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Abstract

Background: Publication of registered clinical trials is a critical step in the timely dissemination of trial findings. However, a
significant proportion of completed clinical trials are never published, motivating the need to analyze the factors behind success
or failure to publish. This could inform study design, help regulatory decision-making, and improve resource allocation. It could
also enhance our understanding of bias in the publication of trials and publication trends based on the research direction or strength
of the findings. Although the publication of clinical trials has been addressed in several descriptive studies at an aggregate level,
there is a lack of research on the predictive analysis of a trial’s publishability given an individual (planned) clinical trial description.

Objective: We aimed to conduct a study that combined structured and unstructured features relevant to publication status in a
single predictive approach. Established natural language processing techniques as well as recent pretrained language models
enabled us to incorporate information from the textual descriptions of clinical trials into a machine learning approach. We were
particularly interested in whether and which textual features could improve the classification accuracy for publication outcomes.

Methods: In this study, we used metadata from ClinicalTrials.gov (a registry of clinical trials) and MEDLINE (a database of
academic journal articles) to build a data set of clinical trials (N=76,950) that contained the description of a registered trial and
its publication outcome (27,702/76,950, 36% published and 49,248/76,950, 64% unpublished). This is the largest data set of its
kind, which we released as part of this work. The publication outcome in the data set was identified from MEDLINE based on
clinical trial identifiers. We carried out a descriptive analysis and predicted the publication outcome using 2 approaches: a neural
network with a large domain-specific language model and a random forest classifier using a weighted bag-of-words representation
of text.

Results: First, our analysis of the newly created data set corroborates several findings from the existing literature regarding
attributes associated with a higher publication rate. Second, a crucial observation from our predictive modeling was that the
addition of textual features (eg, eligibility criteria) offers consistent improvements over using only structured data
(F1-score=0.62-0.64 vs F1-score=0.61 without textual features). Both pretrained language models and more basic word-based
representations provide high-utility text representations, with no significant empirical difference between the two.

Conclusions: Different factors affect the publication of a registered clinical trial. Our approach to predictive modeling combines
heterogeneous features, both structured and unstructured. We show that methods from natural language processing can provide
effective textual features to enable more accurate prediction of publication success, which has not been explored for this task
previously.
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Introduction

Background
Rigorously conducted randomized controlled trials provide the
highest level of scientific evidence, enabling medical
practitioners to provide better care for patients and ultimately
improving public health. Available, findable, and accessible
clinical research results are necessary for the successful transfer
of findings into evidence-based practice and further research
[1]. In recent years, improved clinical trial registration has meant
that more trials than ever are now discoverable and searchable
according to a variety of metadata. However, registration does
not offer detailed information about important aspects of the
study execution and results, such as specification of outcomes
and pointers to all resulting publications [2]. Scientific
publications resulting from completed clinical trials offer a
means of disseminating the findings comprehensively, which
is essential for supporting subsequent clinical trials, increasing
possibilities for research collaboration, and advancing medical
practice and research [3]. In addition to research results, detailed
information about the study methods provided in publications
is also critical to appraising the validity, reliability, and
applicability of clinical evidence in clinical practice [4].

Despite the importance of publication, many clinical trials are
never published. Estimates of the publication rate of trials vary
depending on the medical area and length of the follow-up
period. Broadly, publication rates are in the range of 52% to
77% [5-8]. On the basis of a shorter follow-up period of 30
months from clinical trial completion, the rates tend to be lower,
at approximately 11% to 46% [3,6,9]. When results are not
published, are substantially delayed, or are published selectively
based on the direction or strength of the findings, the ability of
health care professionals and consumers to make informed
decisions based on the full body of current evidence is impeded
[10,11]. Such gaps in the evidence base can lead to the use of
ineffective or harmful interventions and potentially waste scarce
health care resources. In a study by Eyding et al [12] on the
treatment of depression, it was found that, when unpublished
studies were included in a meta-analysis, the antidepressant
reboxetine had more adverse effects but no better efficacy than
placebo for treatment of major depression, a different finding
from that when only published studies were included. Additional
ethical concerns have also been raised by some researchers
[7,13], highlighting that, in the case of nonpublication, the trial
participants are still exposed to the risks of participation but
without the societal benefits resulting from the dissemination
of study results.

In this work, we explore the factors affecting publication of the
outcomes of individual clinical trials through the tool of
predictive modeling of clinical trial–publication outcomes based
on a large data set of clinical trials and associated literature.
The adoption of this approach provides a mechanism for both

predicting the publication outcome of a given trial and
identifying the key factors driving those outcomes.

Existing Work and Contributions

Publication Outcome Studies
Many studies have addressed the publication rates of clinical
trials and the factors influencing them. However, previous
studies used different statistical analysis methods to examine
the association between study characteristics and the publication
outcome of a clinical trial. The available studies either analyzed
a small number of clinical trials (in the order of hundreds)
[3,7,14] or included only clinical trials with specific populations
(eg, children or patients with cancer [5,15,16]). Conversely, in
our work, we focused on approaching the modeling of
publication outcomes through a predictive lens, although we
also provided a descriptive analysis to better characterize the
data set that we developed. Our analysis examined factors that
may affect the publication outcome without any constraints
regarding the population or medical specialty and, therefore,
was more general.

A number of studies have focused on analyzing and remedying
the quality of linkage between ClinicalTrials.gov and PubMed
[17-22]. The presence of incomplete links may hamper efforts
to measure publication and outcome reporting biases and
identify relevant trials for systematic reviews. As a result of
this, semiautomated methods that rank articles using natural
language processing (NLP) techniques and allow humans to
scan the top-ranked documents are valuable in supporting the
effective identification of clinical trial publications [17,18].

Factors Affecting Publication
A variety of factors have been identified as influencing
publication outcome, which can be summarized as follows: (1)
large clinical trials and those with noncommercial funding are
more likely to be published [8,13,23]; (2) industry-funded
clinical trials are less likely to appear as publications [7]; (3)
the likelihood of publication is associated with the direction
and significance of study findings [11,24], although whether to
assign this publication bias to rejection by journals or the lack
of time and interest by the investigators has been disputed [7];
(4) place of conduct of the research may affect the odds of
publication [23]; (5) some fields have higher publication rates,
for example, neurology and psychiatry [13] (this may in certain
cases be related to the existence of subareas, eg, vascular
neurology, with niche journals allowing for easier dissemination
[25]); and (6) lack of time and resources by the authors, and
even disagreement between coauthors, have been mentioned as
potential factors in the literature [26] but are not captured
directly in the description of clinical trials and, therefore, are
difficult to quantify.

Completion Status and Drug Approval Studies
Although we are not aware of any work that analyzes
publishability within a predictive framework, several related
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problems have been treated as classification problems [27-29].
One such task is predicting the completion of a clinical trial.
Noncompletion can be seen as similar to nonpublication in terms
of undesired consequences. A clinical trial that is not completed
typically still involves significant financial resources, so it would
make sense to ensure that decision makers are aware of the
likelihood of termination or nonpublication in the early stages
of a clinical trial, potentially allowing for changes in the study
design. Admittedly, having such predictive power would mean
that the decision makers are shouldered with the additional
responsibility of considering the potential for nonpublication
and have the ability to interpret the output of such predictive
models. Care would also need to be taken on an ongoing basis
to mitigate potential biases in the model and its use [30,31].

Another task related to publication outcome prediction is
whether a drug intervention studied in a clinical trial will result
in the approval of the drug. Machine learning (ML) over
structured data has been explored in this context [32-34], relying
on features pertaining to drug and trial characteristics as well
as those covering commercial figures relating to indication. Lo
et al [33] proposed a large data set consisting of approval
outcomes of >6000 drug-indication pairs across almost 16,000
phase-2 trials. Although this represents the largest data collection
for applying supervised ML to drug approval, our task was more
general (concerning clinical trials without needing to identify
drug-indication pairs), allowing us to include an even larger
number of clinical trials paired with publication outcomes.

In contrast to descriptive studies on publication status, studies
on trial completion and drug approval do include textual inputs
from trial descriptions in the modeling, which leads to better
sensitivity and specificity than using structured features alone
[27,35]. These studies generally use relatively simple methods
to represent text. Elkin and Zhu [27] included word-embedding
features [36,37] in predicting trial completion but only used
static word representations rather than more advanced
contextualized word representations derived from pretrained
language models [38,39]. In drug approval prediction, features
constructed over unstructured input data have been studied by
Feijoo et al [35], who focused on predicting drug transitions
across clinical trial phases. The authors used simple pattern
matching to develop an eligibility criteria complexity metric
defined in terms of the number of inclusion and exclusion
criteria. Although these criteria were shown to be useful (a
higher number of criteria has been connected with a higher risk
of trial failure), their representation is still rather rudimentary.
In our work, we included the eligibility criteria using
state-of-the-art NLP techniques that can capture the meaning
of the eligibility criteria.

Contributions
We constructed and made available a new data set that provides
publication outcomes for trials registered in ClinicalTrials.gov.
It is the largest data set of its kind to date.

Predicting the publication status of a clinical trial using
numerical, categorical, and textual input features in a single ML

model leads to a classification performance of an area under
the curve (AUC) of >0.7. We found that textual descriptions of
registered trials are an important source of information and are
effectively represented using NLP techniques.

We identified a lack of studies investigating publishability
within a predictive framework. Thus, we confirmed several
factors known from descriptive studies to influence the
publication outcome and identified new ones from textual
descriptions of clinical trials (eg, eligibility criteria). Our work
lays the foundation for a technology that would support trial
planning and decision-making by providing, for a given trial,
the prominent features that lead to a particular publication
outcome. How such technology can best benefit trial developers
in increasing the value of their prospective study should be a
subject of future research.

Methods

Constructing a Data Set Automatically
We used 2 primary resources in our work: the largest available
registry of clinical trials, ClinicalTrials.gov, and MEDLINE, a
bibliographic database of academic journal articles. For both
data sources, we used the data dumps in XML available as of
the start of our study in August 2020 [40,41]. To find out which
clinical trials were actually published, we adopted a 2-step
procedure and took the union over clinical trial-publication links
found at each step. The first step recognized all PubMed article
IDs directly listed in the registry of clinical trials. However, as
some clinical trials lacked this information, we also looked for
clinical trial–related information within the publications
themselves (second step). We located that information in
MEDLINE inside the databank list, from which we retrieved
the clinical trial identifier provided that the databank name
equaled “clinicaltrials.gov.” To consider a trial published, we
required that there be at least one publication associated with
it in MEDLINE. If a trial had more than one associated
publication, additional pairs were created for each publication.

The final result was a map between clinical trial IDs and
PubMed article ID values (trial-publication map). In our data
set, the number of clinical trials that had an associated
publication was 74,394, and there were approximately 275,000
clinical trials without publication, totaling approximately
349,000 trials (data set A). We illustrate the data creation
procedure in Figure 1. We made the mapping openly available
to promote further work on this topic.

The complete list of data fields and model features used in our
work is shown in Table S1 in Multimedia Appendix 1 [42].
Although most of the features were obtained directly from the
trial file, information such as the number of research sites and
the number of primary or secondary outcomes was not explicitly
stated. Therefore, we added those features as they pertain to
clinical trial design and may contain an important signal for the
prediction of publication status.
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Figure 1. Data set construction.

The data set used in our descriptive analysis and predictive
modeling (data set B) was based on selecting the instances that
satisfied a few additional criteria. Specifically, we filtered out
data instances that did not satisfy the following two conditions:
(1) the study had both started and been completed, with known
start and end dates and without “anticipated” status (as the
information about a clinical trial may be updated several times
after registration, such as updating the enrollment field, which
indicates the planned number of participants, the information

remains stable after completion, thus increasing the
representativeness); and (2) the completion date of the study
was later than 2006 (to remove older studies whose information
was less complete) but earlier than 3 years before our data
collection (to allow time for publication, similarly to Jones et
al [7] and Ross et al [3]).

Performing these steps reduced the size of the data considerably.
The resulting data set was used to obtain the descriptive
statistics.
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In addition, we constrained the type of study to be interventional
to obtain the data set used in predictive modeling (data set C).
We decided to exclude observational studies as they are less
common and are characterized by several features that are
different from those of interventional studies.

To emulate the real-world scenario of predicting publishability
of future trials, we partitioned the data such that the completion
dates of all trials in the test set postdated those in the training
data set. This also made the task more challenging as we could
expect previously unseen interventions in the test set. Finally,
we removed all features from each trial record that would not
have been known at the time of registration of the trial, such as
the trial duration and results. Although including them would
simplify the prediction, it would also make the task less realistic.
By comparison, we note that, in the related ML task of the drug
approval prediction work by Lo et al [33], the authors assumed
that the same information about clinical trials is accessible. As
these features are found to be strong predictors of drug approval,
the predictive performance is likely to suffer in the more realistic
scenario of this information not being available.

As the number of unpublished clinical trials in data set C was
much larger than that of published clinical trials, we randomly

undersampled the unpublished trials for our publication
prediction experiments. We performed the undersampling by
stratifying per completion year, keeping roughly equal
percentages of positive and negative labels in each year. Note
that we performed this step for the training set only, preserving
the real-world label bias in the test set, again to make the task
as faithful to reality as possible.

Manually Constructed Test Set
The aforementioned data construction approach provided a
large-scale data set that allowed us to analyze and predict the
publication status at scale using ML models. However, some
links between clinical trials and publications may be incomplete,
as we mentioned in the Existing Work and Contributions section.
Therefore, we gathered data from 3 previously published studies
[3,18,20] that included manual publication status annotations
(see Table 1 for the statistics). Although the scale of these
annotations was smaller than in our automatically constructed
data set, because of human effort, it was less likely that the
publication of a clinical trial would go unnoticed. We used this
data set as an additional test set and also made it publicly
available with the permission of the original authors [43].

Table 1. Data from previously published studies. A total of 5 studies were included in more than one original work but received the same annotation.
Owing to this, the size of the resulting test set was less than the sum of the sizes of the individual data sets.

Proportion of positive labels (“published”) out of allSize

0.54630Ross et al [3]

0.23148Zarin et al [20]

0.45199Dunn et al [18]

0.48972Combined

Modeling Approach
To study factors associated with publication status and learn to
predict whether a clinical trial is likely going to be published,
we created 3 types of features for our models: numerical,
categorical (both can be seen as structured inputs), and textual
features. The textual features encode a wealth of information
that augments the structured information and have the potential
to improve predictive modeling, but they are also potentially
much noisier. An example of textual fields that can be indicative
of publication status are the inclusion and exclusion criteria. A
possible link between eligibility criteria, sample size, significant
effect, and publication status has been pointed out by Elkin and
Zhu [27]. NLP techniques allowed us to extract and represent
this information in a predictive model as well as highlight which
textual features are important.

As a simple baseline, we used a k-nearest neighbor classifier
that only used numerical and categorical features (with no
text-based features). At test time, the classifier predicts the
predominant label among k training instances that are closest
to the test instance in terms of Euclidean distance. Through a
random search over various values of k, we settled on k=460.

We trained and evaluated 2 different models that incorporated
textual features: a random forest (RF) classifier and a neural
network (NN).

For RF, a standard approach to include textual inputs is to
convert them into numeric word vectors, extracting both
unigrams and bigrams. These terms are weighted using term
frequency-inverse document frequency (Schütze et al [44]),
whereby the frequency of a term in a document is divided by
the proportion of documents that that term appears in within
the data set to down-weight common terms. We thresholded
the vocabulary by selecting the 20,000 most frequent terms. We
used the one-hot encoding method to represent categorical
features and included numeric features without additional
adaptation. We report other RF details in Multimedia Appendix
2.

In the NN, the categorical features are embedded using a weight
matrix that is randomly initialized and updated during training.
The textual inputs (examples are included in Table 2) are
embedded using pretrained language models that output
context-dependent token activations [39], as explained in more
detail next.
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Table 2. Examples of selected textual features from clinical trial metadata.

Textual excerptFeature name and identifier

Brief title

Bleeding Patterns and Complications After Postpartum IUD Placement: a Pilot StudyNCT01309919

Study Comparing Tigecycline Versus Ceftriaxone Sodium Plus Metronidazole in Complicated Intra-abdominal Infection
(cIAI)

NCT00230971

Effect of Coconut Oil Application in Reducing Water Loss From Skin of Premature Babies in First Week of Life
(TEWL) (TopOilTewl)

NCT01364948

Brief summary

The purpose of the study is to determine the feasibility of placing the levonorgestrel-releasing intrauterine system
(LNG - IUS, Mirena®) post-delivery. The investigators will gain information about complications at the time of
placement; the investigators will also examine the expulsion rate, side effects, bleeding patterns and subject satisfaction
at various time periods after insertion.

NCT01309919

This is a study of the safety and efficacy of tigecycline to ceftriaxone sodium plus metronidazole in hospitalised subjects
with cIAI. Subjects will be followed for efficacy through the test-of-cure assessment. Safety evaluations will occur
through the treatment and post-treatment periods and continue through resolution or stability of the adverse event(s).

NCT00230971

The skin of newborn infants is immature and ineffective as a barrier. Preterm skin exhibits even more vulnerability
to the environment due to poor self regulatory heat mechanisms, paucity of fatty tissue and its thinness. Most preterm
babies lose up to 13\% of their weight as water loss from their skin during the first week of life. Many strategies have
been utilised by neonatologists to decrease this water loss. Oil application on the skin can act as a non permeable
barrier and can help in reducing water loss from the skin. Edible coconut oil, often used for traditional massage of
babies by Indian communities, is culturally acceptable and Hence the investigators decided to undertake this study to
objectively assess the reduction in water loss from skin after oil application

NCT01364948

Inclusion criteria

Age 18 years or older, speak either English or Spanish, desire to use an IUD as their postpartum contraception (IUD
arm), do NOT desire an IUD as their contraception (Diary Only arm), plan to deliver at Baystate Medical Center

NCT01309919

Clinical diagnosis of complicated intra-abdominal infection that requires surgery within 24 hours. Fever plus other
symptoms such as nausea, vomiting, abdominal pain.\\

NCT00230971

All preterm babies born at the study center with birth weight 1500gms were eligible for inclusion in the study.NCT01364948

Participant condition

Postpartum periodNCT01309919

Appendicitis, cholecystitis, diverticulitis, intra-abdominal abscess, intra-abdominal infection, and peritonitisNCT00230971

Trans Epidermal Water Loss (TEWL)NCT01364948

Keywords

Intrauterine device, Mirena, levonorgestrel intrauterine system, postpartum contraceptionNCT01309919

Intra-abdominal infections, abscessNCT00230971

Preterm, VLBW, coconut oil application, transepidermal water loss, weight gainNCT01364948

We evaluated the RF and NN classifiers that used textual
features compared with those without, in which only structured
features were used.

We opted for 2 different encoders: Bidirectional Encoder
Representations from Transformers (BERT) [39], pretrained on
general-domain English corpora, and BERT for scientific texts
(SciBERT) [38], pretrained on the biomedical domain. We used
the same idea as Adhikari et al [45], who took the hidden layer
output at the sentence-level classification level as the
representation of the document. In addition, we used the hidden
outputs of the 3 last layers [46] as inputs to the top dense layers
of our classifier. To refine the model’s representational capacity,
we included 2 additional sources of information: positional and
segmental. For the first one, a trainable positional embedding
[47], which is unique to each token, is added to the token vector
to endow the model with a sense of word order. For the second

one, a trainable segment embedding helps the encoder
discriminate between the multiple, independent textual fields
(Table S1 in Multimedia Appendix 1) that are passed to the
model as one long string of text. We found the interchangeable
segment scheme illustrated in Figure S1 in Multimedia
Appendix 1 to work best. Another variation represents each text
field with a different segment embedding but works less well,
although the difference is small. In addition, an alternative
scheme for positional embeddings in which the embedding
index is restarted with each text field yields similar results. We
took inspiration for that from Herzig et al [48], who used
positional embeddings in the context of table parsing to enhance
input structuring.

A limitation of the original BERT architecture is that it can only
accept sequences of up to 512 tokens. Therefore, we needed to
truncate the textual inputs exceeding this limit. We started by
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selecting the first n=512/T tokens of each field (T being the total
number of textual fields to encode). As some textual fields can
be shorter, we progressively raised n across all fields until we
reached the maximum number of tokens. Finally, the parameters
of the encoder were fine-tuned jointly with the remaining NN
parameters on our publication outcome prediction data set,
minimizing the cross-entropy loss during training.

In addition to adopting the standard BERT model in the NN,
we looked at 2 adaptations of the training regime: a special case
when the encoder parameters are left unchanged during training
(named “frozen” in the table of results) and a model that receives
cased text as input (“cased”; ie, text that has not been previously
lowercased), the latter being the most common practice. Finally,
for RF, we tested an adaptation that, instead of the term
frequency-inverse document frequency encoder, uses language
model representations previously induced in the text. These
representations were kept fixed throughout the training and
testing phases.

Evaluation Details
We evaluated the predictive performance using the F1-score
measure (F1 = 2 × [P × R / (P + R)]), which is the harmonic
mean of precision (P = TP / [TP + FP]; the proportion of trials
predicted as published out of all predictions, where TP are true
positives and FP are false positives) and recall (R = TP / [TP +
FN]; the proportion of trials predicted as published out of all
published trials, where FN are false negatives). We also reported
the area under the receiver operating characteristic curve (itself
indicative of the trade-off between recall and false-positive rate
at various thresholds over the predicted probabilities), which
was useful in summarizing the classifier’s ability to distinguish
between classes via a single figure of merit.

Results

Descriptive Analysis

Overview
To obtain a clear idea of the publication rate in our data set, we
plotted the number of published and unpublished studies per
year, as shown in Multimedia Appendix 3. We observed that
the number of registered trials was monotonically increasing
(with >20,000 trials registered in 2016), but the number of
published trials increased less strongly. For trials with an earlier
completion year, the publication rate was approximately 45%,
whereas, for later trials, it decreased by approximately 10%.
For comparison, existing studies on publication rates reported
highly variable publication percentages, up to 77% in Huiskens
et al [6] and as low as 11% in Chen et al [9] depending on the
medical area and length of follow-up considered.

Furthermore, we examined the time needed to publish.
Analyzing only the published studies, we found a median time
to publish of 27 months. We show the distribution of publication
times in Figure 2. For a smaller number of trials, it can take
much longer to publish, as seen by the long tail on the right of
the plot. The previous studies generally reported shorter times
of approximately 19 to 23 months [3,9,16].

An additional way of analyzing publication time is to plot the
probability that a study will go unpublished for an interval
longer than some time t. We borrowed here a tool from survival
analysis, the Kaplan-Meier plot. By analogy, the survival time
in our case represents the time that a clinical trial remains
unpublished, and the relevant event is the publication. Some
individuals (clinical trials) may be lost to follow-up (right
censoring), which is also considered by the method. We see in
Figure 3 that, when given a very short period (eg, a few months
after completion), the chance is still high that the trial will not
be published. When given more time, the probability of
nonpublication drops, although it remains fairly high even for
very long intervals (at 80 months, it is still >70%).

Figure 2. The distribution of publication times in months.
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Figure 3. A Kaplan-Meier (KM) plot representing the probability (y-axis) that a trial will go unpublished for longer than the number of months shown
on the x-axis.

Association Between Publication Outcome and
Categorical Features
To analyze the relationship between a feature and the publication
outcome, we applied the chi-square test (in line with the related
literature [8,9,14,16,23,49,50]) but, because of its sensitivity to
the sample size [51,52], we also carried out the Cramér V
association test for discrete variables. In this analysis, we
followed the related work and focused on categorical features
only. In the Predictive Performance section, we analyze the
importance of all feature types in predictive performance. The
results for all categorical features are shown in Table 3. The
features with the highest values of V include the overall status
(eg, a value such as “Suspended” may be indicative of future

publication), whether the results were reported, enrollment type
(anticipated vs actual), and the phase of the trial (when
calculating the odds ratio over different phases of the trial, we
found that trials in phase 3 were 2 times more likely to be
published than trials in other phases). By contrast, some features
such as the type of observational study (retrospective,
prospective, or cross-sectional) and the class of funding agency
(US National Institutes of Health, other US Federal agencies,
industry, or other) can hardly be associated with publication
status. The latter example is particularly surprising as most
previous works have reported that the source of funding is a
strong indicator of publication status [8,23,50], with the
exception of Gandhi et al [14].
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Table 3. Strength of association between categorical features extracted directly from structured metadata associated with clinical trials and publication
status. For the definition of each feature, see Table S1 in Multimedia Appendix 1.

Cramér VChi-square P valueFeature name

0.26.001overall_status

0.157.001were_results_reported

0.153.001enrollment_type

0.126.001Phase

0.095.001plan_to_share_ipd

0.06.001intervention_type_behavioral

0.056.001has_dmc

0.053.001intervention_model

0.047.001intervention_type_diagnostic_test

0.044.001has_single_facility

0.039.001intervention_type_device

0.035.001Country

0.034.001study_type

0.026.001Allocation

0.025.001primary_purpose

0.023.001is_fda_regulated_device

0.022.001Masking

0.021.001intervention_type_dietary_supplement

0.019.001intervention_type_biological

0.018.001Gender

0.017.001intervention_type_combination_product

0.016.001intervention_type_other

0.013.001intervention_type_radiation

0.013.001sampling_method

0.012.001intervention_type_drug

0.012.001intervention_type_procedure

0.012.002observational_model

0.011.13is_us_export

0.011.001responsible_party_type

0.01.001intervention_type_genetic

0.009.001healthy_volunteers

0.009.001is_fda_regulated_drug

0.006.14observational_prospective

0.002.32agency_class

Predictive Performance

Overview
The main results of our predictive models for data set C are
shown in Table 4. Interestingly, the k-nearest neighbor baseline
already set a high bar for the use of structured inputs. We see
that the best performance on the test set was achieved with the
models that used textual information. The 2 evaluation metrics
show slightly different trends (ie, when looking at F1-score, the

neural models using BERT-based representations performed
better than the RF classifier using the bag-of-words
representation); however, according to AUC, the RF classifier
outperformed different variants of the neural model. Judging
by the improvement obtained when including the textual features
in both models, the NN model makes more effective use of
these features. We found that the difference between the NN
model using only structured features and the NN model using
SciBERT-encoded text features was statistically significant at
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P<.001 (statistic value: 778.4), measured with the McNemar
test for binary classification tasks [53]. Although it had a
considerably lower performance compared with the RF classifier
when including only the structured features, the performance
difference between the 2 models vanished when including the
textual features. For the neural model, choosing a BERT model

with a better domain fit (ie, SciBERT) appears to boost F1-score,
but the differences are too small to make a judgment in the case
of AUC. We include the precision-recall curves in Figures 4
and 5, calculated using the predictions of the model that tested
best in terms of F1-score (ie, NN with structured and SciBERT
textual features).

Table 4. Results for publication predictiona.

TestValidationInputMethod

AUCF1-scoreAUCbF1-score

N/A0.611N/Ac0.592StructuredK-nearest neighbor

0.7040.6140.7010.64StructuredRFd

0.7190.6230.7210.656Structured+text (TF-IDFe)RF

0.7110.630.7090.65Structured+text (SciBERTf)RF

0.6120.6070.6720.611StructuredNNg

0.6960.630.6890.642Structured+text (frozen SciBERT)NN

0.70.6410.7080.648Structured+text (SciBERT)NN

0.7010.6370.6970.641Structured+text (cased SciBERT)NN

0.70.6330.6990.64Structured+text (BERTh)NN

aAll models use categorical and numerical features (“structured”). When textual features are added, this is marked with “+ text.” As the k-nearest
neighbor classifier does not output probabilities, we cannot calculate the area under the curve.
bAUC: area under the curve.
cN/A: not applicable.
dRF: random forest.
eTF-IDF: term frequency-inverse document frequency.
fSciBERT: Bidirectional Encoder Representations from Transformers model for scientific texts.
gNN: neural network.
hBERT: Bidirectional Encoder Representations from Transformers.

Figure 4. Precision-recall curve for the positive class (publication) using the neural network model with structured and textual features from a Bidirectional
Encoder Representations from Transformers model for scientific texts. AP: average precision.
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Figure 5. Precision-recall curve for the negative class (nonpublication) using the neural network model with structured and textual features from a
Bidirectional Encoder Representations from Transformers model for scientific texts. AP: average precision.

Factors Affecting Publication
To determine which features play a key role in prediction, we
used a feature permutation technique to obtain the features
ranked by their respective drop in performance. We performed
this analysis using RF only because of faster inference times.
The classifier is trained once; then, at test time, a corrupted
representation of a feature is obtained by shuffling its possible
feature values in the test set. After that, the model is applied to
the test set, and the drop in accuracy is calculated compared
with the performance on the noncorrupted data set. We only
corrupted one feature at a time and repeated the process for all
features. The entire process was performed 5 times using
different random seeds for shuffling, after which the reported
scores were averaged.

The results, organized according to feature type, are shown in
Table 5. The most significant numerical feature is the number
of enrolled participants, with a possible explanation being that
it may affect the reliability of the results (thus ultimately
increasing the odds of publication). Similarly, a larger number
of facilities has been linked to higher publication rates [8]. The
number of outcomes indicates the size and complexity of the
study, which may in turn also affect publishability. For textual

inputs, the narrative describing the trial (the detailed description
and brief summary) as well as the eligibility criteria are the
strongest features. We observed that some textual features
contained overlapping information. For example, the brief title
could be subsumed into the official title. The same word often
occurred in different inputs, and this redundancy can be a strong
indicator for predicting publication status. For example, when
we measured the importance of the words in RF using the
impurity criterion of our RF implementation [9], we found that
the presence of randomized (occurring in both the official title
and detailed description) was a strong discriminator between
published and unpublished studies.

In the case of categorical inputs, we found similar features to
be important, as mentioned in the Descriptive Analysis section,
including the country of the main institution (“country”) and
whether the study had a data monitoring committee (“has dmc”).
However, some features that were found to be important in our
descriptive analysis and in the prior work were less important
in the predictive approach (eg, the phase of investigation
[“phase”], the allocation of participants to trial arms
[“allocation”], and the method used to assign an intervention
to participants [“intervention model”]).
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Table 5. The drop in accuracy after permuting the values of a feature as measured with random forest using term frequency-inverse document frequency
representation of text. The values for each feature type are ranked in decreasing order, so the most important features are mentioned first.

Drop in accuracyFeature type and feature

Numerical

0.007364number_of_facilities

0.004911outcome_counts_secondary

0.004068outcome_counts_others

0.003702outcome_counts_primary

0.003518number_study_directors

0.003359number_study_chairs

0.003235minimum_age

0.003157number_principal_investigators

0.002719maximum_age

0.000985number_of_arms

Textual

0.010193detailed_description

0.008551brief_summary

0.008313criteria_Exclusion

0.004971criteria_Inclusion

0.003428official_title

0.001433brief_title

0.001342Source

0.001064responsible_party_keywords

0.00064participant_condition

Categorical

0.004591has_single_facility

0.004211intervention_type_Behavioral

0.003914primary_purpose

0.003804Country

0.003643intervention_type_Biological

0.003376is_fda_regulated_device

0.003333is_us_export

0.003322intervention_type_Diagnostic_Test

0.003322intervention_type_Combination_Product

0.003322intervention_type_Genetic

0.003321is_fda_regulated_drug

0.003205intervention_type_Procedure

0.003185has_dmc

0.003144intervention_type_Other

0.003144intervention_type_Radiation

0.003078intervention_type_Device

0.003012Gender

0.002925responsible_party_type

0.002873intervention_type_Dietary_Supplement
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Drop in accuracyFeature type and feature

0.002819plan_to_share_ipd

0.002607healthy_volunteers

0.00227intervention_type_Drug

0.001854agency_class

0.001426Phase

0.001347Allocation

0.00131intervention_model

Performance on the Manually Verified Test Set
As an additional experiment, we took the model that achieved
the highest F1-score on the automatically constructed data set
(NN with structured+text [SciBERT] input features) and applied
it to the test set built from the manually verified publication
links introduced in the Manually Constructed Test Set section.
We measured an F1-score of 55.9 and area under the receiver
operating characteristic curve of 58.6. To better understand this
drop in performance with respect to automatically obtained test
sets, we calculated a confusion matrix, which revealed that the
model too eagerly predicted “publication” (ie, it was more likely
to commit a type-1 error [a false positive, 272/972, 28% of the
time] than a type-2 error [a false negative, 146/972, 15% of the
time]). As the test data consisted of 3 subsets, there might be
important individual variations in the performance that we need
to consider. Indeed, splitting the results according to each subset

(Table 6), we noticed that the subset from Zarin et al [20]
showed lower performance than the subsets from Ross et al [3]
and Dunn et al [18], both with similar performance. Our
explanation is that these subsets contain varying proportions of
positive labels, which, if different from those seen during
training, will negatively affect the test performance. Specifically,
the Zarin et al [20] subset has only 23% (34/148) of positive
labels compared with approximately 50% (410/824, 49.8%) in
the remaining subsets. Understandably, the model that was
trained on roughly equal portions of positive and negative
instances overpredicted the positive class on the Zarin et al [20]
subset, and almost all modeling mistakes in this case were due
to false positives (78/87, 90% compared with 9/87, 10% of false
negatives). We found that this negative effect vanished when
the model was retrained with a similar ratio of positive to
negative instances. We used the nonbalanced version of our
training data set (data set C in Figure 1).

Table 6. Data statistics and performance on the subsets of the manually verified test set.

Dunn et al [18]Zarin et al [20] with nonbalanced training setZarin et al [20]Ross et al [3]

45232354Percentage positivea

55.058.243.458.4F1-score

60.453.552.662.3AUROCb

aPercentage positive represents the percentage of instances bearing the positive label (published) out of all instances.
bAUROC: area under the receiver operating characteristic curve.

Discussion

Limitations
Although our work established at scale the various attributes
associated with a higher publication rate and the positive impact
of including textual descriptions of clinical trials in a predictive
framework, a few additional considerations are necessary.

The qualitative performance of an ML model is sensitive to the
quality of the underlying data that are used for training and
testing, and predicting publication success is no different. When
constructing our data set, we noticed that incorrect information
existed in the trial registration entries (eg, the estimated
completion year may be set to 2099). In addition, the current
status of the study (eg, ongoing, completed, or terminated) may
not be always up to date, and this is similar for other registered
information. Incompleteness and incorrect information in
ClinicalTrials.gov have been examined in the literature
[7,54-56], but the precise extent of this is unknown and difficult

to estimate, and it would require substantial manual effort to
reveal it. We see noise as an integral part of learning from large
data collections, similar to the related work (Existing Work and
Contributions section) that uses structured resources such as
ClinicalTrials.gov [27-29,32-34] and to the work on learning
under distant supervision [57-59]. As our classifiers used a very
large number of training instances and each instance is
represented using multiple features, the effect of occasional
noise is deemed small.

Another potential source of noise in our automatically
constructed data set could stem from the linkage between clinical
trials and their publications, which is established automatically
and, hence, prone to incorrect or missed links. The data set was
also limited to studies that were publicly available and indexed
in public resources. Although conference abstracts and other
gray literature resources may provide additional context on trial
outcomes, they are not typically considered to be formal
publications and require ad hoc strategies for collection that are
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beyond the scope of our study. Overall, the results presented
reflect the most realistic scenario possible based on accessible
resources.

Finally, a more general limitation in the modeling of publication
outcomes is that it is difficult to capture and quantify the
influence of factors that are not available in trial registries but
would otherwise be useful, particularly for understanding
nonpublication, for example, whether investigators did not have
enough time to publish and instead focused on other tasks,
whether there were changing interests or disagreements between
coauthors, whether researchers believed that a journal was
unlikely to accept their work, and whether financial problems
or other contractual issues prevented publication [15,60-62].
Although such information is obtainable from study authors in
principle, it would be extremely difficult to carry out such
information acquisition at scale, and it is not currently available
in public resources.

Impact
In this study, we sought to simulate a real-world situation in
which a prospective estimate is desired regarding the publication
outcome of a clinical trial. To this end, we carried out a set of
experiments on the newly created data set that linked clinical

trial records from the period of 2007 to 2016 with their
publications, if they existed, with a follow-up period of 4 years.
The resulting data set represents the largest such collection
available to date. We have shown how a combination of
heterogeneous features—including text features derived from
the clinical trial registry record—can lead to a classification
performance of >0.7 AUC; this means that, if one randomly
selects a case that is positive (ie, a trial that will eventually lead
to publication), there is at least a 70% chance that the case is
also classified as such. This technology has strong potential to
be used in trial design. It can provide a prospective estimate of
publishability in the early stages of a clinical trial when the
properties of the study design and environment are already
known, more broadly giving an indication of the viability of
the trial. The tool could reveal to trial developers the different
areas suggestive of lowered publication chances (and, by
extension, of a reduced value of their study) before wasting
resources unnecessarily. In future work, we will explore the
incorporation of this model into a system that can effortlessly
and in a human-friendly way provide, for a given trial, the
prominent features that lead to a particular outcome, as well as
indicate the reliability of the classifier’s decision, to support
trial planning and decision-making.
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