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Abstract

Background: Visual analysis and data delivery in the form of visualizations are of great importance in health care, as such
forms of presentation can reduce errors and improve care and can also help provide new insights into long-term disease progression.
Information visualization and visual analytics also address the complexity of long-term, time-oriented patient data by reducing
inherent complexity and facilitating a focus on underlying and hidden patterns.

Objective: This review aims to provide an overview of visualization techniques for time-oriented data in health care, supporting
the comparison of patients. We systematically collected literature and report on the visualization techniques supporting the
comparison of time-based data sets of single patients with those of multiple patients or their cohorts and summarized the use of
these techniques.

Methods: This scoping review used the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) checklist. After all collected articles were screened by 16 reviewers according to the criteria, 6
reviewers extracted the set of variables under investigation. The characteristics of these variables were based on existing taxonomies
or identified through open coding.

Results: Of the 249 screened articles, we identified 22 (8.8%) that fit all criteria and reviewed them in depth. We collected and
synthesized findings from these articles for medical aspects such as medical context, medical objective, and medical data type,
as well as for the core investigated aspects of visualization techniques, interaction techniques, and supported tasks. The extracted
articles were published between 2003 and 2019 and were mostly situated in clinical research. These systems used a wide range
of visualization techniques, most frequently showing changes over time. Timelines and temporal line charts occurred 8 times
each, followed by histograms with 7 occurrences and scatterplots with 5 occurrences. We report on the findings quantitatively
through visual summarization, as well as qualitatively.

Conclusions: The articles under review in general mitigated complexity through visualization and supported diverse medical
objectives. We identified 3 distinct patient entities: single patients, multiple patients, and cohorts. Cohorts were typically visualized
in condensed form, either through prior data aggregation or through visual summarization, whereas visualization of individual
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patients often contained finer details. All the systems provided mechanisms for viewing and comparing patient data. However,
explicitly comparing a single patient with multiple patients or a cohort was supported only by a few systems. These systems
mainly use basic visualization techniques, with some using novel visualizations tailored to a specific task. Overall, we found the
visual comparison of measurements between single and multiple patients or cohorts to be underdeveloped, and we argue for
further research in a systematic review, as well as the usefulness of a design space.

(J Med Internet Res 2022;24(10):e38041) doi: 10.2196/38041
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Introduction

Overview
The digitization of health care processes has led to large volumes
of digitized patient data, enabling new scenarios for data
analytics and visualization. In addition to other forms of data
representation, visual representation is becoming increasingly
important for describing and analyzing data, as well as for
drawing conclusions from data and making decisions based on
them. The forms of visual representation are as diverse as the
data, stemming from all areas of the health care system, such
as the care of patients in various subareas of inpatient medicine,
such as internal medicine or surgery, emergency and intensive
care, and outpatient medicine. The presentation of individual
patient data is as important as the presentation of the aggregated
data of groups of individuals with certain characteristics. Thus,
it has become increasingly important to present individual
patient cases in such a way that they are comparable with each
other or with cohorts. This goal becomes even more tangible
as visualization systems enable the visual analysis of complex,
high-dimensional, and heterogeneous data for different
objectives.

Although visualization systems for electronic medical record
analysis have been developed for decades, most health care
information systems still lack basic information visualization
concepts. However, visual analysis and delivery of data in the
form of visualizations are of great importance in health care, as
such forms of representation can reduce errors and improve care
[1] and can also help provide new insights into long-term disease
trajectories. Information visualization and visual analytics also
address the complexity of long-term, time-oriented patient data
by reducing the inherent complexity and facilitating a focus on
underlying and hidden patterns [2]. Visualization techniques
for temporal data enable clinicians to quickly identify relevant
trends in patient health records. Visual comparison techniques
help clinicians look for differences between a particular patient’s
data and his or her group, allowing them to identify, for
example, whether treatment needs to be adjusted. In a research
context, exploratory data visualization for hypothesis generation
is a well-established approach to cohort analysis [3]. By using
appropriate interactive visualization techniques, both established
and emerging, clinicians and researchers can effectively and
efficiently detect patterns, explore relationships, and identify
anomalies.

Visualization of time-oriented data is a well-researched area of
information visualization across diverse domains, such as

finance, the environment, and life sciences. A book by Aigner
et al [4] reports on 101 different visualization techniques for
time-oriented data and is, to the best of our knowledge, the most
detailed review in this area. The research and design of
information visualization is a user-centric area and has led to
frameworks proposing a classification for a what-why-how
differentiation [5]. Munzner [6] suggested a general approach
for task-, data-, and user-driven visualization design, which is
currently a widespread method in the visualization community
and can be applied to time-oriented data [7]. On the basis of the
given aspects of data and time (what), as well as user objectives
and associated tasks (why), different approaches to visualization
techniques (how) have been described [4].

With the increasing availability of clinical patient data for
secondary use in clinical research, new opportunities for
longitudinal studies and data analyses are emerging. Existing
studies have captured time-oriented data visualization in health
care [4,8]. However, these reviews do not specifically focus on
comparing individuals with other individuals or cohorts.
However, the largest and most important task associated with
all available data is comparison, for example, with earlier
periods of a patient’s journey, other similar multiple patients,
or a cohort. We anticipate that this task will become increasingly
important and diverse in the future.

However, there appears to be a gap in research specifically
related to these visual comparison tasks. Rind et al [9] identified
this as an open challenge. In their systematic review, they
reported on time-oriented data visualization techniques in health
care and pointed out the lack of research on the comparison of
a single patient to a group of patients with similar histories. For
this reason, we specifically address the visualization techniques
used to compare single patients with multiple patients or with
a cohort and report on the differences and gaps in design for
single-patient, multiple-patient, and whole-cohort visualization.
Although information visualization and visual analytics are
well-established fields and their application in the medical field
has been explored for decades, the use of interactive
visualizations for the analysis of patients and their cohorts is
still a very active area of research. Therefore, we have gathered
works from both scientific fields, the medical informatics and
visualization community, to provide a comprehensive overview
of the state of the art.

This review aims to answer the following research questions
(RQs):
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• RQ1: Which visualization techniques are used to compare
time-oriented patient data with their cohort data?

• RQ2: What visual analysis objectives and tasks are being
supported?

• RQ3: What are the characteristics of the visualization
systems and applications?

The goal of this study was to provide an overview of
visualization techniques for time-oriented data in health care,
which support patient comparison. More specifically, we
systematically collected literature and report on the interactive
visualization techniques that support the comparison of
time-oriented data sets of a single patient with those of multiple
patients or their cohorts and summarized the use of these
techniques. The visualization systems are described according
to their medical characteristics, data type categories, and further
relevant visualization aspects of such interactions.

Background

Visually Analyzing Data With Information Visualization
and Visual Analytics
Historically, the field of visualization research has been divided
into 3 subfields: scientific visualization, information
visualization, and visual analytics. Although this division is
currently sometimes considered too arbitrary and outdated, it
helps to structure different techniques and applications.
Scientific visualization deals with data that have an inherent
spatial reference, such as volume data from medical imaging
or atomic coordinates in a molecule. The terms “information
visualization” and “visual analytics” are often used
synonymously, although they are not synonymous. However,
the division is often less clear: information visualization
represents abstract data in a visual context and expresses patterns
or trends that are inherent to the data (using mostly 2D
visualization methods, eg, line or bar charts). Information
visualizations are often interactive, enabling the manipulation
of data or the visualization for in-depth analysis. Visual analytics
also represents data in an interactive visual context but further
supports the discovery and identification process of patterns
and trends by combining automated analysis with interactive
visualizations; that is, visual analytics systems use information
visualization methods to communicate data. Moreover,
additional aids for facilitating the understanding of rather
complex data are provided and, therefore, are able to support
decision-making. The term visual analytics was originally
coined in 2005 in the context of complex data analysis systems
for homeland security [10], where it was already described
broadly as “the science of analytical reasoning facilitated by
interactive visual interfaces.” Currently, the visual analytics
approach is used in many different application areas, ranging
from security over software analytics to biology, medicine, and
health [11]. Often but not necessarily, it applies machine
learning methods to support data analysis.

As it is often unclear whether a system should be classified as
interactive information visualization or visual analytics, the
reviewed visualization systems covered both areas. Especially
in the health sector, time-oriented data visualizations play an
important role, both on the level of individual or multiple

patients and on the level of entire populations or cohorts;
therefore, they are important subjects of research in information
visualization and visual analytics. Although existing reviews
investigate visual analytic methods and techniques in public
health and report on techniques from an epidemiological point
of view [8], or focus on visual analytic methods and techniques
applied to public health and health services research [12], these
review visualizations for populations do not specifically address
the visual analysis of single patients.

Investigating Patients: Individual Patients, Multiple
Patients, and Cohorts
Historically, the first cornerstones in the field of exploring data
visualizations of individual patients were laid in LifeLines by
Plaisant et al [12]. Numerous visualization systems for electronic
patient records or their data analysis have been developed since,
such as Knowledge-based Navigation of Abstractions for
Visualization and Explanation (KNAVE) [13], KNAVE-II [14],
Visualization of Time-Oriented Records [15], LifeLines 2 [16],
EventFlow [17], and CareCruiser [18] to name a few. Tools and
concepts supporting the visual analysis of patient progression
and cohort comparisons are still under active investigation. A
recent example is a visual analytics approach that uses
dimensionality reduction to summarize and compare individual
participants. This method was used to transform intensive care
unit data from a controlled animal experiment into 2D curves
representing the changing status of participants, with the
possibility of characterizing the ensembles of the participants
[19]. Another recent study [20] investigated the visual analysis
of event sequences in the context of several topics, of which
health care constitutes only a minor portion. Research on the
applicability of the other approaches to the health care domain
is not covered and, thus, constitutes an avenue for future
research.

Existing systematic reviews report on the prevalence of
electronic health record (EHR) visualization techniques for
individual patients and multiple patients [9,21,22]. Most such
visualization systems support the task of analyzing either a
single patient or multiple patients. Depending on the context
and goal of the analysis, multiple patients with increasing
numbers can build up to a cohort. Time-oriented patient data
comprise event sequences of different data types, which may
be categorized (eg, numeric outcomes to categories) or
aggregated in time. The same holds for multiple patients.
However, time-oriented cohort data (as in epidemiology) differ
in that abstract characteristics such as life expectancy or
self-reported outcome measures, for example, pain scales, are
used for analyses. These data are often reported, for example,
as a calculated mean or median across a group of individuals
at specified time points.

Comparing Time-Oriented Patient Data
Comparison is a widely supported task in interactive
visualization systems [23]. When visually analyzing patient
data, the task of comparison is a common part of the process,
ranging from comparing information about a single patient to
comparing treatment responses at different times and comparing
patients in a cohort.
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Beyond the context of clinical research and patient care, an
increasing number of patients want to manage their own EHRs,
analyze their disease progression, and compare it with similar
patients, similar to the web-based platform patientsLikeMe [24].

However, comparison is not a single clearly defined task but a
range of tasks [23]. Brehmer and Munzner [5] specified 3 tasks
(or scopes) for the user goal to query a specific target: “identify,
compare, and summarize.” This is to query within the scope of
a single target (identify), multiple targets (compare), or a set of
targets (summarize).

The visualization of time-oriented data of a single or multiple
patients has been widely explored [9], and most techniques used
for visualizing the data of a single patient can be applied to
multiple patients up to a certain degree. However, the
visualization of cohorts is different in terms of how data are
aggregated in time and value. For example, cohort data in
clinical trials comprise data that are usually provided at specific
time points (number of visits or days aligned for a baseline
event) and, in most cases, are represented as statistical values
(eg, mean or SDs).

Comparisons within single patients or within cohorts may seem
trivial as the same visualization technique is applied for each.
However, this may not be the case for comparing a single patient
with a cohort, as both may be visualized using a different
technique.

Thus, visual comparisons can be supported in various ways.
However, the visualization of multiple records can produce
visual complexity when visualizing an excessive number of
patient records. Similar to Munzner [6], the survey by Gleicher
et al [23] emphasizes the exploration of designs for the
information visualization of complex data objects, such as
graphs, tabular data, and surfaces, and proposes a general
taxonomy of visual designs for comparison. Both works
differentiate between 3 types of visual comparisons, namely,
juxtaposition (or separation), superposition (overlay), and
explicit encoding (explicit representation of the relationships),
as well as a combination of these. Juxtapositioning means
displaying 2 elements that are the subject of the comparison
next to each other, whereas superposition means showing them
on top of each other in the same view. Gleicher et al [23] found
that comparison tasks became more difficult with more complex
data objects and when more objects are to be compared, whereas
abstracting the data before the comparison can simplify the task.

Methods

Protocol and Registration
This scoping review was conducted in accordance with the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses extension for Scoping Reviews)
approach. We drafted the protocol for our review by following
the checklist in the study by Tricco et al [25]. As this scoping
review reports primarily on visualization techniques rather than
on the outcomes of medical studies and PROSPERO
(International Prospective Register of Systematic Reviews) does
not accept scoping reviews, the protocol has not been registered
and published.

Eligibility Criteria
On the basis of the presented objective and RQs, we developed
criteria for articles to be eligible for review. Articles need to
report on a visualization technique, visualization system, or
design study supporting the visual analysis of time-oriented
patient data to compare a single patient with multiple patients
or a patient cohort.

The inclusion criteria were as follows: (1) articles on
visualization techniques of time-oriented patient data; (2) articles
on systems, applications, or prototypes to support the visual
analysis of time-oriented patient data; (3) implementation of
tasks to support the visual analysis of time-oriented patient data;
and (4) study of a visualization technique for time-oriented data
in which physicians or clinical researchers have undergone a
test (or questionnaire).

The exclusion criteria were as follows: (1) articles not in
English; (2) articles not focused on abstract time-oriented patient
data, for example, medical imaging methods (eg, positron
emission tomography, magnetic resonance tomography,
functional magnetic resonance imaging, and computed
tomography); (3) articles on 3D visualizations supporting
surgery, operations, or other medical interventions, for example,
augmented or virtual reality applications; and (4) articles on
deep learning and other machine learning approaches (using
patient data), where visualization is solely used to present the
implementation.

Articles focusing on medical imaging methods were excluded
as they did not fit the information visualization aspect. Although
these use imaging methods and are sometimes called (scientific)
visualization, they do not visualize abstract time-oriented patient
data.

The criteria were revised during the screening process, and we
specified the comparison aspect more strictly to exclude articles
on visualizations where comparing single patients to a cohort
was not supported, either explicitly or implicitly.

Information Sources
To collect potentially relevant articles, we searched the
following publication databases: PubMed, IEEE Xplore, ACM
Digital Library, and the Web of Science core collection. We
identified 4 major areas that reflected the concepts of our RQs:
time, visualization, data, and health care. Starting with these,
we drafted the main sets of keywords based on terms and
synonyms from the literature. Along with an experienced
librarian, we further refined our search strategy. The full search
queries for the different databases are provided in Multimedia
Appendix 1. The search was performed on July 2, 2020. The
search results were imported into Citavi reference management
software. Duplicates were removed after import.

Search
The initial search strategy was developed by a librarian from
the library of the Medical Faculty Mannheim of the University
of Heidelberg and was aimed at searching only titles and
abstracts. It contained the 4 aspects mentioned earlier: time,
visualization, data, and health care. The search strings were
reviewed and improved through 3 iterations, and 4 of the
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reviewers approved the final search strategy. The final search
string for PubMed is shown in Textbox 1.

Details of searches on the other databases can be found in
Multimedia Appendix 1.

In addition to the database searches, we identified the following
reviews regarding the visualization of time-oriented health care

data: West et al [21], Preim and Lawonn [8], and Aigner et al
[4].

We examined the reference lists of these reviews and identified
13 articles that we considered a fit for our search but were not
included in our search results. To address the search for potential
gray literature, we included articles from IEEE VIS annual
meetings and workshops on time or sequence visualizations.

Textbox 1. Search aspects and PubMed search string.

Time

• (“temporal data”[tiab] OR “temporal sequence*”[tiab] OR “temporal pattern*”[tiab] OR “temporal abstraction*”[tiab] OR “temporal event*”[tiab]
OR “time sequence*”[tiab] OR “time series”[tiab] OR “time period*”[tiab] OR “time frame*”[tiab] OR “timeframe*”[tiab] OR timeline*[tiab]
OR time-oriented[tiab] OR (“time”[tiab] AND “events”[tiab])) AND

Visualization

• (visuali*[tiab] OR “visual analy*”[tiab]) AND

Data

• (data[tiab] OR information[tiab]) AND

Health care

• (patient[tiab] OR patients[tiab] OR “health care”[tiab] OR health care[tiab] OR cohort*[tiab] OR “electronic health record*”[tiab])

Selection of Sources of Evidence
In the first screening step, 16 reviewers working in groups of
2 independently screened titles and abstracts for eligibility. In
this first screening, we only focused on visualizations of
time-oriented patient data and did not include criteria for the
comparison of a single patient with a cohort. Disagreements
were resolved through discussion and consensus of a third
reviewer.

In accordance with our objectives, we discussed the results of
the screening and continued to perform a second screening step
to apply the criteria of single-to-multiple or cohort comparisons.

The titles, abstracts, and full texts of the remaining articles were
skimmed for eligibility for an in-depth full-text analysis. The
remaining publications were used for data extraction.

Data-Charting and Extraction Process
For the data extraction, a data-charting form was developed and
refined throughout several iterations. The initial form included
several categories and abstractions for meta-information,
medical context, data, and visualization aspects.

The form was tested by 4 reviewers by applying it to 2 randomly
selected articles, of which 1 was assigned to each reviewer. We
discussed our findings for corrections and reconciliations
throughout the iterative process and released the final version
of the form.

Data Items
For each of the included articles, we specifically focused on
four major aspects: (1) meta-information of the article (authors,
year, and digital object identifier), (2) medical characteristics
(disease, medical context, and medical objective), (3) data type
categories (type of medical data, data type, temporality,

temporal spread, and availability of data set), and (4)
visualization aspects (visualization technique, tasks, interactions,
comparison, and evaluation). We extracted several data items
for each aspect.

The meta-information was collected from the respective
literature databases. It requires no further categorization but can
be used to sort and compare publications, for example, by author
or year and venue of publication.

The section on medical characteristics comprises Medical
Subject Headings (MeSH) terms for the diseases and medical
objectives. The medical context was clinical research, clinical
care, or both. For the extraction and grouping of medical data
types, we used the following categories: encounter (or transfers
or movements), diagnosis, procedure, laboratory results,
medication, cardiology findings, activity, condition, clinical
note, treatment plan, tumor severity, survival, Framingham Risk
Score, and patient-reported outcome. The categories were based
on hierarchically high-ranked concepts of clinical terminology
in the MeSH thesaurus and their frequency in the included
studies.

The data type categories were further distinguished as
qualitative, quantitative, categorical, and free-text. Data
temporality was determined for the time primitives (single time
points, time intervals, or both) and temporal arrangement as
either sequential or cyclic. The temporal spread was extracted
as short (from hours up to a few days), long (longer than a few
days), and short to long (from hours to several days). Data
availability was either described as yes (including restricted
availability), no (if not available), or not applicable if no further
information was given.

In the context of visualization, we applied Visual Vocabulary
[26] to the visualization techniques found in the studies. Visual
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Vocabulary aims to improve chart literacy for people outside
the visualization research community. This visual overview
classifies visualization techniques by their main objective and
structures them into 9 categories such as part to whole or
correlation. The category of change over time is particularly
relevant to our investigation of temporal patient data and
contains techniques such as line charts, calendar heatmaps, or
Priestley timelines. The latter shows sequential and parallel
events on a temporal x-axis, is similar if not synonymous to
Gantt and span charts, and is often simply labeled as “event
timeline.” Although Visual Vocabulary is not a standardized
taxonomy, it is used in both academia and practice. Other
reviews of visualization techniques [27] used the taxonomy
proposed by Borkin et al [28], which is a mix of basic graphs,
data, and task-oriented categories but does not include time as
a specific category. Wilke [29] discussed temporal data
visualizations but did not include them in his Directory of
Visualizations.

Visualization systems are intended to support a wide set of tasks
ranging from simple ones such as finding the laboratory value
of a specific patient at a given date to more complex tasks such
as comparing the progression of multiple characteristics of all
patients within a cohort. To discuss the similarities and
differences of such diverse tasks, different frameworks of
abstract task descriptions have been proposed.

The extraction of tasks in our review was based on the widely
used taxonomy for task abstractions by Brehmer and Munzner
[5], whereas the extraction of actions and targets relied on the
taxonomy by Munzner [6].

At the top level of the taxonomy by Munzner [6], visualization
systems can be categorized according to the user objectives and
associated tasks—why users use visualization techniques in
terms of actions and targets. Actions can be classified as analyze,
search, and query, and these can be further split into
subcategories. Regarding visualization systems of the category
of analyze, a distinction can be made among, for example,
offering data analysis for viewing, understanding information,
and creating new information. Consuming information includes
the discovery of new insights based on visualized data (Analyze:
Consume: Discover), as well as using the visualization for
presenting insights to others (Analyze: Consume: Present) [6].

We opted not to use the health data–specific task taxonomy by
Theis et al [30] as it is designed to capture tasks from the
perspective of patients. The data-driven taxonomy by
Rostamzadeh et al [31] provides a framework for activities and
tasks at different levels of granularity (activities, subactivities,
tasks, and subtasks) and proposes 3 major categories:
interpretation, monitoring, and prediction. However, comparison
is not explicitly defined as a task but rather mentioned as an
inherent task between interpretation (overview: visually
compare) and prediction (recognize: similarity). Consequently,
we considered this taxonomy unsuitable for the collection of
comparison tasks. Therefore, we applied the taxonomy by
Gleicher et al [23] for comparison.

We focused on comparison tasks between different types of
relationships: single-to-single patient comparison (1-1),
single-to-multiple patients comparison (1-n), single-to-cohort

comparison (1-1), and cohort-to-cohort comparison (1-1 or 1-n).
“Single to single” comparison means that users can compare
individual patient data over time with a nominal or target value
or with another single patient. “Multiple patients” stands for ≥2
patients with similar traits or characteristics and, in contrast to
cohorts, are an ad hoc group (ie, a dynamically selected subset
of patients). This includes comparing data, such as time points
and time intervals for procedures, diagnosis, laboratory values,
and encounters, across patients. The data are often aggregated,
as is the case in flow-based or stage-based approaches (eg, Guo
et al [32]). By contrast, cohorts are patient collectives in a
clinical or academic research setting; that is, cohorts generally
include more patients than “multiple patients.” These data tend
to be 1D for ≥1 group. This could be averaged over the entire
cohort.

More details about the items and their concrete sets of attributes
are available in Multimedia Appendix 2 [15,16,18,33-51].

Critical Appraisal of Individual Sources of Evidence
We critically appraised the individual sources specifically for
the comparison task. Visual comparisons can be made between
≥2 individual patients, between patients and a cohort, and
between cohorts. During the charting process, we systematically
collected and collectively discussed visualization techniques in
studies in which the applicability to the RQs was in doubt.
Included articles that mentioned both visualization and
comparison but did not suit our RQs, for instance, because of
the comparison of 2 visualization systems, were excluded from
the collection. For uncertain cases, in which the explicit
comparison of single patients against a cohort was not clearly
provided, we critically evaluated whether the visualization
technique could implicitly or potentially facilitate that objective.

Synthesis of Results
For the synthesis of results, evidence is presented in the form
of charts and tables. For the aforementioned data items, we
present and justify our selection of terms, schemas, and
taxonomies for different relevant attributes to extract. We
combined top-down and bottom-up methods in an iterative
approach and adapted and refined the terms where necessary.

We aimed to specifically report on the collected visualization
techniques and interactions for the comparison task, as well as
summarize the disease, medical objective, and the corresponding
medical data types.

For the quantitative analysis, we created charts for articles
according to the publication year. We used different tools for
the analysis, ranging from a simple dashboard tool for
preliminary analysis [52] to Jupyter notebooks, using the data
analysis library Pandas and the visualization library Altair for
exploratory data analysis. The resulting visualizations were also
used to inform the qualitative analysis of the selected
characteristics of the articles.

Results

Selection of Sources of Evidence
We identified 1154 articles through individual database searches.
Following separate imports into the reference management
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software (Citavi) for each database, we removed 26.95%
(311/1154) of duplicates electronically. As a first screening
step, the titles and abstracts of the 73.05% (843/1154) remaining
articles were checked by 16 reviewers, with each article being
screened independently by 2 reviewers. Approximately 70.5%
(594/843) of papers were excluded based on the study's inclusion
and exclusion criteria. In the second screening step, of the 843
articles, we skimmed the full text of 249 (29.5%) articles, of
which 192 (22.8%) were excluded as they did not report on the

task of comparing patients or cohorts. In the following review
step, the full texts of the remaining 57 articles were analyzed
in depth for the comparison task, of which 35 (61%) articles
were removed as the task of comparing a single patient to
multiple patients or a cohort was not provided explicitly,
implicitly, or potentially. Of the 843 articles, 22 (2.6%) were
included in the synthesis. The PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) flow diagram
is presented in Figure 1.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram showing the identification, screening, and
inclusion of articles.

Characteristics of Sources of Evidence

Overview
We included 22 articles in the scoping review. Most (17/22,
77%) of the included articles were explicitly either
single-to-cohort or single-to-multiple comparisons and
implemented a comparison visually. The remaining articles
(5/22, 23%) were single-to-single (1/5, 20%) or either
cohort-to-cohort or multiple-to-multiple (4/5, 80%) comparisons.
We included these 5 articles as the presented techniques, in our

opinion, could potentially be applied or extended easily to
handle a single-to-cohort or single-to-multiple comparison.

All included articles were published between 2003 and 2020.
Of the 22 articles, 8 (36%) were published before the review
by Rind et al [9] in 2013.

Medical Context
We looked at the medical setting in which the visualization
research took place. Medical context in the corpus was mainly
clinical research (13/22, 59%), clinical care only (4/22, 18%),
and both areas (5/22, 22%; Table 1).

J Med Internet Res 2022 | vol. 24 | iss. 10 | e38041 | p. 7https://www.jmir.org/2022/10/e38041
(page number not for citation purposes)

Scheer et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Medical context in the selected articles (N=22).

Articles, n (%)StudiesMedical context

4 (18)Atherton et al [45], Klimov and Shahar [15], Wang et al [16], and Borhani et al [38]Clinical care

13 (59)Gschwandtner et al [18], Gotz and Wongsuphasawat et al [41], Stubbs et al [35], Tao
et al [46], Gotz et al [42], Cho et al [47], Browne et al [48], Dabek et al [49], Ka-
maleswaran et al [40], Gomov et al [39], Wildfire et al [34], Nickerson et al [50], and
Polack et al [37]

Clinical research

5 (22)Guo et al [43], Rogers et al [36], van Dortmont et al [33], Magallanes et al [44], and
Dahlin et al [51]

Clinical research or clinical care

Disease
Most of the included articles (9/22, 41%) reported on
pathological conditions, signs, and symptoms. The second most
frequent diseases mentioned were related to wounds and injuries
(2/22, 9%), neoplasms (2/22, 9%), or cardiovascular disease
(2/22, 9%).

Medical Objective
Nearly all reviewed articles were found to have “Treatment
Outcome” (16/22, 73%) as the primary medical objective. The
second most frequent and equally distributed were “Patient
Outcome Assessment” (3/22, 14%) and “Disease attributes”
(3/22, 14%).

Results of Individual Sources of Evidence

Data
The medical data types identified for visualization and patient
comparison contained in the included sources of evidence ranged
from the laboratory (13/22, 59%), vital signs (9/22, 41%), and
procedures (8/22, 36%) to diagnosis (8/22, 36%). An overview
of all extracted data types is provided in Table 2.

The temporal spread of the data was extracted as short (for a
couple of hours to less than a few days), long (for more than a
few days), and short to long (for data ranging from hours to
more than a few days). Most articles reported on either a long
(10/22, 45%) or short to long (9/22, 41%) temporal spread, and
one of the articles reported on a short (1/22, 4%) spread only.
In 4% (1/22) of articles, we could not determine the temporal
spread of the data.

Table 2. Medical data types in included articles.

Articles, n (%)StudiesMedical data types

13 (59)Atherton et al [45], Klimov and Shahar [15], Wang et al [16], Borhani et al [38],
Gschwandtner et al [18], Stubbs et al [35], Gotz and Stavropoulos [42], Browne et al
[48], Gomov et al [39] Wildfire et al [34], Guo et al [43], van Dortmont et al [33], and
Magallanes et al [44]

Laboratory

9 (41)Borhani et al [38], Stubbs et al [35], Cho et al [47], Browne et al [48], Gomov et al
[39], Wildfire et al [34], Nickerson et al [50], Polack et al [37], and van Dortmont et
al [33]

Vital signs

8 (36)Wang et al [16], Gotz and Wongsuphasawat [41], Stubbs et al [35], Tao et al [46],
Gomov et al [39], Guo et al [43], Rogers et al [36], van Dortmont et al [33], and Dahlin
et al [51]

Procedures

8 (36)Stubbs et al [35], Tao et al [46], Gotz and Stavropoulos [42], Dabek et al [49], Gomov
et al, 2017 [39], Guo et al [43], van Dortmont et al [33], and Dahlin et al [51]

Diagnosis

5 (23)Gotz and Wongsuphasawat [41], Gotz and Stavropoulos [42], Browne et al [48], Gomov
et al [39], and Guo et al [43]

Medication

5 (23)Wang et al [16], Dabek et al [49], Guo et al [43], van Dortmont et al [33], and Magal-
lanes et al [44]

Encounters (or transfers or move-
ments)

5 (23)Atherton et al [45], Gotz and Wongsuphasawat [41], Stubbs et al [35], Nickerson et
al [50], and Rogers et al [36]

Patient-reported outcomes (or out-
comes)

5 (23)Stubbs et al [35], Kamaleswaran et al [40], Polack et al [37], van Dortmont et al [33],
and Gotz and Wongsuphasawat [41]

Cardiology

4 (18)Browne et al [48], Nickerson et al [50], Polack et al [37], and Rogers et al [36]Activity

3 (14)Tao et al [46], Dabek et al [49], and Rogers et al [36]Conditions

2 (9)Gotz and Wongsuphasawat [41] and van Dortmont et al [33]Clinical notes

2 (9)Gschwandtner et al [18] and (treatment plans) Dahlin et al [51] (tumor severity and
survival)

Other
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Visualization Techniques
The visualization system comprised ≥1 visualization technique
(mean 2.86, SD 1.36). Most (18/22, 82%) of the articles
combined multiple visualization techniques, although some of
the used techniques were not explicitly directed at the
comparison task and were rather used for auxiliary visualizations
or for purposes not related to the comparison. Some articles
(4/22, 18%) implemented only 1 visualization technique,
whereas some (4/22, 18%) featured more complex visualizations
using a combination of up to 5 techniques. Systems provide
multiple techniques by showing them either side by side
(juxtapositioned, eg, in coordinated multiple views or in a
dashboard), overlaid (superpositioned, ie, resulting in combined
visualizations), or on different pages within a system (eg,
interactively switching between multiple views). We identified
all visualization techniques and grouped them according to what
they mainly intended to show (see the visualization categories
in Figure 2).

In general terms and detached from the restriction of analyzing
only the articles with explicit single-to-cohort or multiple
comparisons, the major visualization techniques identified in
our review are line and Priestley timeline charts, histograms,
scatterplots, and bar charts.

Out the 22 articles, 17 (77%) included at least one technique to
show change over time, with 2 (9%) articles [36,37] using 3
techniques from this group and 6 (27%) articles using 2
techniques. Overall, we identified 27 occurrences to visualize

the progression of 1 or multiple attributes. The most frequently
used were temporal line charts (8/22, 36%) and event timelines
(8/22, 36%), followed by columns (4/22, 18%), connected
scatterplots (2/22, 9%), and fan charts (2/22, 9%). Techniques
used once ranged from calendar heat maps to area charts and
candlesticks.

The second largest visualization category was distribution, with
41% (9/22) of articles having ≥1 technique from this group. Of
the 22 articles, overall, we extracted 12 occurrences of
techniques showing the distribution of values: histograms were
used in 7 (32%) articles, box plots in 3 (14%), and violin plots
and barcode plots in 1 (4%) article each.

The third largest category supports the analysis of correlation,
with scatterplots (5/22, 23%) and bubble charts (2/22, 9%) being
the most applied techniques.

Other techniques used more than once included Sankey charts
(3/22, 14%) from the flow category, bubble charts, network
diagrams, stacked bars, and dot strip plots (2/22 each, 9%) from
various other categories.

Using the taxonomy for visual comparison by Gleicher et al
[23], we found that most works either applied juxtaposition
(10/22, 45%), some (4/10, 40%) of which featured an additional
explicit encoding of the relationship, or superpositioning (10/22,
45%), some (3/10, 30%) of which featured explicit encoding.
Only 9% (2/22) of studies applied both juxtaposition and
superposition, and only a single study applied an additional
explicit encoding.
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Figure 2. Visualization techniques in the selected articles. Each dot indicates the existence of the technique in a system, with full saturated dots
representing the application of the technique for the explicit task of comparison. References within the gray background were identified to support the
comparison of multiple patients (single-to-cohort or single-to-multiple). Colors indicate the visualization category, with the bars on the right showing
the distribution of the techniques. Bars at the bottom represent the number of techniques identified for each article. Techniques are sorted based on the
number of occurrences, and articles are sorted based on the year of publication.

Tasks
User objectives can be characterized by task pairs of actions
and targets (compare data items). We have summarized these
for the articles in Figure 3.

In all the tasks of the reviewed articles, the action of discovering
new knowledge in the visualized data is presented (Analyze:
Consume: Discover). Only 9% (2/22) of articles featured the
action of presenting visualized data as the main action (Analyze:
Consume: Present).

The second most frequent action in this category was derive,
creating new material from the shown data (Analyze: Produce:
Derive; 10/22, 45%). Only one of the articles supported
annotation (Analyze: Produce: Annotate): the ChronoCorrelator
supports tagging events with free-form texts that can be used
later on, for example, to highlight or filter events for further
exploration [33]. In the category of search, the actions locate
(13/22, 59%), finding a known target at an unknown position,
and explore (13/22, 59%), searching for an unknown target at
an unknown position, appeared most frequently. The actions of
lookup (11/22, 50%), looking for a known element at a known

location, and browse (8/22, 36%), browsing for ≥1 element
without knowing their identity but knowing their characteristics,
appeared less frequently. The most frequent action from the
category of query was compare (Query: Compare; 20/22, 91%),
comparing multiple targets, a result we expected because of our
RQ, followed closely by the task of identify (Query: Identify;
18/22, 82%). The least frequent was the action of summarize
(Query: Summarize; 10/22, 45%).

The targets of the actions were heterogeneous, with a notable
exception being All Data: Trends (19/22, 86%), which appeared
more frequently than others. Targeting outliers (All Data:
Outliers) and features (All Data: Features) was part of 54%
(12/22) and 50% (11/22) of articles, respectively. However,
correlation as a target (All Data: Correlation) was only featured
once (1/22, 4%). Actions can target ≥1 attribute of data. The
most frequent attribute from the category many was similarity
(Attributes: Many: Similarity; 11/22, 50%), followed by
dependency (Attributes: Many: Dependency; 8/22, 36%) and
correlation (Attributes: Many: Correlation; 7/22, 31%).
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The targeting of a single attribute occurred less frequently with
distribution (Attributes: One: Distribution; 10/22, 45%),

appearing far more often than extremes (Attributes: One:
Extremes; 3/22, 14%).

Figure 3. Identified tasks (actions and targets) in the included articles. The plot shows the tasks as actions (analyze, query, and search) and targets (all
data, attributes, and network data) that could be completed by visualization systems presented in the articles in our selection. For the categorization of
tasks, we used the taxonomy by Munzner [6]. Gray backgrounds indicate articles where patients (single-to-cohort or single-to-multiple) could be
compared. Bars on the right-hand side represent the number of articles that used the displayed task category.

Interaction Techniques
Although interactions offer a way of facilitating a more
explorative method of data analysis, more than one-quarter of
the articles of interest (6/22, 27%) did not offer any interaction
(“No interaction” in the middle of Figure 4) regarding the main
task—the comparison of single patients with multiple patients
or cohorts.

The most frequent interaction possibility found in 41% (9/22)
of the articles was the interactive selection of the individual
patient or the composition of the cohort. In addition,
approximately half of the articles (10/22, 45%) offered an
interactive way of showing additional information (details on
demand; 8/22, 36%), using hover (6/22, 27%), highlighting
(4/22, 18%), or other techniques. The other most commonly
used interactions were align (7/22, 32%), filter (8/22, 36%),
select measure (7/22, 32%), and zoom and pan (8/22, 36%).

In most studies in scope comparing a single patient with a cohort
or multiple patients (17/22, 77%), we identified the selection
of a patient and the definition of a cohort as a key interaction
technique (select patient or cohort; 6/17, 35%).

This was followed by details on demand (5/17, 29%) and
hovering (4/17, 23%). Only 23% (4/17) of these studies did not
use any interaction technique for the comparison task.

Depending on the objective of the visualization system to
explicitly explore, analyze, and compare patient data, up to 4
interaction techniques are applied directly to support the task
for single-to-single or single-to-cohort comparisons [34].
Approximately half of the included articles (9/22, 40%)
supported only a single interaction technique for the main task
of comparison, whereas some (8/22, 36%) articles combined
≥2 interaction techniques to support the comparison of data
elements.
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Figure 4. Interaction techniques identified in all included articles. Dark blue dots indicate the explicit application of interaction for the task of comparison.
Light blue dots indicate the existence of interactions in the system. References within a gray background were identified to support the comparison of
multiple patients (single-to-cohort or single-to-multiple).

Individual Results of Visualization Techniques for
Comparisons

Overview

In this section, the individual results of some of the included
articles are presented. The most frequent visualization
techniques are shown, and a more detailed analysis is provided
for line charts, Priestley timelines, scatterplots, and histograms.

For the visual comparison of time-oriented patient data from
the category of change over time, line charts and Priestley
timelines were used most frequently. The second most
commonly used visualization categories were distribution and
correlation, with histograms and scatterplots. Depending on the
complexity of the presented visualization system, between 1
and 5 visualization techniques were used to visually support a
comparison (Figure 2). Table 3 summarizes the visualization
techniques used for comparison, the supported combinations
of patient entities, and the used visual comparison approach.
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Table 3. Overview of all articles containing visualization techniques for comparison.

Visual comparison by Gleicher et al [23]Type of comparisonVisualization technique supporting
comparisons

Author

s-sb, s-mc, and s-cdKamaleswaran et al [40]a • s-s: superposition+juxtaposition• Distribution: barcode plot
• Change over time: line • s-m: superposition+juxtaposition

• s-c: superposition+juxtaposition• Distribution: histogram

s-s, s-m, and s-cGomov et al [39]a • s-s: juxtaposition• Change over time: calendar
heat map • s-m: juxtaposition

• s-c: juxtaposition+explicit encoding

s-s and s-mAtherton et al [45]a • s-s: juxtaposition• Change over time: Priestley
timeline • s-m: juxtaposition

s-s and s-mGschwandtner et al [18]a • s-m: juxtaposition+explicit encoding• Correlation: scatterplot
• Change over time: columns • s-s: juxtaposition+explicit encoding
• Change over time: candlestick

s-s and s-mTao et al [46]a • s-s: juxtaposition• Change over time: Priestley
timeline • s-m: juxtaposition

• Flow: Sankey

s-s and s-mGuo et al [43]a • s-s: juxtaposition• Change over time: columns
• Part to whole: tree maps • s-m: juxtaposition

s-sBrowne et al [48] • s-s: juxtaposition• Change over time: columns
• Change over time: connected

scatterplot

s-mWildfire et al [34]a • s-m: superposition• Change over time: line

s-c, s-m, m-me, s-s, and c-cfWang et al [16]a • s-c: juxtaposition• Change over time: Priestley
timeline • s-m: juxtaposition+explicit encoding (ad-

ditive)• Distribution: histogram
• Part to whole: stacked column

or bar

s-c and s-mKlimov and Shahar [15]a • s-c: superposition• Change over time: line
• s-m: superposition

s-c and s-mStubbs et al [35]a • s-c: superposition• Change over time: line
• s-m: superposition

s-c, c-c, c-mgGotz and Wongsuphasawat [41]a • c-c: superposition• Flow: Sankey

s-cBorhani et al [38]a • s-c: superposition• Correlation: scatterplot

s-c—hvan Dortmont et al [33]a • s-c: superposition+explicit encoding

c-c, s-mGotz and Stavropoulos [42]a • c-c: superposition+explicit encoding (an-
imation)

• Correlation: bubble

c-c and s-cDabek et al [49]a • c-c: juxtaposition• Flow: network
• s-c: juxtaposition

c-c and s-cDahlin et al [51]a • c-c: superposition• Change over time: connected
scatterplot • s-c: superposition

c-c and m-mCho et al [47] • c-c: juxtaposition+explicit encoding (ad-
ditive)

• Deviation: Surplus or deficit
filled line

• Change over time: columns
• Change over time: line
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Visual comparison by Gleicher et al [23]Type of comparisonVisualization technique supporting
comparisons

Author

• c-c: juxtaposition+explicit encoding, su-
perposition+explicit encoding

• s-c: juxtaposition

c-c and s-c• Change over time: line
• Change over Time: fan chart
• Change over time: Priestley

timeline

Rogers et al [36]a

• c-c: juxtapositionc-c• Correlation: XY heat mapNickerson et al [50]

• c-c: superposition+explicit encoding (ad-
ditive)

c-c• Change over time: Priestley
timeline

Polack et al [37]

• c-c: superpositionc-c• Distribution: box plot
• Correlation: scatterplot

Magallanes et al [44]

aContain a comparison of single patients to cohorts or to multiple other patients, as visualized in Figure 2.
bs-s: single-to-single.
cs-m: single-to-multiple.
ds-c: single-to-cohort.
em-m: multiple-to-multiple.
fc-c: cohort-to-cohort.
gc-m: cohort-to-multiple.
hNot available.

Visualizing Change Over Time: Line Charts and Timelines

This section provides a qualitative description of some of the
key findings regarding the main RQ. Of the 22 articles, 5 (23%)
used line charts for comparison, of which 4 (18%) specifically
provided a visualization of the task of comparing single patients
to multiple or a cohort of other patients. Few (2/22, 9%) of these
studies used the Priestley timelines in addition to line charts;
therefore, they applied 2 change over time techniques.

The line chart used by Klimov and Shahar [15] demonstrated
the visualization of a single concept over time; that is, the
visualization of a single raw parameter (eg, carbon dioxide)
over time for 1 group of patients (Figure 5, top right). The chart
displays the top line for the maximal values, the bottom line for
the minimal values, and the wide line (thick line) in the middle
for the average values in the selected group of patients. The
selected patient is displayed as an additional line, which, among
other techniques, facilitates the comparison of a single patient
with the cohort for this single parameter over time.

In Sim-TwentyFive by Stubbs et al [35], multiple multiline
charts (arranged as small multiples) displayed various patient
parameters for multiple similar patients (Figure 5, center right).
Similar to the study by Klimov and Shahar [15], color coding
was used to highlight the queried, selected, or most recently
selected patient (green, white, or yellow, respectively), which
enabled an easy comparison of the lines of interest, whereas
unselected patients remained partially transparent black. In
addition, aggregate polygons could be superimposed optionally
to visualize the cohort mean and SD of a measure.

Similarly, Wildfire et al [34] used a multiline chart to display
the development over time of multiple patients for a single
selected patient measure (Figure, 5 top left). The time axis could
be switched between days (starting at the baseline event of a
study) or visits (the number of visits in a study). At the end of

each multiline chart, a box plot representation helped compare
the single selected patient line with the overall value across the
cohort.

The line chart of Rogers et al [36] allowed a multitude of
interactions, ranging from aggregation to normalization, serving
primarily to show the development of self-reported patient
outcomes over time for different cohorts and individual patients
(Figure 5, bottom right). Individual patient scores could be
viewed in a multiline chart, which enabled a comparison
between patients. Color coding based on the calculated quartiles
across the cohort could also enable individual patient
comparisons with the cohort.

Composer by Rogers et al [36] and SafetyExplorer by Wildfire
et al [34] used Priestley timelines in addition to line charts.
Composer shows Patient-Reported Outcomes Measurement
Information System scores over time as line charts and patient
procedure code history in a Priestley timeline. The 2
visualizations (Figure 5, right) are time aligned with new time
range selections reflected in both views. One or multiple patients
can be selected in the nonaggregated line chart whose procedure
code histories are shown in the Priestly timeline. In contrast,
SafetyExplorer provides a line chart and event timeline on
separate pages rather than in a coordinated manner. The suite
provides all views as components.

Chronodes by Polack et al [37] explicitly showed only the use
of Priestly timelines in the context of a cohort-to-cohort
comparison. In detail, they used event glyphs called “kebabs”
to show the occurrences of specific, differing event sequences
preceding or following single or multiple shared sequences of
events, called “focal events.” As the relative frequency of the
preceding or following sequence was shown, this allowed the
user to compare cohorts (ie, groups sharing the same focal
event).
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The aforementioned articles used these techniques for the task
of comparing patients, and several articles also featured the
same techniques but for tasks other than comparison.

For example, Borhani et al [38] also used line charts to display
individual patient parameters over time but not directly for
comparison. Gomov et al [39], among others, also used the
Priestly timeline but only to visualize additional data, such as
procedures, medication, or infections, on a per-patient basis.

Figure 5. Examples showing line charts as the primary visualization technique for change over time. Use of a line chart to display the cohort (mean,
maximum, and minimum boundaries) and a single selected patient (top left) (reproduced from Klimov and Shahar [15], an Open Access article). Use
of a line chart to display multiple patients (unselected, selected, and queried individuals) (center left) (reproduced from Stubbs et al [35], an Open Access
article). Use of a line chart to display and compare 2 cohorts (mean and quantiles) over time (bottom left). In addition, selected single patients are
displayed below as Priestley timelines (reproduced from Rogers et al [36], an Open Access article, which is published under Creative Commons
Attribution 4.0 International License [53]). Use of a line chart to display multiple patients (top right). In addition, small multiples (line charts) display
more parameters for a selected patient (reproduced from Wildefire et al [34], with permission from Springer, conveyed through Copyright Clearance
Center, Inc). Another view in the system in shows Priestley-like timelines (dot-stripe) for individual patients (bottom right) (reproduced from Wildefire
et al [34], with permission from Springer, conveyed through Copyright Clearance Center, Inc).

Visualizing Distribution: Histograms

In contrast, 1 common visualization technique was used only
sparingly (7/22, 32% articles) for the comparison task: the
histogram. Of the 7 uses of histograms, 6 (86%) were featured
in studies using single-to-cohort or single-to-multiple
comparisons (Figure 2). However, only 33% (2/6) of the studies
used histograms for the comparison task directly. These 2
studies, by Wang et al [16] and Kamaleswaran et al [40], used
the histogram differently.

LifeLines2 by Wang et al [16] used an event-aligned timeline
in which other types of events could be plotted as a histogram
over the complete cohort (Figure 6, left). By using interactions,
certain patients with events in specific regions could be selected,
and a single patient’s event pattern could be directly compared

with the general distribution of events, as indicated by the
histogram.

Kamaleswaran et al [41] offered a detailed view of their system
in which the distribution of a parameter, for example, heart rate
variability, over the complete cohort was superimposed with
the distribution of measured heart rate variability for a single
patient (Figure 6, center). This enabled the direct comparison
of a selected patient with the cohort.

The other studies that did not use histograms as a means of
direct comparison used them as an auxiliary visualization,
displaying additional data. For example, Gotz and
Wongsuphasawat [41] used it to show the frequency of the types
of interventions or medication in a selected subgroup of patients,
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and van Dortmont et al [33] used it as a basis for interactive filtering of the data set (Figure 6, right).

Figure 6. Examples of histograms to display distribution over time. Use of a histogram to display the occurrences of procedures before and after an
event (left) (reproduced from Wang et al [16], with permission from IEEE). Use of histograms to display the distribution for a selected measurement
of a cohort and an individual (center). Additionally, line charts display the raw data (reproduced from Kamaleswaran et al [40], with permission from
the authors). Use of a histogram as an interactive filter (right) (reproduced from van Dortmont et al [33], with permission from the authors).

Visualizing Correlation: Scatterplots

The third largest group contained techniques for exploring and
analyzing correlations. The 2 most frequent techniques were
scatterplots with 5 occurrences and bubble charts with 2
occurrences, which extended scatterplots by additionally
encoding an additional attribute to the size of the marks.

The scatterplots in the reviewed systems enabled comparison
through 2 means: showing a connecting line to highlight a single
patient (superpositioned) or combining them with an additional
technique (juxtapositioned). Approximately 57% (4/7) of the
scatterplots showed the derived data by projecting
multidimensional data to 2D data [32,38], visualizing correlation
as bubble size [42], or calculating a similarity value [35].

Klimov and Shahar [15] visualized the measurement of a
parameter over time in a group of patients. Here, the diagram
showed the measurements for multiple patients without visual
distinction for different patients. When a patient was selected,
all measurements were connected by a line. In this way, a single
patient could be visually compared with a group of patients.

Borhani et al [38] projected a 4D model onto a 2D plane (Figure
7, top left). The measurements of multiple patients in the
“normal” state were shown as a cluster of blue dots. The
measurements of the first and last hours of a selected patient
were shown within the scatterplot in green and red, respectively.
This allowed for quick identification of normal and abnormal
measurements of the patient. In addition, the original (ie,
nonprojected) measurements of the selected patients were shown
in line charts juxtapositioned below.

CareCruiser (Gschwandter et al [18]) showed the parameters
over time for multiple patients under investigation (Figure 7,
top center). For each patient, a chart visualized the parameter’s
values over time to view their condition. The time axes were
relative to a specified time point; thus, the vertically
juxtapositioned charts enabled a direct comparison. Different
color-coded bands eased visually identifying relevant events of
the patient’s development.

The Sim-TwentyFive visualization system [35] enabled querying
and comparing episodes and measurements of a selected patient
with the 25 most similar other patients (Figure 7, top right). A
“cartesian coordinate plot” mapped a calculated score to the
x-axis such that the distance to the selected patient indicates
their similarity for different measures. Users could switch

between different continuous and categorical parameters along
the y-axis. The similarity index allowed viewers to compare
selected patients with multiple others.

DecisionFlow [42] aggregated event sequences into milestones
and intermediate episodes, resulting in visually less complex
sequences. DecisionFlow contained a statistical panel with a
bubble chart as the main visualization (Figure 7, bottom left).
The bubble chart enabled the comparison of events over time
and the identification of relevant events for further exploration.
Each circle represents an event type, positioned onto 2 axes
representing positive or negative support; that is, “the fraction
of intermediate episodes in the positive [resp. negative] outcome
group containing one or more occurrences of the event type.”
Its size encoded the correlation, with the additional color
showing an odds ratio consistent with all other color codings
within the visualization system. The correlation and odds ratios
were based on the positive and negative outcome groups. Thus,
circles closer to the x-axis represented event types that appeared
more often in episodes with a positive outcome and vice versa.

Guo et al [43] presented color-coded circles on a 2D chart to
support a visual comparison of event co-occurrence (Figure 7,
bottom center). It visualized multiple dimensions on a 2D plane
using a dimension reduction technique. This dimension
reduction approach resulted in similar events being closer
together and dissimilar events being more distant in this chart.
Although the used t-distributed stochastic neighbor embedding
projection often seemed to show clusters, it is heavily dependent
on the chosen parameters of the algorithm. The position of each
individual event on the x- and y-axes is semantically ambivalent,
and thus, this view is only tangentially related to classic
scatterplots.

The scatterplot in the study by Magallanes et al [44] enabled
the comparison of different weekdays, event sequences, and
event occurrences (Figure 7, bottom right). Although it did not
facilitate single-to-cohort or single-to-multiple comparisons, it
was an unusual approach for visualizing a parameter over time
(ie, the occurrence and duration of consultation events). The
scatterplot was shown as a superposition of the scatterplots for
different patients. This allowed for the quick identification of
normal and abnormal measurements. Although the data points
can be identified as outliers, the user cannot identify the patient
the event occurrence belongs to.
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The presented examples of individual results demonstrate
common approaches for comparing time-oriented data. Most
applied techniques are line charts that show the development
of a parameter over time for single or multiple individuals or
aggregated for cohorts. Priestley timelines in the presented cases
show the periods and mark the start and end of an episode type
to be compared but not for directly comparing the quantities.

Bar charts and histograms display the distribution over time
and are often used as interactive charts for filtering.

Scatterplots have diverse applications, from simple dots over
time to more complex techniques that show correlations between
patients and parameters.

Figure 7. Examples of scatterplots to display correlation. Use of a scatterplot to display a 2D projection of values of a cohort and a single patient (top
left) (reproduced from Borhani et al [38], with permission from IEEE). Use of a scatterplot to display measurements over time for multiple patients (top
center) (reproduced from Gschwandtner et al [18], with permission from IEEE). A scatterplot to show similarity scores across multiple patients (top
right) (reproduced from Stubbs et al [35], an Open Access article). Use of a scatterplot (bubble chart) to display the positive and negative outcome
contributions of a selected sequence of procedures (bottom left) (reproduced from Gotz et al [42], with permission from the authors). A scatterplot to
display a 2D projection of event co-occurrences (bottom center) (reproduced from Guo et al [43], with permission from IEEE). A scatterplot to display
occurrences and duration of consultation events (bottom right) (reproduced from Magallanes et al [44], with permission from IEEE).

Discussion

Summary of Evidence

Methodology
The first screening step was conducted by a diverse
interdisciplinary team, with contributors having different levels
of expertise in visualization research. The last screening and
analysis steps were performed by 4 experts from the core team.
Although experience and expertise in visualization were
advanced, many issues arose during the extraction of data items
when applying the different taxonomies. We are aware that in
some of our extraction steps, the interpretation of the presented
visualizations and application of the corresponding taxonomies
may vary. Although we discussed debatable data items, other
individuals may obtain different results in some cases.

To provide a systematic overview of the visualization
techniques, we investigated different existing taxonomies and
classification schemas. We chose Visual Vocabulary as it
structures the techniques according to the main objectives. In
addition to the task classification by Munzner [6], we collected
techniques and their visual analysis objectives and tasks. We
found it beneficial to have experts and incorporate publications
from both the medical and visualization fields. Through the
combination of taxonomies from practice and academia, we
were able to collect and review the types of visualizations used
for the specific task of comparing temporal patient data. In this

way, we could provide an overview of the different visualization
techniques and the contexts in which they are used (RQ2).

On a secondary note, we find it worthwhile to highlight how
the 2 communities may learn from each other. State-of-the-art
reports (STARs) are a major approach to systematically
reviewing specific fields in information visualization (McNabb
and Laramee [54] and Wang and Laramee [2]). Although they
are similarly rigorous in their approach, there is no standardized
methodology for collecting and documenting evidence in
information visualization reviews. In contrast, STAR articles
often use visualizations to summarize their findings. Thus, there
might be 2 promising targets for information visualization
researchers to build more standardized reviewing and survey
procedures and for medical informatics researchers to embrace
some of the visual summaries that STAR articles use.

To provide readers with an interactive way of exploring the
visualization systems from our scoping review, we created a
visual literature browser using the SurVis software [55]. Our
tool not only provides a selection of attributes to see the use of
specific visualization techniques but also enables cross-filtering
to identify systems combining a set of attributes such as medical
context, visualization, and patient entities. Our companion tool
is available on the web [56].

Medical Characteristics
As synthesized previously, most of the reviewed studies were
in the field of clinical research. We assume this to be because
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of higher data quality and availability in clinical research, in
contrast to data from clinical care, where data are often stored
in legacy systems and are not necessarily standardized. A recent
survey on EHR visualizations confirmed this assumption; the
authors identified 3 challenges impeding the use of EHR data:
accessibility, data quality, and interoperability [2].

With respect to the abstracted MeSH terms for coding the
diseases, and leaving the generic category of “Pathological
Conditions, Signs and Symptoms” aside, we observed a rather
wide spread of diseases targeted in the visualization systems.
From a medical perspective, this seems to be unexpected, as
tumors and cardiovascular diseases are more common. However,
from an opportunistic perspective, in selected medical areas,
more data are often digitized and easily available, which might
result in higher use frequency in medical informatics studies.

This increasing availability of data from primary care facilities
enables secondary use in the field of clinical research. In the
reviewed studies, we identified the treatment outcome as the
major objective of analysis, stemming from both clinical
research and clinical care (RQ2). Overall, this emphasizes the
need to visually compare changes over time, distributions, and
correlations between individuals and their cohorts.

Visualizations
The visual analysis objective most supported in the reviewed
systems was to show changes over time. This observation
matched our expectations, as the review focused on temporal
patient data. Although many medical data have a temporal
component, not all visualizations in the medical field focus on
time. A scoping review on public health visualizations [12]
identified visually analyzing spatial patterns as the most
common objective (43.6%), with change over time coming in
a distant second, at 14.5%.

To visually investigate correlations, scatterplots and bubble
charts were identified as the most common. Here, we noticed
that some systems use scatterplots in a nontraditional manner,
as they plot a parameter over time on 1 axis [16,19,43].
Although time is a continuous scale and, thus, fits the definition
of scatterplots, a more common technique for showing a
continuous measure over time is a line chart. When the dots are
not sequentially ordered on 1 of the 2 axes but by the values of
a nontemporal measure, a connected scatterplot could be used.
Both the line chart and connected scatterplot were from the
change over time category. We can only assume that the choice
of scatterplots (or, perhaps more precisely, scattered dots over
time) was because of the design goal of having less cluttered
views by omitting the lines. This exemplifies how visualization
techniques typically not used for temporal data are used in such
ways.

Owing to the nature of single or individual patient data, simple
visualization techniques are being used, and the same applies
to multiple patients as well, up to a certain degree. In the case
of cohorts, which are most often represented as 1D data
(aggregated on value and or on time), the same applies and the
basic techniques are the most used.

The reported visualization techniques are part of the
visualization systems or prototypes of varying maturity levels.

Some more advanced and highly interactive systems with a
variety of views combined a multitude of techniques, whereas
others presented only 1 single and static visualization for 1
objective. We did not evaluate this characteristic and therefore
considered the maturity level (complexity of the system, variety
of use cases, and tasks) as an interesting parameter for future
work. Some articles were simple mock-ups (eg, showing a
prototype of a user interface). Other presented articles were
edge cases in the sense that the application of the visualization
system was primarily developed outside the health care domain,
and its application to patient data was shown as a potential use
case (eg, ChronoCorrelator showing a use case for analyzing
event threads on a server).

Comparison
We identified single patient, multiple patients, and cohort as
the entities to visually compare and collected visualization
techniques supporting the comparison of any of their
combinations. As the reduction of the original search results
allowing the comparison of different single patients to the results
and the comparison of a single patient to a cohort or multiples
was quite noticeable (from 57 to 22), we retained a subset of
the studies that would have been dropped at this stage. Thus,
these studies (Figure 2) were analyzed in the same manner as
the studies explicitly allowing the targeted task. Although these
studies might not have been specifically designed to allow the
comparison of a single patient with multiple patients or cohorts,
the used techniques themselves seemed to be capable of such
tasks with little modification. This shows that (1) the visual
comparison of a single patient with multiple other patients
(single-to-multiple and single-to-cohort) is relatively
underdeveloped in comparison with single-to-single or
cohort-to-cohort and (2) many existing visualizations
purpose-built for the comparison of cohorts among themselves
or of a single patient with another individual patient could be
adapted to further combinations as well.

By applying our taxonomy for detailed identification of the
comparison aspect, we introduced the differentiation between
single-to-single, single-to-multiple, single-to-cohort,
cohort-to-cohort, multiple-to-multiple, and multiple-to-cohort.
Although this differentiation may seem trivial with respect to
set theory, it reveals the not directly obvious disruption between
showing multiple individuals or a group to be considered the
opposing entity of the comparison (Figure 8).

When visualizing patients, we identified the difference between
multiple patients and a cohort not in the size of the group, but
in the fact that visualizing cohorts requires aggregation of the
data beforehand. As shown in our review, this typically goes
hand in hand with a different visual representation. For showing
a measurement over time, a way of representing the cohort is
by visualizing the central tendency (eg, mean) and spread (eg,
range) as different lines. An alternative would be to select fitting
temporal windows and visualize the spreads of the measurement
per time range as box plots.

In Figure 9, we show all possible combinations of visually
comparing measurements over time between different patient
entities. Figure 9 exemplifies this for line charts, whereas the
conceptual space of the different comparison combinations is
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agnostic to the used visualization technique. In addition, we
only show variations for juxtapositioned versus superpositioned
layouts, whereas a wide range of alternate options such as
interactions exist. Choosing the appropriate visualization, layout
position, and interaction is a major challenge in designing visual
analysis systems and requires human-centric development

approaches to match the visualizations with the tasks and
requirements of users. Overall, although this visual example
using line charts provides some initial hints into what might
work better than other combinations (eg, superpositioned
multiple-to-multiple comparisons seem to be visually overly
complex), it is an early exploration of a design space.

Figure 8. Schematic overview of the possible comparisons between different patient entities ranging from single patient to multiple patients and cohorts.
Multiple-to-cohort emphasizes the distinction between the visual representation of multiple patients versus an aggregated view of the cohort.

Figure 9. All possible combinations for comparing 1 measurement over time between different patient entities (single patient, multiple patients, and
cohorts) in the case of line charts. For single and multiple patients, each line represents 1 measurement, whereas, for cohorts, the chart represents the
mean and range. All combinations are shown in juxtapositioned and superpositioned layouts, with the colors supporting legibility in the latter.

Limitations
Although we did not restrict our search to journals and included
conference proceedings as these are one of the primary types
of publications in the computer science field, we found only a
small number of articles that matched all criteria. As the
importance of visual analytics in general and visual analytic
systems in particular continues to grow, we expected to include
more articles from recent years; however, only a few were
identified to match our criteria. As described earlier, we
iteratively refined our search terms in collaboration with an
experienced librarian, and therefore, we assume this to be
because of the particular combination of patient-to-cohort
comparisons and visualizations focusing on time-oriented data.
However, we are aware that we may have missed relevant
works; for example, systems that could be primarily cohort
visualization tools might also support some detailed highlighting
of individual patients without mentioning this explicitly or
discussing it in their written report.

We extracted and synthesized a wide set of relevant attributes
to summarize the major characteristics of the reviewed studies.
However, there is a range of further investigations that we found

to be outside the scope of this review. Although we took various
specifics of the data into account, we did not evaluate data
preparation or data transformation steps alone if they were not
an essential aspect of the used visualization technique (such as
showing high-dimensional data in a 2D display).

Studies on visual analysis systems usually gather feedback
through usability evaluations or demonstrate its applicability
through case studies. Although we did not synthesize such
attributes in our scoping review, we acknowledge the importance
of understanding user feedback to properly assess the usefulness
of visualization systems and emphasize the need for further
research in this regard.

In addition to the authors and publication year, we restricted
the metadata extraction to information about the publication
outlet. Analyzing this would allow us to explore the correlations
between the extracted attributes and the research area. For
instance, one could investigate whether visualization researchers
use more complex visualization techniques than researchers in
the medical field. This could not be covered in this review, and
we did not incorporate it into the analysis.

J Med Internet Res 2022 | vol. 24 | iss. 10 | e38041 | p. 19https://www.jmir.org/2022/10/e38041
(page number not for citation purposes)

Scheer et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Furthermore, we did not fully synthesize combinations of the
extracted attributes. For instance, it might be insightful to further
examine the kinds of interactions that are offered more
frequently for specific visualization techniques. The
investigation of this explicit combination could lead to a better
understanding of which selection techniques for 1 or multiple
patients with specific characteristics are appropriate for different
aggregated cohort visualizations. Although the articles were
analyzed to include visualization of task-specific actions and
targets, in this review, it could not be evaluated in further detail
whether specific action-target pairs appeared more or less
frequently. However, the analysis of these pairs could lead to
interesting RQs in the field of visualization research. Our
web-based companion tool at [55] provides the first basic
possibility of exploring combinations of extracted attributes
such as medical diseases and visualization techniques.

Conclusions
Visual analytic systems mitigate the complexity of time-oriented
patient data through data analysis and interactive visualizations
by facilitating attention to underlying and hidden patterns. In
this scoping review, we examined the available literature and
identified and clustered visualization techniques that specifically
supported the task of comparing time-oriented patient data
(RQ1). We collected and reported on the visual analysis
objectives and tasks with a specific focus on the range of options
to compare individual patients with multiple patients or with a

cohort (RQ2). Finally, we surveyed and presented the medical
characteristics, data type categories, and interaction techniques
of the reviewed visualization systems (RQ3).

As this work is a scoping review, we consider the identified
articles and the performed extraction steps as the first step for
conducting further research in the form of a more advanced
extraction. We found that a small set of publications specifically
contained single-to-multiple or single-to-cohort comparison
and provided visualizations to support this task. In most cases,
we also found that basic visualization techniques such as line
charts, event timelines, histograms, or scatterplots were used
efficiently. Time-oriented comparisons between a single patient
and multiple patients or a cohort are mostly used for laboratory
and vital sign parameters, followed by analysis and comparison
of procedures and diagnoses. We identified many potentially
interesting approaches and deemed many of these techniques
to be applicable for a comparison of single patients with multiple
patients and cohorts through small adaptations.

We anticipate that we have convincingly argued for the
usefulness of visually comparing individual patients with cohorts
and encourage researchers to further investigate visualization
and interaction techniques for such comparisons. Finally, our
review showed the need to systematically review further systems
and techniques to propose a proper design space for comparing
the temporal data of single, multiple, and cohort patients.
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