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cross-validation and R2 scoring. Relative contribution of the
various NPIs to each of the outcomes was evaluated by
calculating their feature importance using the SHAP (Shapley
Additive Explanations) package (version 0.39.0), one of the
most robust approaches currently available for explaining
machine learning outputs [23]. The SHAP package’s
LinearExplainer was used to account for the correlation among
various NPIs. For general pipeline development and validation,
scikit-learn (version 0.22.1) was used. All analysis was
conducted in Python (version 3.7.7).

Results

Overview
We first re-established the correlation between RSV case
incidence and Google query volume for RSV, which was then
used to infer RSV incidence for the 31 countries in our study.
We then used a regression model to predict the normalized peak
latency and the peak magnitude of RSV incidence in each
country during the 2020-2021 season. Relative contribution of
the various NPIs to each of the outcomes was then estimated
using Shapley values. An example of the timing between the
NPIs included in the study and the spread of RSV during the
2021-2022 season in one of the countries (Germany) is shown
in Figure 3.

Figure 3. Changes in timing of respiratory syncytial virus incidence relative to the implementation of nonpharmaceutical interventions during the
2020-2021 season in Germany.

Validating the Correlation Between Search and
Epidemiological Data
The correlation of epidemiological incidence data on RSV with
internet search volume in countries for which both were
available was, on average, 0.61 (n=8 countries, estimated over
a period of 291 weeks; Figure 4), validating past research and

suggesting that search data could indeed be used as a proxy for
RSV incidence during the 2020-2021 season. This correlation
is displayed graphically in Figure 3, which shows that changes
in search trends closely follow the epidemiological data. The
gray shaded area represents epidemiological data on RSV
incidence; the blue line depicts the search data volume.
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Figure 4. Correlation of epidemiological and search data in countries for which both were available.

Correlation Between Peak Latency and Magnitude
The rank regression model of peak latency as a function of
country and peak magnitude for the years preceding 2021 was

significant (R2=0.13, P<.001), with country not shown as a
significant explanatory variable. Applying this model to the

year of the COVID-19 pandemic yielded an R2 of 0.07 (P=.07).
This shows that the correlation between RSV peak latency and
magnitude broke down during the 2020-2021 RSV season.

Evaluation of Linear Regression Models
Two target variables, peak latency and peak magnitude, were
examined in this study. For each, a subset of the most indicative
attributes was chosen using backward stepwise selection. A
linear regression model was fit to each of the target variables
using each set of the chosen attributes. Both regression models

were significant (adjusted R2=0.815, F19,11=7.967, P<.001) and

J Med Internet Res 2022 | vol. 24 | iss. 12 | e42781 | p. 5https://www.jmir.org/2022/12/e42781
(page number not for citation purposes)

Ravkin et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


(adjusted R2=0.799, F19,11=7.261, P<.001) for peak latency and
peak magnitude, respectively.

Insights From the Linear Regression Models
We analyzed the contribution of different NPIs to each of the
two target variables. Multivariate feature importance (SHAP
value) was calculated for all features in each of the two final
models. Figures 5 and 6 highlight the effect of the various NPIs
on peak latency and peak magnitude, respectively. Each point

on the plot represents a country in the study; the color of the
point indicates whether the NPI was in effect. For each feature,
horizontal position relative to the midline (ie, expected value)
indicates its contribution to model output. Features are arranged
in descending order of mean absolute importance. It is important
to note that all countries in the study experienced delays in the
RSV peak. Leftward dispersion of data points in the peak latency
plot, therefore, does not suggest that a feature caused an earlier
peak than usual, but rather that it had a relatively lower
association with the peak delay.

Figure 5. SHAP (Shapley Additive Explanations) summary plot for peak latency. Statistical significance: *P<.05, **P<.001. NPI: nonpharmaceutical
intervention.
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Figure 6. SHAP (Shapley Additive Explanations) summary plot for peak magnitude. Statistical significance: *P<.05, **P<.001. NPI: nonpharmaceutical
intervention.

Discussion

Principal Findings
Our results support the hypothesis that NPIs instituted to combat
the COVID-19 pandemic are strongly associated with changes
in both the latency and magnitude of peak RSV incidence
observed during the 2020-2021 RSV season. Owing to the lack
of effective pharmacological treatment or vaccines for

COVID-19, the global response to the pandemic relied mainly
on the institution of NPIs. Various countries instituted disparate
measures at different times [17]. The differential impact of these
strategies has been posited to be partially responsible for the
changes observed in the dynamics of respiratory viruses other
than COVID-19 in 2021 [24]. Our study analyzed RSV
incidence based on internet search volume and official
epidemiological data reported by various agencies and used
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data analysis techniques to model the effect of NPIs on RSV
incidence.

Linear regression analysis of peak magnitude as a function of
peak latency demonstrated a significant correlation between
peak latency and magnitude for the years preceding the
COVID-19 pandemic. This correlation, however, broke down
during the pandemic. Furthermore, linear regression analyses
modeling peak latency and peak magnitude as a function of
instituted NPIs identified distinct influential features for each
target feature.

Google Search Trends as a Proxy for RSV Incidence
Several studies have validated the efficacy of Google Search
Trends query volume as an accurate proxy for RSV incidence
[15,16]. We re-established the validity of these findings for the
2020-2021 RSV season. In keeping with previous studies, our
analysis shows that changes in internet search data from most
countries closely paralleled the observed epidemiological
changes [15]. It is worth noting that while a recent study of
global RSV seasonality included data on 27 countries, data for
many of the countries had to be extracted from various national
databases rather than being available from official RSV
surveillance programs [2]. Although larger studies exist, these
rely on data collected from published literature [25].
Surveillance data are particularly limited in middle- and
low-income countries [2]. Although the need for increased
epidemiological surveillance is undeniable, our study collected
data on 31 countries in a manner that could potentially be
automated and used for epidemiological decision-making in
real time.

Correlation Between Peak Latency and Magnitude
We found that, prior to the pandemic, the yearly timing of the
RSV peak was linearly correlated with its magnitude. This linear
correlation was disrupted during the pandemic. Our results
substantiate the hypothesis that the institution of various NPIs
accounts for a high degree of variation in the timing and
magnitude of the RSV outbreaks experienced by various
countries.

Effects of Specific NPIs
A group of interventions related to reduced population mobility
was associated with both a delayed RSV peak and a reduced
peak magnitude. Among these were both domestic flight
restrictions and restrictions on international arrivals from all
countries, although the effects of domestic flight restrictions
were more unequivocal. Restrictions on international arrivals
from selected countries also showed a significant association
with delayed and reduced peaks. These findings may lend
credence to the hypothesis that the consistent spatiotemporal
patterns of RSV spread are indeed linked to population mobility
and human behavior. In the United States, for instance, yearly
RSV activity begins in Florida during November and ends in
February-March in the upper Midwestern United States [3]. A
recent study identified the same spatiotemporal pattern, albeit
shifted, in the out-of-season RSV epidemics during the
2020-2021 RSV season. The same study also suggested that
increased volume of domestic air travel, which coincided with
the out-of-season peaks in their study, may have been

responsible [16]. Interestingly, mandatory quarantine for all
arriving travelers was not significantly associated with changes
in peak latency or magnitude, while mandatory quarantine on
arrivals from select countries had a significant but unclear effect
on peak magnitude.

Closure of school at the kindergarten or daycare level led to a
significantly reduced peak magnitude. This corroborates what
is known about RSV transmission in this high-risk age group.
Other NPIs, particularly personal NPIs such as mask-wearing
and social distancing, are extremely difficult to implement for
this demographic. Reopening of schools (at all age groups) was
significantly associated with an increased risk for RSV
recurrence in another study that did not consider different age
groups separately [26]. In our study, however, school closure
at other age levels was not associated with a reduction in peak
magnitude. This may be due to the greater ability to implement
mask-wearing and other NPIs while maintaining school
attendance at these ages. Additionally, it is possible that
relaxation of school closure regulations had an unintended
opposite effect of reducing social distancing in these groups.

Limiting mass gatherings to 10 people or fewer, effectively
restricting interactions to the size of 1 or 2 nuclear families, was
significantly associated with delayed peak. This intervention is
widely considered one of the most drastic and effective measures
for preventing the spread of respiratory viruses. A similar effect
was demonstrated in western Washington in February 2019,
where extremely high snowfall led to citywide social isolation
at the level of individual household units. Researchers found
that such a high-intensity intervention instituted close to the
onset of an epidemic had the predominant effect of delaying
the peak, while initiation of NPIs at the height of epidemic
intensity predominantly decreased the peak’s magnitude. In the
case of RSV, which was at the height of its peak during their
intervention, a 95% decrease in incidence was recorded [27].
Restricting mass gatherings to 10-100 people had the same
effect; interestingly, restricting mass gatherings to 250-500
people was significantly associated with both reduced peak
delays and a higher peak magnitude. This suggests that
intervention at this threshold is less effective. Restriction of
mass gatherings at the level of 500 people was associated with
reduced peak magnitude, possibly echoing a similar conclusion
to that of reduced population mobility. Restriction of mass
gatherings at higher thresholds is also more difficult to interpret
owing to greater variation in the types of gatherings. For
instance, high-risk gatherings such as weddings, concerts, or
clubs likely have different effects from lower-risk gatherings
such as professional conferences or outdoor events.

Limitations
As with any study involving predictive modeling without
incorporating dedicated experimental variation, associations
identified here cannot be used to infer causal insights without
further study. However, NPIs that were implemented to handle
the COVID-19 pandemic influenced RSV incidence, as we have
shown. Thus, institution of these NPIs should be considered a
natural experiment from which a causal effect can be inferred.
Furthermore, the high granularity of the NPIs used in this study,
while vastly improving model robustness, makes it more difficult
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to draw conclusive insights regarding the differential efficacy
of NPIs. For instance, there are several instances in which more
granular interventions, such as advised confinement for at-risk
people or freedom of movement restrictions for specific
countries, had a more significant effect on delaying peak
incidence than their broader alternatives. While this most likely
reflects the pattern adopted by many countries, of initially
instituting more specific restrictions and gradually broadening
them to include a greater segment of the population, it is difficult
to substantiate this without conducting further research.
Furthermore, some collinearity exists among the NPIs—for
example, it stands to reason that countries with higher
COVID-19 caseloads would implement a greater number of
NPIs in parallel—thus increasing the multicollinearity of the
data. We calculated the SHAP values presented using
correlation-dependent feature perturbation to mitigate the effect
of this collinearity to the greatest extent possible. Our study
also did not consider the effects of climate, which is universally
considered a significant factor contributing to RSV incidence.

Conclusions
Successfully anticipating the timing of RSV outbreaks is crucial
for maximizing the prophylaxis of at-risk neonates. Current

American Academy of Pediatrics guidelines recommend
prophylactic treatment of at-risk neonates with monoclonal
antibodies. The efficacy of this treatment is limited, however,
and timely administration of the prophylactic drug before the
yearly RSV outbreak is key to maximizing outcomes. Beyond
the timing of prophylaxis, concerns over the timing of the
2020-2021 RSV epidemic have led governmental agencies to
express concerns over concomitant viral outbreaks exceeding
the capacity of health care systems [28]. This highlights the
need for an efficient framework to predict changes in RSV
seasonality in real time.

Identifying which interventions have the most pronounced
effects on attenuating RSV outbreaks is important not only to
further the understanding of RSV dynamics, but also as a tool
for decision-making in future viral outbreaks. While further
research is needed, we believe that our work may be a stepping
stone on the path to accumulating sufficient literature and
expertise to begin incorporating internet search trends as
surrogate data for viral surveillance. By providing additional
evidence to support the role of population mobility and human
behavior on both spatial and temporal elements of RSV spread,
we believe we have also shed light on the viral dynamics of
RSV.
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