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Abstract

Background: When investigating voice disorders a series of processes are used when including voice screening and diagnosis.
Both methods have limited standardized tests, which are affected by the clinician’s experience and subjective judgment. Machine
learning (ML) algorithms have been used as an objective tool in screening or diagnosing voice disorders. However, the effectiveness
of ML algorithms in assessing and diagnosing voice disorders has not received sufficient scholarly attention.

Objective: This systematic review aimed to assess the effectiveness of ML algorithms in screening and diagnosing voice
disorders.

Methods: An electronic search was conducted in 5 databases. Studies that examined the performance (accuracy, sensitivity,
and specificity) of any ML algorithm in detecting pathological voice samples were included. Two reviewers independently selected
the studies, extracted data from the included studies, and assessed the risk of bias. The methodological quality of each study was
assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool via RevMan 5 software (Cochrane Library). The
characteristics of studies, population, and index tests were extracted, and meta-analyses were conducted to pool the accuracy,
sensitivity, and specificity of ML techniques. The issue of heterogeneity was addressed by discussing possible sources and
excluding studies when necessary.

Results: Of the 1409 records retrieved, 13 studies and 4079 participants were included in this review. A total of 13 ML techniques
were used in the included studies, with the most common technique being least squares support vector machine. The pooled
accuracy, sensitivity, and specificity of ML techniques in screening voice disorders were 93%, 96%, and 93%, respectively. Least
squares support vector machine had the highest accuracy (99%), while the K-nearest neighbor algorithm had the highest sensitivity
(98%) and specificity (98%). Quadric discriminant analysis achieved the lowest accuracy (91%), sensitivity (89%), and specificity
(89%).

Conclusions: ML showed promising findings in the screening of voice disorders. However, the findings were not conclusive
in diagnosing voice disorders owing to the limited number of studies that used ML for diagnostic purposes; thus, more investigations
are needed. While it might not be possible to use ML alone as a substitute for current diagnostic tools, it may be used as a decision
support tool for clinicians to assess their patients, which could improve the management process for assessment.
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Introduction

Background
Voice disorders are abnormalities in voice production that could
be due to lesions or abnormal modifications in the structure of
vocal folds [1]. In 2019, it was estimated that 16.9% of the
population in Sweden had voice disorders [2], and in 2014, it
was found that 1 in 13 adults in the United States develops voice
disorders every year [3]. This led to a loss of US $845 million
in the United States owing to missed working days among
employees with voice disorders [4,5]. At the individual level,
voice disorders can severely affect a patient’s social life and
mental health compared with other chronic disorders such as
back pain [6]. Thus, 4.3% of the patients with voice disorders
reported that they were unable to do certain job-related tasks
due to the disorder [7]; this especially affects professions that
have a high demand on the voice, for instance, teachers [8],
singers, or telephone operators [9]. Therefore, screening or
diagnosing voice disorders is essential to detect other related
health conditions such as laryngeal lesions that could be a
symptom of cancer [10]; thus, the diagnosis should be made as
soon as possible [11,12].

Diagnosing and screening voice disorders involve
auditory-perceptual and instrumental assessments. The
auditory-perceptual assessment is carried out by a qualified
speech and language therapist (SLT); in this assessment, the
SLT determines the quality of patients’ voice by listening to
their sustained vowel production; for example, the, aa, or sound
or continuous speech [13,14]. Furthermore, the instrumental
assessment involves laryngeal imaging to examine the structure
and function of vocal cords while the patient produces a vowel
sound; other techniques are also used including video
laryngeoendoscopy and video laryngostroboscopy examinations.
In addition, acoustic instruments were used to analyze acoustic
features (frequency, pitch, volume, and quality of sound) of
voice samples of patients to assess voice disorders by using
computer software [13-15]. Although the aforementioned
assessments are recognized by the American
Speech-Language-Hearing Association [13] and American
Academy of Otolaryngology-Head and Neck Surgery [16], there
is still a lack of standardized methods and guidelines to regulate
these or other assessments [17]. Therefore, several limitations
may pose a risk to the current assessment [18,19]. Although
each case is evaluated objectively (via instrumental techniques,
eg, stroboscopy), these objective tests include acoustic and
visual imaging and videos; the acoustic techniques reveal the
speech characteristics of the patient’s speech sample,
specifically, the frequency, intensity, loudness, and pitch, to
give the clinician insight into other indicators such as the
patient’s rate of speech or voice; for example, the voice may be
breathy or tremored [18]. Although these instrumental methods

enable clinicians to perform objective tests, the validity of the
tests largely depends on the auditory-perceptual skills of the
clinician [18]. This is because the clinician first assesses the
instrumental management or the patients’ pathway and then
chooses the type of instrumental assessment to be used.
Naturally, any mistake in the auditory-perceptual assessment
would affect the instrumental management, and thus, the whole
management of the case; such subjective judgment might not
be reliable as it relies on the clinician’s skills and experience
[18]. As the condition of each diagnosis or screening and the
level of experience differ in each case, severe cases might be
easier to diagnose or screen than mild cases; therefore, the
experience of the SLT and the reliability of their judgment on
each patient’s condition differ, and low interrater correlations
may occur (<0.9) [19]. Moreover, the agreement between
experienced and inexperienced SLTs was found to be <75%,
making the experience an essential part of the diagnosis or
screening [20].

Machine learning (ML) was introduced for speech sounds in
the early 1980s [21]. ML can be performed automatically by
analyzing acoustic features either from voice recordings samples
that are previously stored in a database such as the
Massachusetts Eye and Ear Infirmary (MEEI), which are
databases that stores a recordings of voice samples from patients
in clinical environments, these recordings either recorded
patients’ voices while pronouncing vowels such as in MEEI
[22] or continuous speech, or phrases such as in the
Saarbruecken Voice Database [23]. ML is also used to analyze
patients in the clinic by recording their voices via a microphone
[1,21,24]. ML was applied either as a differential diagnosis for
s, which involves diagnosing the voice sample as 1 of 2 diseases
(voice disorders a or voice disorders b), or for screening different
voice samples as either healthy or pathological voice. This
method has been used to improve the diagnosis and screening
process to be more objective. ML involves 2 different models:
classification (supervised learning) and clustering or
categorization (unsupervised learning) [25]. In the unsupervised
model, the algorithm categorizes and identifies relationships
within a data set [26]. By contrast, classification is a prediction
model that defines labels, for example, disease or not disease,
in clinical diagnosis [26], making it more common in diagnosing
[27].

Research Problem and Aim
Although several studies have investigated the effectiveness of
ML algorithms in detecting and diagnosing voice disorders, to
the best of our knowledge, only 1 review attempted to
summarize the evidence resulting from these studies [27].
However, there are several limitations in the review, including
the following: it did not exclude studies that did not validate
their ML outcomes by using validation techniques; it included
studies that relied on scientific but not technical or objective
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solutions, and they relied on subjective assessment only; and it
did not assess the included studies against any risk of bias
assessment. Accordingly, this systematic review aimed to assess
the effectiveness of supervised ML algorithms in screening and
diagnosing voice disorders. Thus, only supervised ML
techniques were considered because supervised ML algorithms
are more commonly used for diagnosing and detecting disorders.

Methods

This systematic review followed the Cochrane Library’s
systematic reviews for diagnostic test accuracy (DTA) guidelines
[28] to meet the objectives of this review. The protocol for this
review was registered with PROSPERO (CRD42020214438).

Search Strategy

Search Sources
The following 5 databases were searched on June 24, 2021:
MEDLINE (via Ovid), Embase, Scopus, Web of Science, and
ACM Digital Library. No language limitations were applied,
and non-English articles were translated to check their
applicability to the review. The retrieved references were
exported and managed using EndNote 9.

Search Terms
A total of 2 groups of keywords were used to search the
databases: one group representing the target diagnosis (ie, voice
disorders) and the other group representing the intervention of
interest (ie, ML algorithms). The terms were derived from ML
and speech therapy experts. Medical Subject Headings were
also included to maximize the sensitivity of the search in
MEDLINE and Embase. The detailed search strategy that was
applied to MEDLINE and Web of Science is shown in
Multimedia Appendixes 1 and 2, respectively.

Eligibility Criteria

Inclusion Criteria
The population of interest in this review included patients
diagnosed with a voice disorder. No restrictions were applied
to the type of population characteristics (eg, age, gender, and
ethnicity). With regard to index tests, we focused on supervised
ML techniques (classification) that were used to screen or
diagnose voice disorders in binary outcomes (eg, pathological
voice vs healthy voice or voice disorder a vs b) by using voice
samples collected in a controlled environment (eg, speech
laboratories, hospitals, clinics, and databases). The reference
standards of interest in this review are instrumental assessment
and auditory-perceptual assessment, as both follow the
recommendations of the American Speech-Language-Hearing
Association [17] and American Academy of Otolaryngology
[16]. To be included in this review, studies had to assess the
diagnostic performance of ML algorithms by using at least one
of the following outcomes: accuracy, sensitivity, and specificity.
We included only peer-reviewed articles and empirical studies
regardless of their study design. No restrictions were applied
on the country of publication, year of publication, or language
of publication.

Exclusion Criteria
We excluded studies that relied on clinicians’ judgments only
without using any instrumental tools to ensure the validity and
reliability of the review, as relying on subjective assessment
may be affected by the clinician’s level of experience.
Unsupervised ML methods were excluded. Conference papers,
reviews, reports, editorials, ongoing studies, non–peer-reviewed
articles, studies that assessed accuracy only, and those that did
not assess sensitivity and specificity were also excluded.

Study Selection
Study selection was first conducted by screening the titles and
abstracts of the retrieved studies. Although we excluded studies
whose titles and abstracts did not meet any of the eligibility
criteria, all studies that met the eligibility criteria or were unclear
owing to a lack of information in their titles and abstracts were
retained. We then read the full texts of the studies that remained
after the title and abstract screening to assess their eligibility
for this review. The study selection process was performed by
2 reviewers.

Data Extraction
The 2 reviewers created a data extraction form (Multimedia
Appendix 3) and extracted the data from each included study.
If a study did not report a required piece of information, we
contacted the corresponding authors to obtain any missing
information. If the corresponding authors did not reply within
2 weeks, we sent 2 reminders. If we did not receive a reply after
2 weeks of the second reminder, the missing piece of
information was referred to as n/a: not applicable data were
extracted in an Excel spreadsheet.

Evaluation of Methodological Quality
The risk of bias in the included studies was assessed using a
revised tool for the Quality Assessment of Diagnostic Accuracy
Studies (QUADAS)-2 [29], which is highly recommended by
the Cochrane Collaboration [30]. QUADAS-2 assessed the risk
of bias in 4 domains in the included studies: patient selection,
index test, reference standards, and flow and timing (Multimedia
Appendices 4-7). Furthermore, QUADAS-2 appraised the
applicability of the included studies to this review in terms of
3 domains: patient selection, index test, and reference standards.
QUADAS-2 was modified to fit this review (Multimedia
Appendix 8). The 2 reviewers assessed the methodological
quality of all included studies by using Review Manager
(RevMan version 5.4).

Data Synthesis and Analysis
Narrative and quantitative syntheses were conducted to analyze
the outcome of each ML technique (accuracy, sensitivity, and
specificity). If >1 study used the same ML technique, and the
difference between the outcomes was not significant (<5%),
the best outcome was considered in the meta-analysis. All
outcomes are presented in the extraction table (Multimedia
Appendix 3). In addition, if a study used voice samples from 2
different databases, each sample was included to account for
the sample size (referred to as sample A and sample B in the
forest plot).
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The accuracy, sensitivity, and specificity of ML methods
extracted from the eligible studies were analyzed using the
random effect proportional meta-analysis to estimate a pooled
proportion and 95% CI, which are based on the Wilson score
[31] procedures. To stabilize the variances, the pooled estimate
was calculated using the Freeman-Tukey double arcsine
transformation [32], and heterogeneity was calculated using the

I2 measure [33]. A value of ≤50% is considered low, 51% to
75% moderate, and ≥76% high [33]. All results were plotted
and presented in a forest plot. Studies were included in the
meta-analysis if their scope of using ML was for screening.
Statistical software STATA 16 was used to perform random
effects meta-analyses.

Results

Search Results
As presented in Figure 1, a total of 1409 hits were identified by
searching the 5 databases. No additional records were obtained
from different resources. After removing duplicates, 95.31%
(1343/1409) of articles were left. After scanning the titles and
abstracts, 93.89% (1261/1343) of records were excluded, leaving
82 (6.11%) records for full-text reading. We excluded further
84% (69/82) of articles after full-text reading; therefore, only
16% (13/82) of studies were included in this review [34-46].

Figure 1. Flowchart of the study selection process.
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Study Characteristics

Study Metadata
As shown in Table 1, the 13 included studies were conducted
between 2000 and 2020. However, most of the studies (11/13,
85%) were conducted between 2010 and 2020. The year that

witnessed the largest number of studies (3/13, 23%) was 2016.
The included studies were conducted in 12 different countries,
and approximately 30% (4/13) of them were conducted in Iran.
All the studies were observational studies, peer-reviewed
articles, and written in English.

Table 1. Metadata of the included studies.

Publication languageCountryYearStudy

EnglishIran2015Akbari and Arjmandi [34]

EnglishGreece2011Arias-Londoño et al [35]

EnglishIran2012Arjmandi and Pooyan [36]

EnglishIran2011Arjmandi et al [37]

EnglishPortugal2017Cordeiro et al [38]

EnglishIran2015Ghasemzadeh et al [39]

EnglishSpain2004Godino-Llorente and Gómez-Vilda [40]

EnglishBulgaria and France2000Hadjitodorov et al [41]

EnglishTurkey2014Hariharan et al [42]

EnglishBrazil2017Lopes et al [43]

EnglishSaudi Arabia and Malaysia2020Mohmmad et al [44]

EnglishTunis2016Souissi and Cherif [45]

EnglishChina2011Wang et al [46]

Participants or Sample Characteristics
The number of participants or voice samples ranged from 40 to
960, with a total of 4019 and an average of 309 (Table 2). The
included studies collected data from 6 different sources. The
MEEI database was the most commonly used database among

the included studies (9/13, 69%). Voice samples were collected
from male and females and intersex participants in most included
studies (12/13, 92%); however, 8% (1/13) of studies used voice
samples from female participants only [43]. Participants’ ages
in the included studies ranged from 13 to 86 years, with an
average age of 45 years (mean 46, SD 29.5 years).
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Table 2. Characteristics of participants or sample.

Database accessibilitySetting or databaseMale (%)Age (years),
range

Voice sample
size, n

Study

PrivateMEEIa database4013-82293Akbari and Arjmandi [34]

PrivateMEEI and UPMc databases—b19-70628Arias-Londoño et al [35]

PrivateMEEI database5618-86120Arjmandi and Pooyan [36]

PrivateMEEI database6716-85100Arjmandi et al [37]

PrivateMEEI database34—154Cordeiro et al [38]

PrivateMEEI database——393Ghasemzadeh et al [39]

PrivateMEEI database——135Godino-Llorente and Gómez-Vilda
[40]

PrivatePhoniatric Department of the Uni-
versity Hospital in Sofia

——400Hadjitodorov et al [41]

PrivateMEEI and MAPACI databases—20-68274Hariharan et al [42]

PrivateVoice laboratory018-65279Lopes et al [43]

PrivateSVDd——960Mohmmad et al [44]

PrivateSVD——120Souissi and Cherif [45]

PrivateMEEI database—26-58226Wang et al [46]

aMEEI: Massachusetts Eye and Ear Infirmary.
bNot available.
cUPM: Universidad Autónoma de Madrid.
dSVD: Saarbruecken Voice Database.

Index Test Characteristics
The included studies used 12 ML algorithms (Table 3).
Least-squares support-vector machines (LS-SVMs) were the
most used algorithms across studies (9/13, 69%), followed by
quadratic discriminant analysis (QDA) (3/13, 23%) and
K-nearest neighbor (K-NN) (4/13, 31%). The feature-extraction
technique was reported in 85% (11/13) of studies. While 61%

(8/13) of studies extracted short-term features (eg, mel frequency
cepstral coefficients), 23% (3/13) extracted long-term features
(eg, jitter and shimmer and fundamental frequency). A total of
3 feature reduction techniques were used in the included studies;
linear discriminant analysis was the most used technique (4/13,
31%), and training-test split validation was the most prominent
technique used in the included studies (10/13, 77%), followed
by cross-validation technique (4/13, 31%).
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Table 3. Index test characteristics.

ValidationFeature reductionFeature extractionMachine learning
method

Study

70% training and 30% 0%
testing

Linear prediction

analysis and LDAb
Mean, variance, skewness, kurtosis of coeffi-
cient, wavelet subband coefficients

LS-SVMaAkbari and Arjmandi [34]

75% training and 25% test-
ing (cross-validation–test
split validation)

MSMR and LS-
SVM

12 MFCCc and MSMRdLS-SVMArias-Londoño et al [35]

70% training and 30% vali-
dation

PCA and LDAPCAj and LDA; feature selection: IFSk, FFSl,

BFSm, and BBFSn
QDAe, NMCf, K-

NNg, LS-SVM,

ML-NNh, and PCi

Arjmandi and Pooyan [36]

70% training and 30% test-
ing

PCA and LDAFundamental frequency (average, high, and low

variation), STDo, PFRp, jitter, shimmer, RAPq,

QDA, NMC, PC,
K-NN, LS-SVM,
and ML-NN

Arjmandi et al [37]

PPQr, smoothed PPQ, vAms, NHRt, VTIu, SPIv,

FTRIw, ATRIx, Tsamy, T0z, shimmer in dB,

DVBaa, DSHab, DUVac, NVBad, NSHae, and
total number of segments pitch period during
the period-to-period pitch extraction

75% training and 25% test-
ing (k-fold cross-validation

N/AagMFCCs, line spectral frequencies, and delta-
MFCC

SVM and DAafCordeiro et al [38]

method, k=4; training-test
split validation)

70% training and 30% test-
ing using cross-validation

LDA and LS-SVMFalse neighbor fraction and mutual informationANNah and LS-
SVM

Ghasemzadeh et al [39]

70% training and 30% test
split validation

MFCCMFCC coefficient, energy, and first and second
temporal derivatives

LVQaiGodino-Llorente and
Gómez-Vilda [40]

Training-test split validation
stage (200 phonation); test-
ing (200 phonation)

LDAPitch period (To), PPQ, APQaj, STABak, the
degree of the dissimilarity of the shape [47] of

the pitch pulses, LHERal, NHR, HNRam, and
energy in the pitch impulse-incepstra

K-NNHadjitodorov et al [41]

70% training and 30% test-
ing using conventional vali-
dation and cross-validation

N/A5 level WPTao decompositionK-NN, LS-SVM,

and GRNNan
Hariharan et al [42]

Cross-validationN/AF0 measurements (mean and SD, jitter, shimmer,

and GNEap)

QDALopes et al [43]

10-fold cross-validationN/AOctaves and its first and second derivativesCNNaqMohmmad et al [44]

70% training; and 30% test-
ing

MFCC, LDA, and
delta

MFCC and first and second derivativesLS-SVM and ANNSouissi and Cherif [45]

10-fold cross-validation8, 16, and 32 mix-
ture

36 dimensional MFCC parameters with 1
derivative were calculated every frame of 18-
mel-cepstral coefficient

LS-SVM and

GMMar
Wang et al [46]

aLS-SVM: least-squares support-vector machine.
bLDA: linear discriminant analysis.
cMFCC: mel frequency cepstral coefficient.
dMSMR: modulation spectra minimum redundancy.
eQDA: quadric discriminant analysis.
fNMC: neuromorphic computing.
gK-NN: K-nearest neighbor.
hML-NN: multilayer neural network.
iPC: Parzen classifier.
jPCA: principal component analysis.
kIFS: individual feature selection.
lFFS: forward feature selection.
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mBFS: backward feature selection.
nBBFS: branch-and-bound feature selection.
oSTD: SD of fundamental frequency.
pPFR: phonatory fundamental frequency.
qRAP: relative average perturbation.
rPPQ: pitch perturbation quotient.
svAm: peak amplitude variation.
tNHR: noise-to-harmonic ratio.
uVTI: voice turbulence index.
vSPI: soft phonation index.
wFTRI: Fo-tremor intensity index.
xATRI: amplitude tremor intensity index.
yTsam: length in seconds of analyzed voice data sample.
zT0: period of the average glottal period.
aaDVB: degree of voice breaks.
abDSH: degree of subharmonic.
acDUV: degree of voicelessness.
adNVB: number of voice breaks.
aeNSH: number of subharmonic segments.
afDA: Discriminant analysis.
agN/A: not applicable.
ahANN: artificial neural network.
aiLVQ: learning vector quantization.
ajAPQ: amplitude of the pitch pules.
akSTAB: stability of the t0 generation.
alLHER: low-high energy ratio.
amHNR: harmonics noise ratio.
anGRNN: general regression neural network.
aoWPT: wavelet packet transform.
apGNE: glottal to noise excitation.
aqCNN: conventional neural network.
arGMM: Gaussian mixture model.

Quality Assessment Results

Risk of Bias
In the patient selection domain, only 38% (5/13) of studies were
judged to have a low risk of bias in patient sampling, as they
used an appropriate sampling process to select voice samples
(Multimedia Appendix 9). The risk of bias in index tests was
rated as high in all included studies owing to the nature of the
supervised ML tests, and their results were interpreted with
prior knowledge of the results of the reference standard test.
Owing to the subjective nature of voice assessment, it was not
clear whether the reference standard correctly classified the
patients. This led to an unclear risk of bias in the reference
standard domain in all studies although the reference standard
was used before the index test, and the findings were not
affected by the findings of the index test. Patient flow and timing
were poorly reported in almost all the studies (12/13, 92%).
Thus, these studies were judged to pose an unclear risk of bias
in terms of patient flow and timing. Multimedia Appendix 9
shows the QUADAS-2 tool risk of bias judgment in each
included study across all 3 domains as well as applicability
concerns for each study.

Applicability Concerns
There are no applicability concerns regarding how patients were
selected in all included studies, as the patients’ characteristics
and the condition and setting of each test match the review
question and criteria (Multimedia Appendix 9). Similarly, all
included studies were judged to have low applicability concern
in the index test as the ML algorithms method in the included
studies matched the review definition of ML. However, the
applicability concern in the reference standard was rated as
unclear in 84% (11/13) of studies, as the voice samples in those
studies were collected from databases, and the detailed diagnosis
process of each voice sample was not described.

Performance of ML Algorithms

Diagnosing Voice Disorders
Only 8% (1/13) of studies used the QDA algorithm to
differentiate between 2 [43]. As shown in Table 4, the accuracy,
sensitivity, and specificity of the QDA ranged from 70% to
77%, 20% to 65%, and 74.76% to 95%, respectively. See the
following section for a description of how QDA was used as a
screening tool. For breakdown of the diagnostic findings, please
refer to Multimedia Appendix 10.
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Table 4. The performance of machine learning in diagnosing voice disorders.

StudySpecificity (%)Sensitivity (%)Accuracy (%)Tested diseasesAlgorithm

Lopes et al [43]74.765070.56Vocal polyps vs healthyQDAa

Lopes et al [43]78.160.8372.67Vocal cyst vs healthyQDA

Lopes et al [43]92.382079.82Unilateral VFb paralysis or healthyQDA

Lopes et al [43]80.434571.11Middle-posterior triangular gap vs
healthy

QDA

Lopes et al [43]83.335078.75Sulcus vocalis vs healthyQDA

Lopes et al [43]90.7133.3372.44VDDGERc vs healthyQDA

Lopes et al [43]88.572076.61Vocal nodules vs unilateral VF paralysisQDA

Lopes et al [43]75.955072.68Vocal nodules vs sulcus vocalisQDA

Lopes et al [43]89.0533.3371Vocal nodules vs VDDGERQDA

Lopes et al [43]953070Vocal nodules vs sulcus vocalisQDA

Lopes et al [43]78.336575.14Vocal polyp vs healthyQDA

Lopes et al [43]78.5762.573.22Vocal cyst vs healthyQDA

aQDA: quadratic discriminant analysis.
bVF: vocal fold.
cVDDGER: voice disorder due to gastroesophageal reflux.

Screening Voice Disorders
Of the 13 included studies in the systematic review, 10 (77%)
were included in the meta-analysis and 3 (23%) were excluded
[39,40,44,46]. Of the 10 studies, 2 (20%) examined ML
techniques by using 2 different databases: Arias-Londoño et al
[35] (MEEI and Universidad Autónoma de Madrid [UPM]
databases) and Hariharan et al [42] (MEEIEMPACI)
Accordingly, the performance of ML techniques in these
databases was included in the meta-analysis. More information
about the performance in screening can be found in (Multimedia
Appendix 11).

Accuracy
The accuracy of ML techniques in assessing voice disorders
was reported in 77% (10/13) of studies. These studies examined
the accuracy of 9 ML techniques. The pooled accuracy of the
9 ML techniques was 96% (95% CI 93%-98%; Figure 2).
Significant heterogeneity was shown in the meta-analyzed

studies (I2=93.51%; P<.001), and the possible causes of this
heterogeneity are discussed below. Regarding voice disorders
assessment, the ML technique that achieved the highest accuracy
was LS-SVM (99%), whereas the one that had the lowest
accuracy was QDA (91%).
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Figure 2. The forest plot shows the accuracy of machine learning algorithms in voice disorder screening. ANN: artificial neural network; GRNN:
general regression neural network; K-NN: K-nearest neighbor; LS-SVM: least-squares support-vector machine; ML-NN: multilayer neural network;
NMC: neuromorphic computing; PC: parzan Classifier; QDA: quadratic discriminant analysis; SVM: support vector machine.

Sensitivity
The sensitivity of ML techniques in assessing voice disorders
was reported in 77% (10/13) of studies. These studies examined
the sensitivity of 3 ML techniques. The pooled sensitivity of
the 3 ML techniques was 96% (95% CI 91%-100%; Figure 3).

The meta-analyzed studies showed significant heterogeneity

(I2=95.49%; P<.001), and the possible causes of such
heterogeneity are discussed in further sections. K-NN had the
highest sensitivity (98%) among the 3 ML techniques, while
QDA achieved the lowest sensitivity (89%).
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Figure 3. The forest plot shows the sensitivity of machine learning algorithms in voice disorder screening. K-NN: K-nearest neighbor; QDA: quadratic
discriminant analysis; SVM: support vector machine.

Specificity
The specificity of ML techniques in assessing voice disorders
was examined in 77% (10/13) of studies and included the
specificity of 3 ML techniques. The pooled specificity of the 3
ML techniques was 93% (95% CI 88%-97%; Figure 4). The

meta-analyzed evidence showed significant heterogeneity

(I2=84.3%; P<.001); the possible causes of heterogeneity are
discussed below. The ML technique that achieved the highest
specificity was K-NN (98%), whereas the one that had the
lowest specificity was QDA (89%).
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Figure 4. The forest plot shows the specificity of machine learning algorithms in voice disorder screening. K-NN: K-nearest neighbor; QDA: quadratic
discriminant analysis; SVM: support vector machine.

Heterogeneity and Pooled Performance
The possible source of heterogeneity in the pooled performance
was explored, and the possibility that studies that used
short-term parameters, such as the study by Arjmandi et al [37],
increased the heterogeneity in K-NN and LS-SVM was found.
In the K-NN algorithm, the heterogeneity was reduced to
69.73% when the study by Arjmandi et al [37] (which used
long-term parameters) was excluded; in specificity, it was
84.92% in sensitivity and 91.55% in accuracy. This was also
found in the study by Hadjitodorov et al [41], which also used
long-term parameters, and when it was excluded, the
heterogeneity in all K-NN outcomes was reduced (Multimedia
Appendix 12 presents further details on the heterogeneity values
when each study was removed). Similarly, when the study by
Arjmandi et al [37] was removed from the LS-SVM forest plot

for sensitivity, a reduction was found in I2 test values, which
decreased to 91.89%. Therefore, long-term parameters could
affect the sensitivity of LS-SVM and all 3 outcomes in K-NN.
Furthermore, the database used by Arias-Londoño et al [35]
and Souissi and Cherif [45] might increase the heterogeneity
in LS-SVM performance. Arias-Londoño et al [35] used the

UPM database, which is a Spanish sounds database, thus
excluding the study from the sensitivity and specificity forest
plot of LS-SVM, which decreased the heterogeneity to 58%
and 71%, respectively. On the other hand, Souissi and Cherif
[45] used voice samples from S (German speech samples
database), whereas the remaining studies used s from the English
speech samples database (MEEI; Multimedia Appendix 12).

Discussion

Principal Findings
This study systematically reviewed the performance of ML in
assessing voice disorders, similar to another study by Syed et
al [27] that examined the accuracy of ML algorithms at the
voice database level and qualitatively analyzed the accuracy of
each ML algorithm technique. It was concluded that LS-SVM
is the most common algorithm used in studies included in this
research, which aligns with our findings. Furthermore, the
performance showed the accuracy of LS-SVM to be >93%,
which was similar to our findings. Generally, ML performance
was found to be more promising when it was used as a screening
tool rather than in diagnosis, achieving >90% in all 3 outcomes
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(accuracy, sensitivity, and specificity). Second, the findings
differ significantly between the algorithms or even within the
same algorithm in different studies. For example, LS-SVM was
almost 100% in all 3 outcomes; however, Parzen classifier
showed sensitivity ranging from 74% to 100%. Because of the
limited number of studies, the performance of ML in ≤2 studies
remains unclear. This was also noticed in ML algorithms that
were used in the diagnosis, as only 1 study implemented ML
algorithms to differentiate between different disorders
(diagnosis). For example, the performance of QDA in screening
showed 83% accuracy, 91% sensitivity, and 68% specificity.
By contrast, it was found to be <76% in diagnosis, and the
percentage fell sharply in sensitivity and specificity in the same
study [43]. However, this finding could not be conclusive
because of the limited number of studies that used ML for
diagnosis (1 study).

The analysis implies that K-NN and LS-SVM showed the
highest accuracy. K-NN demonstrated increased specificity;
however, LS-SVM was found to be better at detecting true
positive cases. Because ML in the included studies was used as
a screening tool (pathological voice vs healthy voice), the ability
of ML to be more sensitive might be more important than the
ability to be specific. This may be due to the consequences of
diagnosing healthy voiced patients as pathological voice which
will only lead to further examination (stroboscopy). Moreover,
it will not cause any distress to the patient, as the diagnosis is
not final, and patients would only be referred for further
examination. However, in less sensitive tests, misdiagnosis of
patients can lead to harmful consequences.

Research and Practical Implications

Practical Implications
When a person’s strength, agility, and structure of vocal folds
result in pathological noise and reduced acoustic tone, their
vocal pathology may be serious enough to qualify as a voice
disorder. These disorders can be caused by tissue diseases and
changes in tissue, mechanical stress, surface discomfort,
systemic changes, changes in muscles and nerves, and many
other factors [48]. Research on has achieved a wide scope, partly
because of its societal benefits. Standard databases have been
developed to mitigate disorders and include new features and
emphasis on specific voice disorders while using deep neural
networks. Recently, subjective and objective evaluations of
vocal issues have received considerable attention in the research
field [49].

Subjective assessments may be conducted by clinicians, as they
focus on the patient’s voice and use different instruments to
discern various vocal disorder diagnoses. ML can be used as a
decision-support tool for clinicians conducting
auditory-perceptual assessments [14]. A second assessment,
known as “target evaluated assessments,” focuses on the
automatic, computer-based processing of acoustic signals. These
signals assess and recognize the underlying vocal pathology,
which may not be screened or diagnosed by a clinician [50].
Consequently, this type of evaluation is nonsubjective.
Furthermore, when using this type of assessment, voices can
be captured and stored at a global level via cloud technologies
by using various intelligent devices. This has been beneficial

for researchers across the globe, who can access the data through
different academic institutions.

Using ML as an assessment tool may reduce the learning gap
between experienced and inexperienced clinicians. Bassich and
Ludlow [20] found that the intrajudge test-retest agreement was
<75% when evaluating voice quality in patients with polyps or
vocal fold nodules; thus, the overall reliance on experienced
clinicians in voice assessment might be eliminated. Furthermore,
the practice of using instrumental assessments in practice could
be eliminated, as ML may reduce the need to conduct
instrumental assessments for more typical cases [27]. However,
eliminating instrumental assessments altogether may lead to
misdiagnoses, for example, if a patient with laryngeal cancer
was screened “as healthy,” the clinician may not have performed
a stroboscopic examination. Therefore, we aim to further our
study by establishing an ideal and automatic ML-based system.
We anticipate that this system will be sensitive, accurate,
efficient, and successful in detecting and diagnosing various
voice disorders quickly and effortlessly for both patients and
practitioners.

The review showed that ML provided optimum performance
in screening and diagnosing voice disorders to inform clinicians
of anomalies. A comparison of the performance of ML
algorithms, including accuracy, specificity, and sensitivity,
across studies is recommended owing to the different
characteristics of each study. The most commonly used ML
methods for diagnosing voice disorders in this review were
LS-SVM and artificial neural network algorithms. However,
the preference of applying 1 ML method to another was not
clearly explained in the studies. All studies used internal
validation (training and test splits and cross-validation) to
evaluate the ML quality. However, external validation is a
necessary procedure to evaluate the real quality of ML
predictions for new data. Therefore, external validation is
essential to implement ML in routine clinical practice to
diagnose voice disorders. Therefore, external validation must
be performed before using ML for any clinical diagnosis. None
of the ML methods investigated in this review used external
validation.

Implications for Research
This paper analyzes the literature related to the effectiveness of
using ML algorithms to screen and diagnose voice disorders.
It not only provides insight into the type of research conducted
over the last 2 decades but also highlights the areas of research
needing further experimentation and analysis. Researchers and
practitioners can use this research to improve their objective
screening or diagnosis of speech pathology. For instances, voice
disorders [23], MEEI [22], and UPM databases [51] are all
accessible to researchers interested in voice disorders case
studies. However, these data repositories are not without their
flaws. For instance, certain databases are uniformly classified
into healthy and unhealthy classes. These voices are, in turn,
generally categorized as “healthy” and “pathological” in most
of the research published using these data. Some databases do
not specify the severity of voice disorders or provide sufficient
details on the pathological symptoms during phonation. As such,
some samples may appear healthy normal despite being labeled
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as pathological, and vice versa. In addition, >1 disorder may be
used to label documents, which can be challenging to
incorporate or exclude samples in different languages [52]. The
nature of supervised ML, that is, “labeled,” tests require prior
knowledge of the reference standard finding to the
corresponding test. This may lead to a higher risk of bias in
some quality assessment tools, such as the QUADAS-2 tool,
which shows a high risk of bias in the index test domain. Future
researchers may wish to consider providing information on how
a reference standard was applied when examining the
performance of ML. Furthermore, these repositories may
determine a more specific judgment on suitable demographic
characteristics and how to appropriately classify these specifics.
Finally, differential diagnostic abilities for ML may be better
examined by dividing both the outcomes of each disorder as
well as their severity. This would allow for more definitive and
specific findings about the type of patients for whom ML may
be more effectively used.

Because ML in the included studies was used as a screening
tool (pathological voice vs healthy voice), the ability of ML to
be more sensitive might be more important than its ability to
be more specific. This may be due to the consequences of
diagnosing healthy patients as unhealthy (patients with
pathological voice), which will lead to further examination
(stroboscopy) and not cause patient distress, as the diagnosis,
at this point, is not final and patients would be referred for
further examinations. Misdiagnosing patients (less sensitive
tests) could lead to harmful consequences and distress, for
example, if life-threatening diseases such as laryngeal cancer
are misdiagnosed.

It should also be considered that ML can be used as a
decision-support tool by clinicians while subjectively judging
patients’ voices to determine whether they should undergo
further examinations. Applying the ML algorithm as a screening
tool could help in predetermining the patient’s voice condition.
Consequently, this could support the clinicians’ whole
management process in voice disorders assessment, especially
in their decision on whether to apply an instrumental
examination for the patient, a decision that is currently being
made subjectively. Therefore, applying ML as a screening tool
would reduce the gap between experienced and inexperienced
clinicians (the agreement was found to be <75%) [20], and the
overall reliance on experienced clinicians in voice assessment
might be eliminated. Furthermore, the use of instrumental
assessments in practice could be eliminated, as not all patients
will have to undergo instrumental assessments (ML might
reduce the need to use them for healthy cases). Therefore, the
cost of assessing voice disorders might be reduced.

Our findings also imply that ML can be used in web-based
methods to detect voice disorders. This means that the
algorithms can be used in smartphone apps or users’phone calls
to detect the presence of voice disorders or even track the
progress of their therapy. This might eliminate the amount of
time spent by the clinician to screen or diagnose or record the
progress of each follow-up. This study also found that
researchers may want to consider investigating the applicability
of various ML algorithms to identify and diagnose voice
disorders. moreover, adding to previously established databases

is recommended, which includes adding different languages,
such as the Arabic voice pathology database, to other
mainstream repositories.

Strengths
The key strength of this review is that it follows the DTA
systematic review and search strategy. First, this review was in
accordance with the Cochrane Library DTA systematic reviews,
and second, it used a variety of medical, computer, and
engineering databases. This increased the sensitivity of the
review and broadened the search, overcoming the limited
number of related articles. Moreover, in the screening process,
in cases where the relevance of the abstract was not clear, the
study was included in the full-text scanning. This eliminated
any chance of eliminating relevant articles from the review. In
addition, in the reference standard test, the inclusion criteria
were restricted to a controlled environment, which might have
ensured a more accurate and reliable result.

This is the first review to systematically assess the performance
of different ML algorithms in the assessment and diagnosis of
voice disorders. A total of 13 observational studies were
included, which recruited patients from both genders and
different age groups (13-85 years). In all, 14 ML techniques
were tested, 9 of which were included in the meta-analysis, and
their pooled accuracies, sensitivities, and specificities were
estimated.

Limitations
The main weakness of this review is the limited reporting by
primary studies; for example, the criteria for selecting voice
samples from the databases or the patient recruitment process,
the poor reporting of the demographic characteristics of the
sample, and the severity of the voice disorders in each case.
This hindered the ability to find sources of heterogeneity, as
subgroup analysis based on gender, age group or type, or
severity of each disease could not be investigated. Furthermore,
the main outcomes of the review could not be more specific to
a certain gender or age group or the type or severity of the
disease. Mentioning these details could have allowed for further
investigation of which factors—voice disorders, gender, or age
group—would determine the accuracy of ML performance. In
the patient selection domain, more than half (8/13, 60%) of the
included studies demonstrated an unclear risk of bias. The poor
reporting of how voice samples were chosen from the database
led to the estimated accuracy being subject to bias. The bias
increased when the voice samples were not chosen randomly,
as they might have been chosen based on unreported severities.
However, removing these studies from the meta-analysis was
not possible owing to the limited number of included studies.

All included studies (13/13, 100%) failed to report how the
reference standard was used, thus leading to an “unclear” risk
of bias assessment in the overall reference standard. This is
mainly due to the use of voice samples from a database;
therefore, the clinicians’ assessment was not performed by the
authors of the primary studies. Moreover, the clinicians’
assessment, which was applied by the chosen database, was not
reported in the studies. Not knowing how the assessment was
performed increased the risk of bias, and the outcome of the
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review was found to be unclear. Although the authors were
contacted to request further details about the choice of voice
samples and reference standard assessment, no response was
received. Poor reporting led to an unclear risk of bias in the
flow and timing of patients in almost all included studies (12/13,
92%), especially the lack of reporting of the time intervals
between clinicians’ assessment and the recording of patients’
voices. For example, if the recordings were made at intervals
of a few months after the clinician’s assessment, the patients’
condition could have changed from when the first recording
was made. Consequently, this increased the chance of
misclassification or misdiagnosis, as the voice sample diagnosis
could be different from the clinician’s diagnosis. Better reporting
of patients’ diagnosis and recruitment process would lead to a
clearer risk of bias assessment.

Conclusions
ML showed promising findings in screening, as its accuracy,
sensitivity, and specificity showed high performance. The
findings also suggested that ML can be further used in new
smartphone apps for screening purposes and that screening can
be conducted on the web. In scholarly research, more research
with specific patient demographics and disorders is
recommended. However, definitive conclusions could not be
drawn about the effectiveness of ML in diagnosing owing to
the limited number of studies (only 1). Therefore, we
recommend using ML as a decision-support tool for clinicians
during screening. For more definitive conclusions regarding the
use of ML in diagnosis, more studies are suggested to be
conducted, and risk of bias assessment that suits the application
of ML for medical purposes and supervised ML is encouraged.
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