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Abstract

Background: Meditation apps have surged in popularity in recent years, with an increasing number of individuals turning to
these apps to cope with stress, including during the COVID-19 pandemic. Meditation apps are the most commonly used mental
health apps for depression and anxiety. However, little is known about who is well suited to these apps.

Objective: This study aimed to develop and test a data-driven algorithm to predict which individuals are most likely to benefit
from app-based meditation training.

Methods: Using randomized controlled trial data comparing a 4-week meditation app (Healthy Minds Program [HMP]) with
an assessment-only control condition in school system employees (n=662), we developed an algorithm to predict who is most
likely to benefit from HMP. Baseline clinical and demographic characteristics were submitted to a machine learning model to
develop a “Personalized Advantage Index” (PAI) reflecting an individual’s expected reduction in distress (primary outcome)
from HMP versus control.

Results: A significant group × PAI interaction emerged (t658=3.30; P=.001), indicating that PAI scores moderated group
differences in outcomes. A regression model that included repetitive negative thinking as the sole baseline predictor performed
comparably well. Finally, we demonstrate the translation of a predictive model into personalized recommendations of expected
benefit.

Conclusions: Overall, the results revealed the potential of a data-driven algorithm to inform which individuals are most likely
to benefit from a meditation app. Such an algorithm could be used to objectively communicate expected benefits to individuals,
allowing them to make more informed decisions about whether a meditation app is appropriate for them.

Trial Registration: ClinicalTrials.gov NCT04426318; https://clinicaltrials.gov/ct2/show/NCT04426318

(J Med Internet Res 2022;24(11):e41566) doi: 10.2196/41566
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Introduction

Background
Precision medicine, which involves the use of individual
variability to guide prevention and treatment, has gained
momentum in the health sciences over the past several years
[1]. This approach aims to improve outcomes by matching
patients with interventions most likely to yield success. In some
medical specialties, precision medicine has led to impressive
advances in personalized care. For example, research in
oncology (eg, lung and breast cancer) has effectively matched
patients to targeted cancer treatments based on the unique
genetic characteristics of their tumors, which has been shown
to improve outcomes [2-4].

Psychiatry and clinical psychology have long hoped to better
match patients with interventions. Numerous studies have
examined patient-level factors (eg, demographic, clinical, and
neurobiological characteristics) as predictors of treatment
response [5,6]. However, with many potential predictors and
inconsistencies across studies in the presence, direction, and
strength of associations with outcomes, empirically supported
guidelines for optimal treatment matching remain elusive.

Machine learning has emerged as a promising analytical
approach well suited for handling and integrating large numbers
of predictor variables, including correlated predictors, that may
individually only modestly predict outcomes of interest but can
collectively predict significant variance in patient outcomes
[7,8]. Specific machine learning approaches such as decision
tree–based algorithms (eg, random forest) also effectively model
nonlinear and higher-order interactions that may underlie
predictive relationships [9]. In contrast to traditional statistical
approaches that emphasize evaluating a specific hypothesis (ie,
null hypothesis significance testing), machine learning models
typically emphasize optimizing predictive performance, and
evaluating the generalizability of models to new individuals
(eg, via cross-validation [CV], hold-out samples, or external
validation) [10]. Machine learning approaches are increasingly
being applied with some success in psychiatry and clinical
psychology, with a growing number of studies demonstrating
their ability to predict response to various psychiatric treatments
[10-12].

In pursuit of precision mental health, researchers have leveraged
machine learning approaches to optimize treatment
recommendations [13-15]. For example, DeRubeis et al [16]
developed the Personalized Advantage Index (PAI) as an
algorithm for guiding treatment recommendations based on
pretreatment patient characteristics. These models attempt to
predict the benefit that a specific patient would derive from
treatment A versus treatment B. The PAI has been successfully
used to predict response to cognitive behavioral therapy (CBT)
versus an antidepressant medication [16], CBT versus
interpersonal therapy [17], CBT versus psychodynamic therapy
[18], and an antidepressant medication versus placebo [19].

Prior research using the PAI and related approaches [12]
provides promising initial evidence that data-driven algorithms
may improve patient outcomes by matching individuals to the

most therapeutically beneficial treatment, as opposed to the
current suboptimal trial and error approach to treatment
selection, which results in protracted psychiatric illness until
an effective treatment is found. However, the fact remains that
a substantial proportion of individuals with psychiatric disorders
go untreated [20,21]. Digital health technologies, such as
internet-based CBT [22] and smartphone-delivered mental health
apps [23], have the potential to substantially increase access to
evidence-based treatments [24]. However, the availability of
thousands of mental health apps leaves potential consumers
faced with a dizzying number of choices, with essentially no
way of knowing which specific app may best suit their needs
[25]. Data-driven treatment recommendation algorithms, such
as the PAI, offer promising tools for informing optimal
patient-treatment fit. Such approaches may also be valuable for
addressing the persistent limitations of mobile health (mHealth)
approaches, including notoriously high and rapid disengagement
[26,27]. Moreover, the scalability of mHealth makes it possible
to collect adequately powered sample sizes for robust modeling
[28].

A recent analysis of available mental health apps revealed that
meditation and mindfulness training (along with journaling and
mood tracking) are the most common features offered across
apps [29]. The two most widely used meditation apps
(Headspace and Calm, with 5 million and 9 million monthly
active users, respectively) account for 96% of daily active users
in a recent evaluation of the top 27 apps for depression and
anxiety [30]. Despite the soaring popularity of meditation apps,
a critical question remains unanswered: For whom is app-based
meditation training well suited?

This Study
This study involved a secondary analysis of a large-scale
randomized controlled trial (RCT) comparing a meditation-based
smartphone app, the Healthy Minds Program (HMP), with an
assessment-only control condition [31]. The RCT was conducted
on a sample of school district employees (n=662) in the state
of Wisconsin during the COVID-19 pandemic. Relative to
prepandemic levels, the rates of emotional distress and
depressive symptoms increased substantially during the
COVID-19 pandemic [32]. Available evidence suggests that
the emotional well-being of teachers also decreased during the
pandemic [33,34], as they coped with COVID-19–related
stressors, uncertainty, and risks with the return to in-person
instruction. Using data from the above RCT, the overarching
goal of this study was to develop and evaluate a data-driven
(PAI) approach to inform personalized meditation app
recommendations for school employees. Using readily gathered
self-reported baseline demographic and clinical characteristics,
we developed and tested a machine learning algorithm to
identify which individuals are most likely to benefit from the
HMP app.

Methods

Participants and Procedure
Wisconsin school district employees were recruited via email
and other electronic media between mid-June 2020 and late
August 2020 (for a full description of study procedures, refer
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to the study by Hirshberg et al [31]). Eligible participants were
adults (aged ≥18 years) currently employed by a Wisconsin
school who owned a smartphone capable of downloading the
HMP, were fluent in English, had limited exposure to meditation
or the HMP app, and had depressive symptoms below the severe
range (t score<70 on Patient-Reported Outcomes Information
System [PROMIS] Depression [35]). The t scores are population
normed at 50, with an SD of 10. On completing the pretest
measures, 666 participants were randomly assigned to use the
4-week HMP or an assessment-only control condition (4
participants were removed for failing multiple attention checks;
refer to Figure S2 in Multimedia Appendix 1 [31,35-49] for the
CONSORT [Consolidated Standards of Reporting Trials] flow
diagram). Participants completed weekly questionnaires during
the intervention period (ie, weeks 1, 2, and 3) along with a
posttreatment assessment (week 4) and follow-up assessment
(3 months after the end of the intervention period). These
measures were administered via the web-based REDCap
(Research Electronic Data Capture) survey system.

The trial was preregistered at ClinicalTrials.gov (NCT04426318)
and through the Open Science Framework [50]. However, the
current prediction analyses were not planned a priori and were
not included in the preregistered data analysis plan. All code
(implemented in the R statistical software [51]) used to
reproduce the analyses in the manuscript have been posted on
Open Science Framework [52].

The HMP includes contemplative practices designed to build
skills supportive of 4 pillars of well-being: awareness,
connection, insight, and purpose [36,37]. Participants were
encouraged to engage with content from each of the 4 modules
for approximately 1 week (ie, 4 weeks total). The content
included didactic instruction and guided meditation practices.
For the guided practices, participants could select the length of
practice from 5 to 30 minutes. The HMP app was used for a
mean of 10.9 (SD 9) days during the 4-week trial. For additional
trial and sample details, refer to the study by Hirshberg et al
[31].

Ethics Approval
The study procedures were approved by the University of
Wisconsin—Madison Institutional Review Board (number
2020-0533).

Measures

Demographic Characteristics
The participants reported their age, gender identity, race and
ethnicity, marital status, and income at baseline.

Primary Outcome
The prespecified primary outcome in the parent RCT was
psychological distress, which was a composite of the
computer-adaptive versions of the PROMIS Anxiety and
PROMIS Depression measures [35] and the 10-item Perceived
Stress Scale [38]. All 3 are widely used measures with
established reliability and validity [39,40]. Refer to Multimedia
Appendix 1 for details. Consistent with the prespecified data
analytic plan, multilevel models estimated changes in distress
over the 4-week intervention period. Random slopes

(representing individual changes in distress over the intervention
period) were calculated for each participant and served as the
primary outcome in our machine learning prediction models.

Predictors
Several additional self-report questionnaires assessed secondary
outcomes and candidate mediators that were theoretically linked
to the pillars of well-being trained within the HMP. The 15-item
Perseverative Thinking Questionnaire (PTQ) [53] assessed
worry and rumination (Cronbach α=.95). The 5-item World
Health Organization [54] assessed global well-being (α=.85).
The 8-item Act with Awareness subscale of the Five Facet
Mindfulness Questionnaire [55] assessed mindful attention in
daily life (α=.91). The 5-item National Institutes of Health
Toolbox Loneliness Questionnaire [56] assessed perceived
social disconnection (α=.90). The 12-item Self-Compassion
Scale Short Form [57] assessed feelings of kindness toward
oneself (α=0.86). The 10-item Drexel Defusion Scale [58]
assessed the ability to experientially distance from internal
experiences (α=.84). The 10-item Meaning in Life Questionnaire
(MLQ [59]) assessed the presence and search for meaning
(Cronbach α=.91 and Cronbach α=.93, respectively).

Analytic Strategy
Predictor variables included preintervention distress (composite
measure), anxiety (PROMIS), depression (PROMIS), stress
(Perceived Stress Scale), repetitive negative thinking (PTQ),
the mindfulness facet of acting with awareness (Five Facet
Mindfulness Questionnaire), loneliness (National Institutes of
Health Toolbox Loneliness), defusion (Drexel Defusion Scale),
presence (MLQ), search for meaning (MLQ), self-compassion
(Self-Compassion Scale Short Form), well-being (5-item World
Health Organization), age, gender, race, marital status, and
income.

Missing Value Imputation
Missing data were imputed using a random forest–based
imputation (MissForest package in R [60]). To avoid
contamination between the predictor and outcome scores, which
may optimistically bias predictive performance, the outcome
variable (slope of change in distress) was excluded from the
imputation procedure. The rate of missing data was very low,
with no variable missing more than 6 values. Refer to
Multimedia Appendix 1 for additional details.

Generating Predicted Outcomes
To predict outcomes, 2 prognostic models (using elastic net
regularized regression [ENR]; glmnet package in R) were
developed: one for participants who received HMP and one for
those who received the assessment-only control condition. To
minimize overfitting, which can occur with traditional k-fold
CV, a nested CV procedure was used for each of these
prognostic models (ie, incorporating an outer and inner CV loop
[41-44]). Refer to Multimedia Appendix 1 for details of the
nested CV procedure.

The steps mentioned earlier generated predicted HMP outcomes
for HMP participants and predicted control condition outcomes
for the control participants. To generate predicted outcomes for
the counterfactual condition (ie, the treatment condition one did
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not receive), an ENR model was developed for one group (ie,
full HMP or control sample) and used to predict outcomes for
participants in the other group.

Evaluation of Recommendations
As a final product of the prediction models mentioned earlier,
every participant had 2 predicted outcome scores: one for HMP
and one for the control condition. Consistent with previous
similar studies [18,19,61], we computed a PAI score by
subtracting these 2 predicted outcomes (ie, the predicted slope
of change in distress for HMP minus control) for each individual.
Thus, a negative PAI score indicates that a given participant is
predicted to experience greater reductions (ie, a more negative
slope) in distress in HMP relative to the assessment-only control
condition (and vice versa for positive PAI scores). The PAI can
be interpreted as a continuous indicator reflecting the expected
magnitude of the advantage of one treatment condition relative
to the other (eg, a large negative PAI value indicates that the
model predicts a relatively large between-group difference in
outcome favoring HMP). We tested whether PAI scores
moderated treatment group differences in outcome (ie, slope of
change in distress) via a group (ie, intervention condition) ×
PAI interaction. The latter test allowed us to answer the
following question: Are more negative PAI scores (reflecting
relatively greater predicted benefit from HMP relative to the
control condition) in fact associated with larger observed
differences in outcomes favoring HMP?

Comparison Model
We compared the abovementioned multivariable machine
learning (ENR) model with a simple linear regression with
baseline repetitive negative thinking (PTQ) scores as the sole
predictor (ie, repeating the above steps to generate a PAI score
for every participant) implemented via 10-fold CV (repeated
100 times to generate stable estimates). Repetitive negative
thinking was selected as a predictor in this comparison model
based on prior research, indicating that it predicts response to

mindfulness apps [43,45]. Refer to Multimedia Appendix 1 for
additional analyses with baseline distress as the sole predictor.
Finally, we used the parameter estimates from the final models
to demonstrate the translation of the predicted outcomes to
personalized recommendations for app-based mindfulness
training.

All analyses were conducted using R software (version 4.0.2)
[62]. The sample size was originally determined for the purpose
of the parent trial to detect between-group differences in the
primary outcome (change in distress [50]). To estimate whether
the current sample size was adequately powered for the analyses
proposed in this study, a Monte Carlo simulation approach
(InteractionPoweR package in R) was used. Informed by the
effect sizes from a prior mindfulness app RCT [45] that tested
similar group × PAI interactions, simulations revealed that a
sample size of at least 153 was needed for group × PAI
interaction tests (with Cronbach α=.05; power=80%; refer to
Figure S1, including figure note, in Multimedia Appendix 1 for
additional power analysis details).

Results

Sample Demographics
The majority (523/662, 79%) of the participants reported
depression or anxiety symptoms at baseline that were above the
clinical cutoff on the PROMIS Depression and PROMIS
Anxiety measures (t score>55), and more than half of the sample
(343/662, 51.8%) reported moderate or greater anxiety or
depressive symptoms at baseline (t score>60).

The groups did not differ at baseline in terms of the demographic
or clinical variables (Table 1). Of those assigned to HMP, 95.6%
(329/344) downloaded the app and 78.8% (271/344) used the
app for ≥1 day. The mean number of days of use was 10.88 (SD
9.08). The mean number of minutes of practice was 127.93 (SD
130.63).
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Table 1. Descriptive statistics for Healthy Minds Program and assessment-only control at baseline.

Pa valueControlHealthy Minds ProgramVariable

Value, mean
(SD)

Value, n (%)Value, NValue, mean
(SD)

Value, n (%)Value, N

.7842.70 (10.23)—31842.47 (11.06)—344Age (years)

.75—279 (87.7)318—299 (86.9)344Gender (female)

.13—268 (84.3)318—304 (88.4)344Non-Hispanic White

.45—216 (67.9)318—243 (70.6)344Married

.72—281 (88.9)316—308 (89.8)343College education

Income (US $)

.73—55 (17.3)318—56 (16.3)344≤50,000

.91—129 (40.6)318—141 (41.0)34450,000-100,000

.99—96 (30.2)318—104 (30.2)344100,000-150,000

.99—37 (11.6)318—40 (11.6)344≥150,000

PROMISb

.8555.47 (6.43)—31555.37 (6.20)—342Depression

.7560.00 (7.11)—31559.83 (6.95)—342Anxiety

.692.87 (0.60)—3152.89 (0.56)—342Perceived Stress Scale

.970.00 (0.91)—3150.00 (0.88)—342Distressc (composite)

.7629.62 (11.29)—31529.89 (10.43)—342Perseverative Thinking Questionnaire

.6224.56 (6.12)—31524.80 (5.93)—342Five Facet Mindfulness Questionnaire—Act-
ing with Awareness Subscale

.452.58 (0.77)—3152.53 (0.77)—342National Institutes of Health Toolbox
Loneliness

.6024.50 (8.16)—31524.83 (7.89)—342Drexel Defusion Scale

MLQd

.3625.81 (5.46)—31526.20 (5.44)—342Presence

.3822.09 (6.79)—31521.63 (6.61)—342Search for meaning

.4212.47 (4.33)—31512.76 (4.71)—341World Health Organization well-being

.372.93 (0.70)—3152.98 (0.69)—342Self-Compassion Scale

aP value from independent samples t test comparing groups at baseline.
bPROMIS: Patient-Reported Outcomes Information System.
cDistress: composite of PROMIS Depression, PROMIS Anxiety, and Perceived Stress Scale.
dMLQ: Meaning in Life Questionnaire.

Outcome Prediction
Higher baseline levels of distress, depression, and stress
predicted better outcomes (ie, greater reductions in distress) in
HMP (Table 2). The zero-order correlations between outcome
and these 3 predictors were r=−0.30 (for distress), r=−0.30
(depression), and r=−0.26 (stress). Predicted HMP outcomes
were significantly correlated with observed outcomes for the
HMP group (r=0.27; P<.001; root mean square error
[RMSE]=0.10) but not with the control condition outcomes

(r=0.07; P=.21; RMSE=0.12). Conversely, predicted control
condition outcomes were significantly correlated with observed
outcomes for the control group (r=0.19; P<.001; RMSE=0.10)
but not with HMP outcomes (r=0.10; P=.06; RMSE=0.12).
Higher baseline scores for the following variables predicted
better outcomes in the control condition: distress, anxiety,
depression, stress, loneliness, defusion, and presence. In
addition, lower levels of repetitive negative thinking, higher
self-compassion, and being married were associated with better
control condition outcomes (Table 2).
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Table 2. Baseline variables retained in elastic net models predicting outcomes for each conditiona.

Control model, coefficientHealthy Minds Program model, coefficientPredictors

——bAge (years)

——Gender

——Race

−0.006—Marital status

——Income

PROMISc

−0.005−0.012Depression

−0.007—Anxiety

−0.006−0.003Perceived Stress Scale

−0.008−0.011Distressd (composite)

0.012—Perseverative Thinking Questionnaire

——Five Facet Mindfulness Questionnaire—Acting with Awareness Subscale

−0.002—National Institutes of Health Toolbox Loneliness

−0.011—Drexel Defusion Scale

MLQe

−0.008—Presence

——Search for meaning

——World Health Organization well-being

−0.002—Self-Compassion Scale

aThe larger set of baseline predictors retained in the elastic net regularized regression model applied to the control participants relative to the Healthy
Minds Program (HMP) group was because the best-fitting model in the former group had a lower α value (ie, closer to ridge than lasso regression)
relative to the HMP group. Negative parameter estimates indicate that higher scores on the predictor variable are associated with better outcomes (ie,
reductions in distress).
bVariables that were not retained in the elastic net model.
cPROMIS: Patient-Reported Outcomes Information System.
dDistress: composite of PROMIS Depression, PROMIS Anxiety, and Perceived Stress Scale.
eMLQ: Meaning in Life Questionnaire.

Meditation App Recommendations
The mean PAI score was −0.07 (SD 0.03; range −0.17 to 0.03),
indicating that the model predicted greater average symptom
improvement for the HMP meditation app than for the
assessment-only control condition. The model recommended
HMP (PAI<0) for all participants except 5 (657/662, 99.2%).

Evaluation of Recommendations
A significant group × PAI interaction emerged in predicting

outcome (t658=3.30; P=.001; adjusted r2=0.10), indicating that
PAI scores moderated group differences in outcome. As
displayed in Figure 1, as PAI scores decrease (ie, reflecting
relatively stronger HMP recommendations), group differences
in observed outcome increase, favoring HMP.
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Figure 1. Group × Personalized Advantage Index (PAI) interaction. As PAI scores decrease (ie, reflecting relatively stronger recommendations for the
Healthy Minds Program [HMP] app) group differences in observed outcome increase, favoring HMP.

Comparison Model
In the linear regression comparison model applied to the HMP
group, higher levels of repetitive negative thinking were
significantly associated with a greater reduction in distress from
the mindfulness app (B=−0.02; t342=−3.37; P<.001). The
correlation between predicted HMP outcomes and observed
outcomes was r=0.16 (P=.003; RMSE=0.10) for participants
who received HMP and r=−0.14 (P=.02; RMSE=0.12) for the
control group. In contrast to the pattern of findings for the HMP
group, the linear regression model applied to the control sample
revealed that higher levels of repetitive negative thinking were
significantly associated with poorer outcomes than in the control
condition (B=0.01; t316=2.44; P=.02).

The correlation between predicted control condition outcomes
and observed outcomes was r=0.11 (P=.049; RMSE=0.11) for
the control group and r=−0.18 (P<.001; RMSE=0.12) for the
HMP group.

A significant group × PAI interaction emerged in predicting

changes in distress (t658=3.81; P<.001; adjusted r2=0.11),
indicating that PAI scores moderated group differences in
outcomes (Figure 2). Specifically, as PAI scores decreased
(reflecting increasing repetitive negative thinking scores), group
differences favoring the HMP condition also increased. Given
the association between repetitive negative thinking and
depressive symptoms [46,47], we also conducted additional
sensitivity analyses controlling for baseline levels of depressive
symptoms (as well as considering the number of days the app
was used), which yielded the same pattern of findings
(Multimedia Appendix 1). In summary, these results indicate
that a simple linear regression including repetitive negative
thinking as the sole predictor yields equivalent performance
relative to a more complex multivariable ENR model (ie,

adjusted r2=0.11 vs r2=0.10, respectively, for the group × PAI
interaction).
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Figure 2. Group × Personalized Advantage Index (PAI) interaction for the comparison model (ie, linear regression with baseline repetitive negative
thinking [PTQ] scores as the sole predictor). As PAI scores decrease (ie, reflecting relatively stronger recommendations for the Healthy Minds Program
[HMP] app) group differences in observed outcome increase, favoring HMP.

Translating a Predictive Model to Personalized
Meditation App Recommendations
To demonstrate the translation of a predictive model to
personalized recommendations, we used the parameter estimates
from the above regression models to estimate predicted changes
in distress in HMP versus the assessment-only condition for a
new individual based on their preintervention repetitive negative
thinking score. Given that the simpler regression model
performed similarly to the more complex multivariable ENR
models, we used the former model for this demonstration.

First, as shown in Figure 3, we plotted the relationship between
PAI scores and outcomes for HMP (blue line) and the
assessment-only control condition (red line). The dashed vertical
gray line represents the point at which the 2 regression lines
intersect. An individual with a PAI score to the left of this line
was predicted to have a better outcome in HMP relative to the
assessment-only control condition (and vice versa for individuals
with PAI scores to the right of this line). The area to the left of
this line is colored yellow, reflecting a “cautious
recommendation” for app-based meditation training. Second,
we computed a 95% CI via bootstrap resampling (Boot package
in R) [63]. Specifically, we drew 1000 samples with replacement
and recomputed the 2 regression lines and their intersection
points in each of these samples. The dashed vertical red line
represents the left margin of the 95% CI for this intersection
point. In other words, if an individual’s PAI score falls to the
left of this line, our confidence in the predicted benefit of HMP

relative to the assessment-only condition increases. Third, we
also implemented the Johnson-Neyman technique [64]
(Interactions package in R) to probe the group × PAI interaction
and to estimate the value of the moderator (PAI) at which group
differences in outcomes become statistically significant. This
occurred at PAI<−0.02 (solid vertical gray line in Figure 3,
immediately adjacent to the dashed red line). If a participant’s
PAI score falls to the left of both the 95% CI (dashed red line)
and the Johnson-Neyman threshold (solid gray line), the plot
area is colored green to reflect a more confident recommendation
to use HMP.

To illustrate with a concrete example, an individual with a
repetitive negative thinking (PTQ) score of 1 SD above the
mean (ie, 41) would have a PAI score of −0.10 (within the
“green zone” of Figure 3) and a predicted slope of change in
distress of −0.049 (ie, expected reduction in distress) in HMP
and 0.047 (ie, expected increase in distress) in the
assessment-only condition over 4 weeks. Assuming that this
individual had a preintervention level of distress at the 50th
percentile, they would be predicted to be at the 41st percentile
(relative to preintervention distress scores) following the 4-week
mindfulness app course and at the 58th percentile if they only
completed symptom assessments (ie, control condition). In
summary, based on a brief assessment of perseverative negative
thinking, our algorithm can provide individual users with useful
information regarding their expected benefit before they decide
to enroll in a multiweek course of app-based meditation training.
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Figure 3. Plot of the relationship between Personalized Advantage Index (PAI) scores and outcome for each condition to inform personalized
recommendations. The dashed vertical gray line indicates the point at which the 2 regression lines intersect (left margin of a bootstrapped 95% CI is
shown with a dashed vertical red line). The solid vertical gray line (adjacent to the red line) is derived from the Johnson-Neyman technique and represents
the value of the moderator (PAI) at which between-group differences in outcome become statistically significant. Refer to the detailed description in
text, with an example for personalized Healthy Minds Program [HMP] recommendation.

Discussion

Principal Findings
An increasing number of individuals are turning to meditation
apps to alleviate their emotional distress. Meditation apps
represent the most commonly used mental health apps for
depression and anxiety [30]. Despite their growing popularity,
little is known about the benefits of these apps. In this study,
we developed an algorithm to predict the benefit that an
individual would be expected to experience from a
smartphone-based meditation intervention (HMP) relative to
an assessment-only control condition. We found evidence that
a data-driven model can successfully predict differential
response to a meditation app versus an assessment-only control
condition using self-reported baseline demographic and clinical
characteristics. Specifically, PAI scores significantly moderated
group differences in outcomes. Individuals with more negative
PAI scores, reflecting relatively stronger meditation app (ie,
HMP) recommendations, had better outcomes if randomly
assigned to the meditation app relative to the control condition.
As expected, given overall group (ie, HMP > control) differences
in outcome [31], the models typically predicted greater benefits
from HMP versus the control condition. However, the predicted
benefits of HMP were not always large, and in some cases, the
PAI model predicted either relatively small between-group
differences in outcome (“yellow zone” in Figure 3) or even
better outcomes in the control condition (“red zone”). The

former cases could be interpreted as instances in which the costs
of engaging in a multiweek meditation app course (eg, time
investment, delay in engaging with other, more helpful
interventions) may not be worth the potential benefits.

Critically, a comparison linear regression model that only
included information about baseline levels of repetitive negative
thinking performed comparably well to a multivariable machine
learning model (in contrast, refer to the studies by Webb et al
[65] and Buckman et al [66]). Repetitive negative thinking
moderated the outcome of app-based meditation training relative
to the assessment-only control condition. Importantly, these
findings reveal that higher repetitive negative thinking is not
simply a general “prognostic” indicator of one’s likelihood of
experiencing reductions in distress (eg, due to regression to the
mean or the passage of time). In other words, greater repetitive
negative thinking did not predict greater reductions in distress
in both the meditation app and control conditions. Instead, and
similar to prior research focused on a different mindfulness app
and sample (adolescents with elevated rumination) [43,45],
individuals with higher baseline levels of repetitive negative
thinking derived greater relative benefit from a meditation app.
One question is whether these findings are specific to repetitive
negative thinking or instead may be driven by correlated clinical
characteristics, in particular, depressive symptoms or distress.
Sensitivity analyses revealed that repetitive negative thinking
significantly moderated group differences in outcomes even
when controlling for depressive symptom severity or distress
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(Multimedia Appendix 1). In summary, these findings indicate
that a brief self-report assessment of repetitive negative thinking
can inform which individuals are most likely to benefit from
app-based meditation training.

As illustrated in Figure 3, our predictive model can be readily
applied for personalized meditation app recommendations for
new individuals. First, the model provides a binary prediction
of whether an individual is expected to experience greater
reductions in distress from the meditation app relative to
symptom assessment only (ie, based on whether PAI scores fall
to the left or right of the intersection point [vertical dashed gray
line]). Second, the model provides an estimate of the magnitude
of the expected difference in outcomes between the meditation
app and the control condition. Finally, the model also
distinguishes between the strengths of recommendations to use
the meditation app, demarcated by the green (confident
recommendation) and yellow (cautious recommendations) zones
of the figure (with boundaries defined by a bootstrapped CI and
Johnson-Neyman interval). Collectively, this information can
be used to provide individuals with objective metrics about
expected outcomes to inform their decision on whether to enroll
in a meditation app course. Such information could readily be
implemented within mHealth interventions such as the HMP.
Participants could first complete a brief self-report assessment
of repetitive negative thinking and receive feedback on their
predicted outcomes before deciding to use the app.

Although potentially useful in terms of encouraging the optimal
use of users’ time and attention, informing some individuals
that engagement with a meditation app may not be beneficial
to them is unlikely to be embraced by many intervention
developers. However, these models can be readily extended to
instances in which one or more mHealth interventions are being
compared. Given the thousands of available mental health apps
[25], which should be compared? One approach is to focus on
the most popular (eg, most frequently downloaded) mental
health apps, which include mindfulness, journaling, CBT, and
mood tracking apps [29,30]. For example, future studies could
develop algorithms for predicting response to various popular
mental health apps, which differ substantially in intervention
focus (eg, meditation apps vs CBT-based apps vs mood tracking)
[29,67], or even compare a mental health app with conventional
(in-person) psychotherapy or pharmacotherapy. Such studies
could determine, for example, whether we can predict which
individuals with depressive symptoms require conventional,
face-to-face CBT (or an antidepressant prescription) versus
those who would experience symptom remission from a brief
app-based meditation or CBT course. In addition, future studies
could compare different versions of a single app. For example,
individuals may differ in the extent to which they benefit from
different types of meditation (eg, cultivating focused attention
on breath, open monitoring, or loving-kindness meditations) or
different lengths or frequencies of guided meditation sessions.

In addition to informing consumer choice, the ability to predict
who is most likely to benefit from a particular intervention could
inform health care policy and decision-making. In contrast to
a stepped care model in which treatment intensity is escalated
based on the response to interventions, predictive models could
be used to initially assign patients to the treatment expected to

yield the best outcomes for that individual based on their
baseline characteristics (ie, stratified care) [68]. In theory, the
latter approach could minimize the delay in receiving an
effective intervention.

Another important avenue for future research is to test the extent
to which these findings can be generalized to other meditation
apps (eg, Headspace and Calm). In many ways, HMP is similar
to other meditation apps. It includes training in mindfulness and
connection (eg, loving-kindness, compassion) practices that are
also available in popular mindfulness apps such as Headspace
and Calm. One difference is that HMP includes practices
designed specifically to cultivate a healthy sense of self (Insight
module) as well as purposes and meaning in life (Purpose
module). The inclusion of these practices is derived from a
neuroscience-based model of well-being on which HMP is based
[36]. Thus, it is more accurate to view HMP as a meditation
app that intentionally moves beyond mindfulness to place equal
emphasis on other domains of well-being and contemplative
practices designed to support these additional domains.
Ultimately, additional research is needed to test whether the
pattern of findings presented in this study generalize to other
meditation and mindfulness apps.

Finally, given the lack of prior research predicting mental health
app outcomes, further research is needed to test the impact of
presenting predicted mindfulness app prognosis on patient
outcomes. For example, before using a mindfulness app, patients
could be randomly assigned to receive their predicted outcomes
or not receive this information. Several relevant outcomes could
be examined, including (1) between-group differences in
symptom change, (2) the extent to which receiving these
predictions influences expectancies of therapeutic benefit, (3)
the relationship between expectancies and app outcome, and
(4) the extent to which individuals use the
algorithm-recommended intervention or disregard the
recommendation.

Limitations
This study has several important limitations. First, although
basing models exclusively on self-reported data is attractive
from an implementation perspective, we may have excluded
other patient characteristics that provide important additional
predictive information to inform optimal treatment
recommendations (eg, biomarkers and cognitive tasks) [12]. In
addition, repetitive negative thinking, which emerged as a
predictor of differential response, may be more validly assessed
via methods other than conventional retrospective self-report
questionnaires (eg, repeated, daily ecological momentary
assessment [43,69]). Other relevant variables (eg, app use data,
motivational variables, and involvement in other activities linked
to better mental health) could be assessed in future studies.
Second, our results emerged within a specific sample (school
district employees), which did not have adequate representation
of males, Black, Indigenous, and people of color, or individuals
with low income. The sample is representative of Wisconsin in
terms of race (83% of Wisconsinites are White) but includes a
higher proportion of females. However, the gender difference
in our sample is not surprising, given that females are more
likely than males to (1) be employed as teachers [70] and (2)
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experience and seek treatment for depressive and anxiety
symptoms [71]. Third, we were unable to conduct external
validation by evaluating model prediction performance in an
entirely new sample (eg, from another RCT). Fourth, as is
common in digital therapies [48], a sizable subset of participants
used the app for relatively few days. However, the results
remained significant when restricting our analyses to subsets
of participants who used the app for a longer period (Multimedia
Appendix 1). Fifth, we did not include an active comparison
condition. Our assessment-only control condition was not
designed to control for placebo-related processes [72]. The
methods demonstrated here may ultimately be most relevant in
helping patients and clinicians decide between competing
interventions that are intended to be therapeutic.

Conclusions and Future Directions
This study demonstrated the potential utility of data-driven
approaches for informing personalized meditation app
recommendations. A natural extension of this study is to conduct
a prospective test of our algorithm using a doubly randomized
design. For example, participants could be randomized to either
(1) random treatment assignment (ie, treatment A or treatment
B) or (2) be assigned to their algorithm-indicated treatment. To
the extent that patient outcomes are significantly (and clinically
meaningfully) better in the latter condition, the results would
support the clinical benefits of algorithm-informed treatment
recommendations (for a recent example of a similar design

testing predictive matching of patients to therapists, refer to the
study by Constantino et al [73]). In addition to comparing
treatment packages, this design could be readily used to evaluate
other customizable elements of HMP or other mHealth
interventions. This may include assignment to receive various
components or ordering of components within HMP, assignment
to HMP or an alternative commonly used mHealth intervention
(eg, CBT, behavioral activation, journaling, or mood tracking
apps), or assignment to varying treatment intensities (eg,
meditation practice frequency).

Other potentially fruitful future directions include evaluating a
broader set of patient characteristics previously shown or
hypothesized to predict the likelihood of responding to different
interventions [5]. In addition, prediction models could be
developed using data drawn from large naturalistic data sets
evaluating mHealth interventions, as has been done for in-person
psychotherapy and pharmacotherapy [65,74-76]. In addition to
testing the utility of these models in “real-world” settings,
naturalistic settings often provide large data sets relative to
RCTs and thus can increase statistical power [28]. Ultimately,
these approaches may gradually help supplement our reliance
on trial and error for treatment selection with empirically
supported, data-driven algorithms to objectively communicate
expected benefits to individuals, allowing them to make
well-informed decisions about which interventions are best for
their needs.
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