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Abstract

Background: Detection and quantification of intra-abdominal free fluid (ie, ascites) on computed tomography (CT) images are
essential processes for finding emergent or urgent conditions in patients. In an emergency department, automatic detection and
quantification of ascites will be beneficial.

Objective: We aimed to develop an artificial intelligence (AI) algorithm for the automatic detection and quantification of ascites
simultaneously using a single deep learning model (DLM).

Methods: We developed 2D DLMs based on deep residual U-Net, U-Net, bidirectional U-Net, and recurrent residual U-Net
(R2U-Net) algorithms to segment areas of ascites on abdominopelvic CT images. Based on segmentation results, the DLMs
detected ascites by classifying CT images into ascites images and nonascites images. The AI algorithms were trained using 6337
CT images from 160 subjects (80 with ascites and 80 without ascites) and tested using 1635 CT images from 40 subjects (20 with
ascites and 20 without ascites). The performance of the AI algorithms was evaluated for diagnostic accuracy of ascites detection
and for segmentation accuracy of ascites areas. Of these DLMs, we proposed an AI algorithm with the best performance.

Results: The segmentation accuracy was the highest for the deep residual U-Net model with a mean intersection over union
(mIoU) value of 0.87, followed by U-Net, bidirectional U-Net, and R2U-Net models (mIoU values of 0.80, 0.77, and 0.67,
respectively). The detection accuracy was the highest for the deep residual U-Net model (0.96), followed by U-Net, bidirectional
U-Net, and R2U-Net models (0.90, 0.88, and 0.82, respectively). The deep residual U-Net model also achieved high sensitivity
(0.96) and high specificity (0.96).

Conclusions: We propose a deep residual U-Net–based AI algorithm for automatic detection and quantification of ascites on
abdominopelvic CT scans, which provides excellent performance.
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Introduction

Currently, computed tomography (CT) of the abdomen and
pelvis continues to be the primary modality for patients who
visit an emergency department for abdominal pain or trauma,
especially in time-critical situations [1]. In emergency situations,
immediate assessment of CT is required, but limited radiologic
resources may hamper or delay the recognition of patients who
need urgent intervention or surgery [2]. To overcome these
challenges, the development of artificial intelligence (AI)
techniques using a deep learning model (DLM) to detect critical
findings on CT images might be a possible solution [3].

On abdominopelvic CT images, several findings indicate
emergent or urgent conditions, including ascites (ie,
intra-abdominal free fluid), free gas, abscess, and fat stranding
[1]. Of these, presence of ascites is a common finding in various
acute abdominal diseases and intra-abdominal organ injury [4].
In addition, quantification of ascites is also important, as the
amount of free fluid may correlate with the severity of injury
[5].

There has been only one study that developed a DLM to detect
ascites, but that DLM did not quantify the amount of fluid. That
study used a convolutional neural network (CNN) classification
algorithm to discriminate CT images with fluid from CT images
without fluid, which achieved 85% sensitivity and 95%
specificity [3]. In contrast to that study, we attempted to develop
an AI segmentation algorithm that can perform both detection
of ascites as well as the quantification of the volume of ascites
at the same time. A segmentation value of zero means no ascites,
and segmentation values of the area of ascites can be used to
quantify the exact volume of ascites. In addition, we tried to
increase the detection accuracy of the AI algorithm.

Recently, several state-of-the-art DLM algorithms for
segmentation of CT images have been proposed, including
U-Net [6], bidirectional U-Net [7], recurrent residual U-Net
(R2U-Net) [8], and a deep residual U-Net CNN [9]. U-Net is
one of the deep learning networks with an encoder-decoder
architecture, which employs skip connections to combine
low-level feature maps from an encoder and high-level semantic
feature maps from a decoder. Since U-Net allows for the use of
location and context at the same time, and works well with very
few training samples, it has been widely used in medical image
segmentation [10-13]. In addition, variant models based on

U-Net, such as bidirectional U-Net, R2U-Net, and a deep
residual U-Net, have been applied to medical image
segmentation.

Of these, we hypothesized that a deep residual U-Net might be
the best algorithm for segmentation because it combines the
strengths of residual learning and U-Net. The residual network
has several advantages [14-16]. First, it accelerates the speed
of training of the deep networks. Second, it requires fewer
parameters by increasing the depth of the network instead of
widening the network. Third, it reduces the effect of the
vanishing gradient problem. Last, it provides high accuracy in
network performance, especially in image classification and
segmentation. However, no study has been reported that used
a deep residual U-Net algorithm for the segmentation of ascites
on CT images. Thus, we aimed to develop an optimized deep
residual U-Net algorithm to detect and quantify ascites on CT
images, along with a performance comparison with other
state-of-the-art networks.

Methods

Patients
This study was approved by the institutional review board of
Ajou University Hospital. Informed consent was waived. From
January 1 to March 1, 2020, a total of 1055 patients visited the
emergency department and had abdominopelvic CT scans
performed. Of these, 205 patients had ascites detected on their
CT images. After excluding 5 patients who underwent
noncontrast CT only, we included 200 patients as the ascites
group. Of the remaining 850 patients without ascites, we chose
200 age- and sex-matched controls using the MatchIt package
(version 4.0.0) in R software (version 4.0.2; The R Foundation).
From the patients in the ascites group and the control group,
we randomly selected 100 patients with ascites and 100 patients
without ascites for training and testing AI models.

The clinical characteristics of the patients in the control group
and ascites group are summarized in Table 1. In the control
group, out of 200 patients, unknown cause of abdominal pain
(n=140, 70.0%) was the most common disease category with
normal abdominopelvic CT. In contrast, in the ascites group,
out of 200 patients, cancer (n=42, 21.0%), liver cirrhosis (n=52,
26.0%), blunt trauma (n=37, 18.5%), and infection (n=28,
14.0%) were the main causes for emergency department visits.
The majority of ascites were identified in the pelvic cavity.
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Table 1. Demographic and clinical data of participants in the control group and ascites group.

Ascites group (n=200)Control group (n=200)Variables

Demographics

Sex, n (%)

101 (50.5)92 (46.0)Female

99 (49.5)108 (54.0)Male

60.2 (15.3)59.7 (13.8)Age in years, mean (SD)

Amount of ascites, n (%)

92 (46.0)0 (0)Large

47 (23.5)0 (0)Moderate

61 (30.5)0 (0)Small

Disease category, n (%)

42 (21.0)14 (7.0)Cancer

3 (1.5)0 (0)Congestive heart failure

51 (25.5)1 (0.5)Liver cirrhosis

3 (1.5)0 (0)Acute liver failure

28 (14.0)7 (3.5)Infection

37 (18.5)5 (2.5)Blunt trauma

5 (2.5)32 (16.0)Postoperative status

10 (5.0)1 (0.5)Intestinal obstruction

10 (5.0)0 (0)Renal failure

11 (5.5)140 (70.0)Unknown cause of abdominal pain

CT Image Acquisition and Analysis
All patients underwent abdominopelvic CT scans using
multichannel multidetector scanners (Somatom Definition Edge
or Somatom Definition AS, Siemens Healthineers).
Contrast-enhanced CT scans were obtained with intravenous
injections of 100 to 150 mL of a nonionic contrast medium
(Iopamiro 300, Bracco Imaging; Omnipaque 300, GE
Healthcare) at a rate of 2.5 to 3 mL/s. The scan parameters were
as follows: beam collimation, 0.75 mm; slice thickness, 5 mm;
effective tube current–time charge, 200 to 260 mAs; and voltage,
100 to 120 kVp. In this study, we used only
contrast-enhancement CT images. If there were multiphasic CT
images, we chose portal venous phase CT images for AI training
and validation.

An expert abdominal radiologist (JH, with 13 years’experience)
selected CT slices that demonstrated ascites from the ascites
group (2461 images from 100 patients). Then, the radiologist
selected corresponding CT slices from the control group (5511
images from 100 patients). The radiologist created segmentation

maps of ascites in the selected CT slices using ImageJ software
(version 1.53j; National Institutes of Health), which served as
ground-truth labels.

Training and Validation Data Set and Augmentation
Table 2 summarizes the training and testing data sets, which
were randomly split with a ratio of 8:2 into a training set and a
testing set, respectively, in a stratified fashion. The testing set
was used only for an independent test of developed models and
was never used for training and internal validation.

The training data set was then further separated for training the
model (80% of the training set) and for internal validation (20%
of the training set). To balance the two groups’ images as well
as reduce overfitting on training data, we employed image
augmentation. We randomly drew the training images and
applied them to the random combination of angle rotation
between –10 and 10 degrees and vertical and horizontal flip.
Finally, a total of 48,874 CT images were augmented: 24,437
images from patients with ascites and 24,437 images from
healthy subjects.

Table 2. Summary of training and testing data sets.

Total, n (%)Testing data, n (%)Training data, n (%)Group

Images (n=7972)Subjects (n=200)Images (n=1635)Subjects (n=40)Images (n=6337)Subjects (n=160)

2461 (30.9)100 (50.0)492 (30.1)20 (50.0)1969 (31.1)80 (50.0)Ascites

5511 (69.1)100 (50.0)1143 (69.9)20 (50.0)4368 (68.9)80 (50.0)Control
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Preprocessing
For all of the images in the training and testing data sets, we
first set the abdomen window according to the Digital Imaging
and Communications in Medicine (DICOM) standard, which
is a 400 Hounsfield Unit (HU) window width and a 60 HU
window level. Subsequently, we down-sampled the DICOM
images as well as masked images from an image size of 512 ×
512 pixels to 256 × 256 pixels, and we normalized the pixel
values to a range between 0 and 1.

Deep Residual U-Net
We proposed the model for ascites region segmentation based
on a single abdomen CT image using a deep residual U-Net
algorithm. Figure 1 shows the architecture of our proposed
model, which is comprised of three parts: an encoder, a bridge,
and a decoder. In the encoder part, the normalized 256 ×
256–pixel image as input is encoded into a denser representation.
The decoding part, on the other hand, recovers the ascites region
by pixel-wise categorization. The bridge part connects the
encoding and decoding parts.

In this study, we used the residual learning approach to facilitate
the training of deep neural networks and take advantage of the
ascites segmentation performance gain in abdomen CT images.
Each residual block consists of two paths. One path is the
forward pass through batch normalization, activation, and
convolutional layers, which are repeated twice. The other path
is the skip connection. The outputs from the two paths are added
as a single output. In the encoder part (ie, residual blocks 1-4),
the output from the residual block is fed into both a subsequent
residual block and one of the residual blocks in the decoder part
(ie, residual blocks 6-9). Thus, in the decoder part, the residual
block has two inputs: one from the encoder and the other from
the previous residual block output. In the bridge part, another
residual block (ie, residual block 5) connects the encoding part
to the decoding part. In this study, we found that four residual
blocks in each of the encoder and decoder parts provided the
best performance in ascites segmentation. We describe our
numerical results and comparisons in the Results section. For
all residual blocks, we used the rectified linear unit activation
function.

Table 3 summarizes the hyperparameters of the convolutional
layers and the output size in each residual block. The normalized
256 × 256 × 3–pixel image as input was fed into residual block
1, where we used the two convolutional layers with 32 3 ×

3–pixel kernels and a stride of 1 with zero padding. The
activation map with a size of 256 × 256 × 32 pixels from residual
block 1 was fed into both residual block 2 and residual block
9. In residual block 2, we used two convolutional layers with
64 3 × 3–pixel kernels and strides of 2 and 1 with zero padding.
The activation map with a size of 128 × 128 × 64 pixels from
residual block 2 was fed into both residual block 3 and residual
block 8. In residual block 3, we used two convolutional layers
with 128 3 × 3–pixel kernels and strides of 2 and 1 with zero
padding. The activation map with a size of 64 × 64 × 128 pixels
from residual block 3 was fed into both residual block 4 and
residual block 7. In residual block 4, we used two convolutional
layers with 256 3 × 3–pixel kernels and strides of 2 and 1 with
zero padding. The activation map with a size of 32 × 32 × 256
pixels from residual block 4 was fed into residual block 5, where
we used two convolutional layers with 512 3 × 3–pixel kernels
and strides of 2 and 1 with zero padding.

The activation map with a size of 16 × 16 × 512 pixels from
residual block 5 was fed into residual block 6, where the input
was first up-sampled to 32 × 32 × 512 pixels. In residual block
6, we used two convolutional layers with 256 3 × 3–pixel kernels
and a stride of 1 with zero padding. The activation map with a
size of 32 × 32 × 256 pixels from residual block 6 was fed into
residual block 7, and it was concatenated with the output from
residual block 3. When the two inputs were concatenated, the
output from residual block 6 was up-sampled to match the size.
In residual block 7, we used two convolutional layers with 128
3 × 3–pixel kernels and a stride of 1 with zero padding. The
activation map with a size of 64 × 64 × 128 pixels from residual
block 7 was fed into residual block 8, and it was up-sampled
and concatenated with the output from residual block 2. In
residual block 8, we used two convolutional layers with 64 3 ×
3–pixel kernels and a stride of 1 with zero padding. The
activation map with a size of 128 × 128 × 64 pixels from residual
block 8 was fed into residual block 9, and it was up-sampled
and concatenated with the output from residual block 1. In
residual block 9, we used two convolutional layers with 32 3 ×
3–pixel kernels and a stride of 1 with zero padding.

The activation map with a size of 256 × 256 × 32 pixels was
then fed into the convolutional layer with a single 1 × 1–pixel
kernel and a stride of 1. The resultant activation map with a size
of 256 × 256 × 1 pixels was finally fed into a sigmoid layer,
which provided the pixel-wise probability of the presence or
absence of ascites.
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Figure 1. The architecture of our proposed model for ascites region segmentation based on a single abdomen computed tomography (CT) image. ReLU:
rectified linear unit.
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Table 3. Hyperparameters of convolutional layers according to each layer and unit level.

Output size, pixelsStrides, nKernelModel part, unit level, and layer

Filters, nFilter size, pixels

Input

256 × 256 × 3N/AN/AN/AN/Aa

Encoder

Residual block 1

256 × 256 × 321323 × 3Convolutional layer 1

256 × 256 × 321323 × 3Convolutional layer 2

Residual block 2

128 × 128 × 642643 × 3Convolutional layer 3

128 × 128 × 641643 × 3Convolutional layer 4

Residual block 3

64 × 64 × 12821283 × 3Convolutional layer 5

64 × 64 × 12811283 × 3Convolutional layer 6

Residual block 4

32 × 32 × 25622563 × 3Convolutional layer 7

32 × 32 × 25612563 × 3Convolutional layer 8

Bridge

Residual block 5

16 × 16 × 51225123 × 3Convolutional layer 9

16 × 16 × 51215123 × 3Convolutional layer 10

Decoder

Residual block 6

32 × 32 × 25612563 × 3Convolutional layer 11

32 × 32 × 25612563 × 3Convolutional layer 12

Residual block 7

64 × 64 × 12811283 × 3Convolutional layer 13

64 × 64 × 12811283 × 3Convolutional layer 14

Residual block 8

128 × 128 × 641643 × 3Convolutional layer 15

128 × 128 × 641643 × 3Convolutional layer 16

Residual block 9

256 × 256 × 321323 × 3Convolutional layer 17

256 × 256 × 321323 × 3Convolutional layer 18

Output

N/A

256 × 256 × 1111 × 1Convolutional layer 19

N/A

256 × 256 × 1N/AN/AN/ASigmoid layer

aN/A: not applicable; this model part did not include this parameter.
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Implementation
We implemented our proposed model using the TensorFlow
package (version 1.14.0), which provides a Python (version
3.6.8; Python Software Foundation) application programming
interface for tensor manipulation. We also used Keras (version
2.2.4) as the official front end of TensorFlow. We trained the
models with the Adam optimizer with a learning rate of 0.0001,
a batch size of 16, and the loss functions of binary cross-entropy
and dice loss [17] on the GeForce GTX 1080 Ti GPU (NVIDIA
Corporation).

For the performance evaluation, 5-fold cross-validation was
performed to confirm its generalization ability. The augmented
training data set (n=48,874) was randomly shuffled and divided
into five equal groups in a stratified manner. Subsequently, four
groups were selected for training the model, and the remaining
group was used for validation. This process was repeated five
times by shifting the internal validation group. Then, we
averaged the mean validation costs of the five internal validation
groups according to each epoch and found the optimal epoch
that provides the lowest validation cost. The testing data set
was evaluated only after the model was completely trained using
the training and validation data set.

Performance Evaluation
We first investigated the effect of the number of residual blocks.
For the comparison, we repeated the same procedure of the
5-fold cross-validation for two to five residual blocks. For
further performance comparison, we compared our proposed
method with U-Net [6], bidirectional U-Net [7], and R2U-Net
[8].

For the segmentation evaluation, we quantized the mean
intersection over union (mIoU), which is defined as the size of
the intersection divided by the size of the union. Particularly
for the nonascites images, no pixel was segmented, as we
quantized the value by zero. If there were no segmentation
results for the nonascites image, we quantized the value by 1.

In addition to the segmentation performance, we evaluated the
detection performance. If the mIoU value was equal or greater
than a certain threshold value, we declared it by ascites image.
For the detection performance, we plotted a receiver operating

characteristic (ROC) curve and calculated the area under the
ROC curve (AUROC). Subsequently, we also evaluated the
sensitivity, specificity, accuracy, balanced accuracy, precision,
and F1 score. More specifically, we calculated true positives
(TPs), false positives (FPs), true negatives (TNs), and false
negatives (FNs) and computed the following metrics:

Sensitivity = TP / (TP + FN) (1)

Specificity = TN / (TN + FP) (2)

Accuracy = (TP + TN) / (TP + TN + FP + FN) (3)

Balanced Accuracy = (Sensitivity + Specificity) / 2
(4)

Precision = TP / (TP + FP) (5)

F1 score = 2 × (Sensitivity × Precision) / (Sensitivity
+ Precision) (6)

where TP is the amount of ascites data correctly classified as
ascites, TN is the amount of nonascites data correctly classified
as normal, FP is the amount of nonascites data misclassified as
ascites, and FN is the amount of ascites data misclassified as
normal. Two abdominal radiologists (JH and KWK) also
evaluated the factors influencing the performance of detection
and segmentation of ascites through a systematic review of all
original CT images and AI results of the testing data set.

Results

Performance in the Cross-Validation
Table 4 summarizes the cross-validation results of various AI
models for ascites segmentation performance and ascites
detection accuracy using mIoU and AUROC, respectively. Deep
residual U-Net models with various numbers of residual blocks
generally provided higher mIoU and AUROC values than any
other state-of-the-art methods [6-8]. Among the deep residual
U-Net models with various numbers of residual blocks, the
model with four residual blocks provided the highest mIoU
(0.87) for the segmentation performance and the highest
AUROC (0.99) for the detection performance. The
computational time for training for the deep residual U-Net
model with four residual blocks and 5-fold cross-validation was
27 hours. The overall computational time for testing was 30
minutes.

Table 4. Cross-validation results for the training data set comparing the mIoU for segmentation performance and AUROC for detection across models.

AUROCb (SD)mIoUa (SD)Model

0.97 (0.02)0.86 (0.03)Deep residual U-Net (two residual blocks)

0.98 (0.01)0.86 (0.02)Deep residual U-Net (three residual blocks)

0.99 (0.01)0.87 (0.02)Deep residual U-Net (four residual blocks)

0.69 (0.01)0.69 (0.46)Deep residual U-Net (five residual blocks)

0.96 (0.01)0.84 (0.02)U-Net [6]

0.91 (0.01)0.82 (0.01)Bidirectional U-Net [7]

0.90 (0.01)0.74 (0.02)Recurrent residual U-Net [8]

amIoU: mean intersection over union; this is an index of the segmentation performance.
bAUROC: area under the receiver operating characteristic curve; this is an index of detection accuracy.
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We also investigated the effect of the number of convolutional
layers in each residual block. Table 5 summarizes the
cross-validation results when the number of convolutional layers
changes from two to four. It shows that the deep residual U-Net
model with the two convolutional layers in each residual block

provided the highest values of mIoU (0.87) and AUROC (0.99),
followed by three convolutional layers (mIoU=0.83 and
AUROC=0.98) and four convolutional layers (mIoU=0.69 and
AUROC=0.69).

Table 5. Effect of the number of convolutional layers in each residual block on cross-validation results with the training data set.

AUROCb (SD)mIoUa (SD)Model

0.99 (0.01)0.87 (0.02)Deep residual U-Net with two convolutional layers in each residual block

0.98 (0.02)0.83 (0.03)Deep residual U-Net with three convolutional layers in each residual block

0.69 (0.01)0.69 (0.02)Deep residual U-Net with four convolutional layers in each residual block

amIoU: mean intersection over union; this is an index of the segmentation performance.
bAUROC: area under the receiver operating characteristic curve; this is an index of the detection accuracy.

Performance With the Testing Data Set
Table 6 summarizes the testing data results for segmentation
performance using mIoU and detection accuracy using AUROC
when the number of convolutional layers changes from two to
four. Similar to the cross-validation results, these results also
show that the deep residual U-Net model with four residual
blocks including two convolutional layers provided the highest
mIoU (0.87) and AUROC (0.96) with the isolated testing data
set (n=1635).

With the two convolutional layers in each residual block, we
also evaluated and compared the segmentation and detection
performances. For the performance comparison, we changed
the number of residual blocks from two to five and tested each
model using the testing data set. Also, we tested with U-Net,
bidirectional U-Net, and R2U-Net. Table 7 summarizes the
performance comparison. The results also show that the deep
residual U-Net with four residual blocks provided the highest
mIoU and AUROC values. We also note that the deep residual
U-Net with three residual blocks also provided high values of
mIoU and AUROC, which were higher than any other
state-of-the-art methods, indicating that the deep residual U-Net

approach was more appropriate for the ascites segmentation
and detection.

The representative images of ascites segmentation are presented
in Figure 2. The left-hand column (A) includes the original CT
images and the ground-truth masking images. Five examples
of ascites segmentation results are shown using our proposed
model (B) and comparing them with those using U-Net (C),
bidirectional U-Net (D), and R2U-Net (E). Our proposed model
correctly segmented the ascites region regardless of its pattern
and size (the top four panels in column B). In addition, for the
nonascites images, the segmentation results were not shown
(the bottom panel in column B).

Table 8 summarizes the testing data results of detection accuracy
with the metrics of sensitivity, specificity, accuracy, balanced
accuracy, precision, and F1 score. The deep residual U-Net with
four residual blocks provided the highest accuracy metrics:
sensitivity=0.96, specificity=0.96, accuracy=0.96, balanced
accuracy=0.96, precision=0.91, and F1 score=0.93. Based on
these results, we proposed our deep residual U-Net with four
residual blocks as an optimal AI algorithm for automatic ascites
detection and segmentation on abdominopelvic CT scans.

Table 6. Effect of the number of convolutional layers in each residual block on the testing data set results for the deep residual U-Net model with four
residual blocks.

AUROCbmIoUa (SD)Model

0.960.87 (0.26)Deep residual U-Net with two convolutional layers in each residual block

0.940.84 (0.27)Deep residual U-Net with three convolutional layers in each residual block

0.720.74 (0.31)Deep residual U-Net with four convolutional layers in each residual block

amIoU: mean intersection over union; this is an index of the segmentation performance.
bAUROC: area under the receiver operating characteristic curve; this is an index of the detection accuracy.
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Table 7. Segmentation performance and detection accuracy of artificial intelligence models with the testing data set.

AUROCbmIoUa (SD)Model

0.870.81 (0.33)Deep residual U-Net (two residual blocks)

0.930.86 (0.28)Deep residual U-Net (three residual blocks)

0.960.87 (0.26)Deep residual U-Net (four residual blocks)

0.700.70 (0.46)Deep residual U-Net (five residual blocks)

0.900.80 (0.33)U-Net [6]

0.860.77 (0.35)Bidirectional U-Net [7]

0.810.67 (0.41)Recurrent residual U-Net [8]

amIoU: mean intersection over union; this is an index of the segmentation performance.
bAUROC: area under the receiver operating characteristic curve; this is an index of the detection accuracy.

Figure 2. Five examples of ascites segmentation results using each model. A. The original computed tomography (CT) images and the ground-truth
masking images. B. Our proposed model. C. The U-Net model. D. The bidirectional U-Net model. E. The recurrent residual U-Net model. Each row
represents a different example of CT images. Blue represents the ground-truth masking images, and red represents the resultant segmented images.

J Med Internet Res 2022 | vol. 24 | iss. 1 | e34415 | p. 9https://www.jmir.org/2022/1/e34415
(page number not for citation purposes)

Ko et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 8. Detection performance metrics of artificial intelligence models with the testing data set.

F1 scorePrecisionBalanced accuracyAccuracySpecificitySensitivityModel

0.850.790.910.900.900.92U-Net [6]

0.830.740.900.880.860.94Bidirectional U-Net [7]

0.740.660.830.820.810.85Recurrent residual U-Net [8]

0.930.910.960.960.960.96Deep residual U-Net

(four residual blocks)

Factors Influencing the Performance
Through the expert review of all images in the testing data set
by two radiologists (JH and KWK), there were two categories
of false positive images. The AI algorithm could not differentiate
between ovarian cysts of a substantial size (>3 cm in diameter)
and ascites (Figure 3A). In contrast, normal physiologic ovarian
cysts were correctly identified by our algorithm. The AI

algorithm could not differentiate ascites from a fully distended
urinary bladder (Figure 3B). However, the AI algorithm was
able to differentiate ascites from a partially distended or
collapsed urinary bladder.

All the false negative images showed a small amount of ascites.
Two radiologists determined that all the false negative results
were clinically insignificant.

Figure 3. Examples of incorrect segmentation results. The left-hand column includes the original computed tomography (CT) images, the middle
column includes the ground-truth masking images, and the right-hand column includes the segmented results by our deep residual U-Net algorithm. A.
In a patient with a left ovarian cyst, our artificial intelligence (AI) algorithm detected fluid within the ovarian cyst as ascites. B. In a patient with a fully
distended bladder, our AI algorithm detected fluid in the bladder as ascites. Red represents the resultant segmented images.

Discussion

Principal Findings
In this study, for the first time, we developed a deep residual
U-Net model for the segmentation of ascites on CT images,
which provided higher accuracy compared with state-of-the-art
networks, including U-Net, bidirectional U-Net, and R2U-Net.
Our study results demonstrated that our AI algorithm was able
to detect and quantify ascites in the abdominopelvic cavity. Our

proposed algorithm was the deep residual U-Net model, which
achieved 96% sensitivity, 96% specificity, and 96% accuracy
for ascites detection with the testing data set. The segmentation
performance was also high, with an mIoU of 0.87, when
comparing the AI segmentation results and ground-truth values.
However, the ground-truth values were generated by a human
expert, and human error may have affected the drawing of the
ascites boundaries. Thus, we believe that the AI segmentation
algorithm might be more accurate for drawing the boundary
areas of ascites in general.
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The deep residual U-Net model outperformed the state-of-the-art
algorithms, including U-Net, bidirectional U-Net, and R2U-Net.
The deep residual U-Net model combined the strengths of
residual learning and U-Net architecture [9]. The network was
built with residual units and has similar architecture to that of
U-Net. The benefits of this model are three-fold: (1) residual
units facilitate the training of deep networks, (2) the vanishing
gradient problem is reduced, and (3) the rich skip connections
within the network could facilitate information propagation,
resulting in higher mIoU values. Integration of the residual
network with standard U-Net architecture enabled us to extract
robust discriminative features from input CT images.

In general, the concept of U-Net is to stitch low-level features
into corresponding high-level features, thereby adding low-level
texture features to high-level semantic features. Thus, U-Net
with a deep layer can provide better segmentation results.

However, an excessive increase in the number of network layers
tends to decrease segmentation accuracy. This issue can be
solved by adding a residual unit to U-Net, which can make use
of the merits of the residual network [6]. A deep residual U-Net
model has been used for lung segmentation in CT scans [9],
joint segmentation in CT scans [18], and vulnerable plaque
segmentation in optical coherence tomography images [19].
These prior studies consistently reported the high segmentation
performance of a deep residual U-Net model. In addition, our
proposed deep residual U-Net model has an advantage over
other U-Net models, in that it requires fewer parameters
compared to other tree models [6-8]. Table 9 summarizes the
comparison of the number of parameters for each model. Our
proposed model includes 18,855,137 weights and biases, which
represents only 54.5% of the parameters from U-Net. Also, this
represents only 34.0% and 78.1% of the parameters from
bidirectional U-Net and R2U-Net, respectively.

Table 9. Comparison of the number of parameters for each U-Net model.

Total parameters, nNontrainable parameters, nTrainable parameters, nModel

18,855,13714,59218,840,545Our proposed model

34,614,36914,01634,600,353U-Net [6]

55,400,197140855,398,798Bidirectional U-Net [7]

24,133,013024,133,013Recurrent residual U-net [8]

So far, there has been only one study that developed an AI
algorithm to detect ascites [3]. In that study, the authors used a
CNN algorithm mainly for the classification of three abnormal
CT findings of free fluid (ie, ascites), free gas, and mesenteric
fat stranding. The accuracy of the CNN algorithm achieved 85%
sensitivity and 95% specificity to detect ascites. In contrast, our
deep residual U-Net algorithm achieved 96% sensitivity and
96% specificity for ascites detection. In addition, our deep
residual U-Net algorithm also quantified the amount of ascites
with high segmentation accuracy (mIoU=0.87). Thus, we believe
that it is quite possible to use our proposed algorithm for ascites
detection and quantification on abdominopelvic CT images in
patients who visit the emergency department.

In the majority of urgent and emergent situations, clinicians
should read the CT scan without radiologic support immediately
after the CT scan was obtained. Getting a radiology report
usually takes time, and radiologic support may not be maintained
24 hours per day in many institutions [20]. AI algorithms can
help maintain radiology support in real time with high diagnostic
accuracy. Our training and test data sets were unique in that CT
data were obtained from patients who visited the emergency
department of a tertiary care hospital, which is designated as a
regional emergency medical center and a regional trauma center
in Korea. Currently, we incorporated our deep residual U-Net
algorithm in our radiology unit and will start further training of
our algorithm in a sustainable manner.

There were false positive cases in which our AI algorithm
identified fluid within organs, such as the bladder and ovarian
cysts, as ascites (Figure 3). These false positive cases will
decrease as we continue to train the AI algorithm. All the false

negative cases showed a small amount of ascites, especially
between internal organs, such as the bowels, bladder, and uterus.
Further training will increase the sensitivity of the AI algorithm
to detect ascites.

We adopted a 2D AI algorithm for sequential 2D image analyses
rather than a 3D framework, because 3D deep learning requires
higher computational power than 2D deep learning [20]. In an
emergent clinical setting, a rapid AI algorithm may be preferable
to a complex and slow algorithm. Our study showed that
sequential 2D image analyses could provide excellent diagnostic
accuracy for detecting and quantifying ascites.

Limitations and Future Work
Our study has several limitations. Firstly, we trained our model
using a relatively small amount of CT data. Thus, we will
establish a sustainable AI training system and train our AI
algorithm using real-world CT data prospectively obtained from
our emergency department. Secondly, our AI model was
validated internally using a split testing data set. The testing
data set was obtained from the same source as the training data
set. This may raise issues of generalizability and overfitting of
our model [21]. Thus, in the near future, we will validate our
model using data from various institutions.

Conclusions
We propose our deep residual U-Net algorithm for the automatic
detection and quantification of ascites in abdominopelvic CT
scans. Our model outperformed other state-of-the-art
segmentation algorithms based on U-Net, bidirectional U-Net,
and R2U-Net.

J Med Internet Res 2022 | vol. 24 | iss. 1 | e34415 | p. 11https://www.jmir.org/2022/1/e34415
(page number not for citation purposes)

Ko et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Acknowledgments
This work was supported by the National Research Foundation of Korea (grant 2019R1I1A1A01060744), a grant from the Korea
Health Industry Development Institute (grant HI18C1216), and the Korea Medical Device Development Fund grant, which is
funded by the Government of the Republic of Korea (the Ministry of Science and ICT; the Ministry of Trade, Industry and Energy;
the Ministry of Health and Welfare; and the Ministry of Food and Drug Safety) (grant KMDF_PR_20200901_0095).

Authors' Contributions
HK and HC carried out the machine learning and deep learning simulation for the hyperparameter search and modeling. JH, JKK,
and JL provided the data and performed the data validation to be applied to ascites segmentation. KWK and YK validated and
confirmed the simulations and helped to draft the manuscript. HK, JH, and JL wrote the initial manuscript. JL, JH, and KWK
conceived the study and participated in its design and coordination. All authors read and approved the final manuscript.

Conflicts of Interest
None declared.

References

1. Levine CD, Patel UJ, Wachsberg RH, Simmons MZ, Baker SR, Cho KC. CT in patients with blunt abdominal trauma:
Clinical significance of intraperitoneal fluid detected on a scan with otherwise normal findings. AJR Am J Roentgenol
1995 Jun;164(6):1381-1385. [doi: 10.2214/ajr.164.6.7754877] [Medline: 7754877]

2. Wang DC, Parry CR, Feldman M, Tomlinson G, Sarrazin J, Glanc P. Acute abdomen in the emergency department: Is CT
a time-limiting factor? AJR Am J Roentgenol 2015 Dec;205(6):1222-1229. [doi: 10.2214/AJR.14.14057] [Medline:
26587929]

3. Winkel DJ, Heye T, Weikert TJ, Boll DT, Stieltjes B. Evaluation of an AI-based detection software for acute findings in
abdominal computed tomography scans. Invest Radiol 2019;54(1):55-59. [doi: 10.1097/rli.0000000000000509]

4. Urban BA, Fishman EK. Tailored helical CT evaluation of acute abdomen. Radiographics 2000;20(3):725-749. [doi:
10.1148/radiographics.20.3.g00ma12725] [Medline: 10835125]

5. Sirlin CB, Casola G, Brown MA, Patel N, Bendavid EJ, Hoyt DB. Quantification of fluid on screening ultrasonography
for blunt abdominal trauma: A simple scoring system to predict severity of injury. J Ultrasound Med 2001 Apr;20(4):359-364.
[doi: 10.7863/jum.2001.20.4.359] [Medline: 11316314]

6. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Proceedings
of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015 Presented
at: 18th International Conference on Medical Image Computing and Computer-Assisted Intervention; October 5-9, 2015;
Munich, Germany p. 234-241. [doi: 10.1007/978-3-319-24574-4_28]

7. Azad TD, Asadi-Aghbolaghi M, Fathy M, Escalera S. Bi-directional ConvLSTM U-Net with densely connected convolutions.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop. 2019 Presented at: IEEE/CVF
International Conference on Computer Vision Workshop; October 27-28, 2019; Seoul, Korea p. 406-415. [doi:
10.1109/ICCVW.2019.00052]

8. Alom MZ, Yakopcic C, Hasan M, Taha TM, Asari VK. Recurrent residual U-Net for medical image segmentation. J Med
Imaging 2019 Jan 1;6(01):1. [doi: 10.1117/1.jmi.6.1.014006]

9. Khanna A, Londhe N, Gupta S, Semwal A. A deep residual U-Net convolutional neural network for automated lung
segmentation in computed tomography images. Biocybern Biomed Eng 2020 Jul;40(3):1314-1327. [doi:
10.1016/j.bbe.2020.07.007]

10. Saeedizadeh N, Minaee S, Kafieh R, Yazdani S, Sonka M. COVID TV-Unet: Segmenting COVID-19 chest CT images
using connectivity imposed Unet. Comput Methods Programs Biomed Update 2021;1:100007 [FREE Full text] [doi:
10.1016/j.cmpbup.2021.100007] [Medline: 34337587]

11. Schreier J, Attanasi F, Laaksonen H. A full-image deep segmenter for CT images in breast cancer radiotherapy treatment.
Front Oncol 2019;9:677 [FREE Full text] [doi: 10.3389/fonc.2019.00677] [Medline: 31403032]

12. Dong X, Lei Y, Wang T, Thomas M, Tang L, Curran WJ, et al. Automatic multiorgan segmentation in thorax CT images
using U-net-GAN. Med Phys 2019 May;46(5):2157-2168 [FREE Full text] [doi: 10.1002/mp.13458] [Medline: 30810231]

13. Ma X, Hadjiiski LM, Wei J, Chan H, Cha KH, Cohan RH, et al. U-Net based deep learning bladder segmentation in CT
urography. Med Phys 2019 Apr;46(4):1752-1765 [FREE Full text] [doi: 10.1002/mp.13438] [Medline: 30734932]

14. Amer A, Ye X, Janan F. ResDUnet: A deep learning-based left ventricle segmentation method for echocardiography. IEEE
Access 2021;9:159755-159763. [doi: 10.1109/access.2021.3122256]

15. Singadkar G, Mahajan A, Thakur M, Talbar S. Deep deconvolutional residual network based automatic lung nodule
segmentation. J Digit Imaging 2020 Jun;33(3):678-684 [FREE Full text] [doi: 10.1007/s10278-019-00301-4] [Medline:
32026218]

16. Mique Jr E, Malicdem A. Deep residual U-Net based lung image segmentation for lung disease detection. In: Proceedings
of the International Conference on Information Technology and Digital Applications. 2020 Presented at: International

J Med Internet Res 2022 | vol. 24 | iss. 1 | e34415 | p. 12https://www.jmir.org/2022/1/e34415
(page number not for citation purposes)

Ko et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.2214/ajr.164.6.7754877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7754877&dopt=Abstract
http://dx.doi.org/10.2214/AJR.14.14057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26587929&dopt=Abstract
http://dx.doi.org/10.1097/rli.0000000000000509
http://dx.doi.org/10.1148/radiographics.20.3.g00ma12725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10835125&dopt=Abstract
http://dx.doi.org/10.7863/jum.2001.20.4.359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11316314&dopt=Abstract
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/ICCVW.2019.00052
http://dx.doi.org/10.1117/1.jmi.6.1.014006
http://dx.doi.org/10.1016/j.bbe.2020.07.007
https://linkinghub.elsevier.com/retrieve/pii/S2666-9900(21)00006-9
http://dx.doi.org/10.1016/j.cmpbup.2021.100007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34337587&dopt=Abstract
https://doi.org/10.3389/fonc.2019.00677
http://dx.doi.org/10.3389/fonc.2019.00677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31403032&dopt=Abstract
http://europepmc.org/abstract/MED/30810231
http://dx.doi.org/10.1002/mp.13458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30810231&dopt=Abstract
http://europepmc.org/abstract/MED/30734932
http://dx.doi.org/10.1002/mp.13438
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30734932&dopt=Abstract
http://dx.doi.org/10.1109/access.2021.3122256
http://europepmc.org/abstract/MED/32026218
http://dx.doi.org/10.1007/s10278-019-00301-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32026218&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Conference on Information Technology and Digital Applications; November 15, 2019; Yogyakarta, Indonesia URL: https:/
/iopscience.iop.org/article/10.1088/1757-899X/803/1/012004/pdf [doi: 10.1088/1757-899X/803/1/012004]

17. Jadon S. A survey of loss functions for semantic segmentation. In: Proceedings of the IEEE Symposium on Computational
Intelligence and Bioinformatics and Computational Biology. 2020 Presented at: IEEE Symposium on Computational
Intelligence and Bioinformatics and Computational Biology; October 27-29, 2020; Via del Mar, Chile p. 1-7. [doi:
10.1109/cibcb48159.2020.9277638]

18. Rassadin A. Deep residual 3D U-Net for joint segmentation and texture classification of nodules in lung. In: Proceedings
of the 17th International Conference on Image Analysis and Recognition. 2020 Presented at: 17th International Conference
on Image Analysis and Recognition; June 24-26, 2020; Póvoa de Varzim, Portugal p. 419-427. [doi:
10.1007/978-3-030-50516-5_37]

19. Li L, Jia T. Optical coherence tomography vulnerable plaque segmentation based on deep residual U-Net. Rev Cardiovasc
Med 2019 Sep 30;20(3):171-177 [FREE Full text] [doi: 10.31083/j.rcm.2019.03.5201] [Medline: 31601091]

20. Ko H, Chung H, Kang WS, Kim KW, Shin Y, Kang SJ, et al. COVID-19 pneumonia diagnosis using a simple 2D deep
learning framework with a single chest CT image: Model development and validation. J Med Internet Res 2020 Jun
29;22(6):e19569 [FREE Full text] [doi: 10.2196/19569] [Medline: 32568730]

21. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial
intelligence algorithms for diagnostic analysis of medical images: Results from recently published papers. Korean J Radiol
2019 Mar;20(3):405-410 [FREE Full text] [doi: 10.3348/kjr.2019.0025] [Medline: 30799571]

Abbreviations
AI: artificial intelligence
AUROC: area under the receiver operating characteristic curve
CNN: convolutional neural network
CT: computed tomography
DICOM: Digital Imaging and Communications in Medicine
DLM: deep learning model
FN: false negative
FP: false positive
HU: Hounsfield Unit
mIoU: mean intersection over union
R2U-Net: recurrent residual U-Net
ROC: receiver operating characteristic
TN: true negative
TP: true positive

Edited by G Eysenbach; submitted 22.10.21; peer-reviewed by C Jeong, T Zhang; comments to author 15.11.21; revised version
received 30.11.21; accepted 30.11.21; published 03.01.22

Please cite as:
Ko H, Huh J, Kim KW, Chung H, Ko Y, Kim JK, Lee JH, Lee J
A Deep Residual U-Net Algorithm for Automatic Detection and Quantification of Ascites on Abdominopelvic Computed Tomography
Images Acquired in the Emergency Department: Model Development and Validation
J Med Internet Res 2022;24(1):e34415
URL: https://www.jmir.org/2022/1/e34415
doi: 10.2196/34415
PMID:

©Hoon Ko, Jimi Huh, Kyung Won Kim, Heewon Chung, Yousun Ko, Jai Keun Kim, Jei Hee Lee, Jinseok Lee. Originally
published in the Journal of Medical Internet Research (https://www.jmir.org), 03.01.2022. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of
Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on
https://www.jmir.org/, as well as this copyright and license information must be included.

J Med Internet Res 2022 | vol. 24 | iss. 1 | e34415 | p. 13https://www.jmir.org/2022/1/e34415
(page number not for citation purposes)

Ko et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://iopscience.iop.org/article/10.1088/1757-899X/803/1/012004/pdf
https://iopscience.iop.org/article/10.1088/1757-899X/803/1/012004/pdf
http://dx.doi.org/10.1088/1757-899X/803/1/012004
http://dx.doi.org/10.1109/cibcb48159.2020.9277638
http://dx.doi.org/10.1007/978-3-030-50516-5_37
https://rcm.imrpress.com/EN/10.31083/j.rcm.2019.03.5201
http://dx.doi.org/10.31083/j.rcm.2019.03.5201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31601091&dopt=Abstract
https://www.jmir.org/2020/6/e19569/
http://dx.doi.org/10.2196/19569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32568730&dopt=Abstract
https://www.kjronline.org/DOIx.php?id=10.3348/kjr.2019.0025
http://dx.doi.org/10.3348/kjr.2019.0025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30799571&dopt=Abstract
https://www.jmir.org/2022/1/e34415
http://dx.doi.org/10.2196/34415
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

