
Review

Accuracy and Acceptability of Wrist-Wearable Activity-Tracking
Devices: Systematic Review of the Literature

Federico Germini1,2, MSc, MD; Noella Noronha1,3, MSc; Victoria Borg Debono1, MSc, PhD; Binu Abraham Philip1,

MSc; Drashti Pete1, MPH; Tamara Navarro1, MLIS, MEd; Arun Keepanasseril1,2, MSc, MDS; Sameer Parpia1,4, PhD;

Kerstin de Wit1,5, MBChB, MSc, MD; Alfonso Iorio1,2, MD, PhD
1Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
2Department of Medicine, McMaster University, Hamilton, ON, Canada
3School of Interdisciplinary Sciences, McMaster University, Hamilton, ON, Canada
4Department of Oncology, McMaster University, Hamilton, ON, Canada
5Department of Emergency Medicine, Queen's University, Kingston, ON, Canada

Corresponding Author:
Noella Noronha, MSc
Department of Health Research Methods, Evidence, and Impact
McMaster University
1280 Main Street West
Hamilton, ON, L8S 4L8
Canada
Phone: 1 9055259140 ext 22069
Email: noronn@mcmaster.ca

Abstract

Background: Numerous wrist-wearable devices to measure physical activity are currently available, but there is a need to unify
the evidence on how they compare in terms of acceptability and accuracy.

Objective: The aim of this study is to perform a systematic review of the literature to assess the accuracy and acceptability
(willingness to use the device for the task it is designed to support) of wrist-wearable activity trackers.

Methods: We searched MEDLINE, Embase, the Cochrane Central Register of Controlled Trials, and SPORTDiscus for studies
measuring physical activity in the general population using wrist-wearable activity trackers. We screened articles for inclusion
and, for the included studies, reported data on the studies’ setting and population, outcome measured, and risk of bias.

Results: A total of 65 articles were included in our review. Accuracy was assessed for 14 different outcomes, which can be
classified in the following categories: count of specific activities (including step counts), time spent being active, intensity of
physical activity (including energy expenditure), heart rate, distance, and speed. Substantial clinical heterogeneity did not allow
us to perform a meta-analysis of the results. The outcomes assessed most frequently were step counts, heart rate, and energy
expenditure. For step counts, the Fitbit Charge (or the Fitbit Charge HR) had a mean absolute percentage error (MAPE) <25%
across 20 studies. For heart rate, the Apple Watch had a MAPE <10% in 2 studies. For energy expenditure, the MAPE was >30%
for all the brands, showing poor accuracy across devices. Acceptability was most frequently measured through data availability
and wearing time. Data availability was ≥75% for the Fitbit Charge HR, Fitbit Flex 2, and Garmin Vivofit. The wearing time was
89% for both the GENEActiv and Nike FuelBand.

Conclusions: The Fitbit Charge and Fitbit Charge HR were consistently shown to have a good accuracy for step counts and the
Apple Watch for measuring heart rate. None of the tested devices proved to be accurate in measuring energy expenditure. Efforts
should be made to reduce the heterogeneity among studies.

(J Med Internet Res 2022;24(1):e30791) doi: 10.2196/30791
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Introduction

Background
Tracking, measuring, and documenting one’s physical activity
can be a way of monitoring and encouraging oneself to
participate in daily physical activity; increased activity is thought
to translate into important positive health outcomes, both
physical and mental [1]. In the past, most physical activity
tracking was done manually by oneself or an external assessor,
through records, logbooks, or using questionnaires. These are
indirect methods to quantify physical activity, meaning that
they do not measure movement directly as it occurs [2]. The
main disadvantages of such methods are the administrative
burden on either the self-assessor or the external assessor and
the potential imprecision because of recall bias [2,3]. Direct
methods to assess physical activity [2], such as accelerometers
or pedometers that digitally record movement, are preferred
because they eliminate recall bias and are convenient. This
process of activity tracking has become automated, accessible,
and digitized with wearable tracking technology such as
wristband sensors and smartwatches that can be linked to
computer apps on other devices such as smartphones, tablets,
and PCs. When data are uploaded to these devices, users can
review their physical activity log and potentially use this
feedback to make behavior changes with regard to physical
activity.

The ideal device should be acceptable to the end user,
affordable, easy to use, and accurate in measuring physical
activity. Accuracy can be defined as the closeness of the
measured value to the actual value. Accuracy can be calculated
using measures of agreement, sensitivity and specificity, receiver
operating characteristic curves, or absolute and percentage
differences [4]. Agreement can be defined as “the degree of
concordance between two or more sets of measurements” [5].
It can be measured as percentage agreement, that is, the
percentage of cases in which 2 methods of measurements of the
same variable lead to classification in the same category.
Another example of methods of calculating agreement is the κ
statistic, which measures agreement beyond chance [6].
Sensitivity and specificity are the true positive and true negative
proportions, respectively. These proportions are calculated using
the measurement method that we are evaluating as the index
test and another method, known to be accurate, as the reference
standard [4]. Receiver operating characteristic curves are
obtained plotting the sensitivity versus the complement of
specificity and can be used to find optimal cutoff points for the
index test. Absolute and percentage differences are used to
determine how far the index test measurement is from the
reference standard or their average [4]. Acceptability can be
widely defined as “the demonstrable willingness within a user
group to employ information technology for the task it is
designed to support” [7]. It can be assessed qualitatively (eg,
through questionnaires or interviews) or quantitatively (eg,
percentage of the time during which the device is worn or the
data are available or measured using ad hoc scales). On the basis
of a 2019 review, acceptability or acceptance of wrist-wearable
activity-tracking devices is dependent on the type of user and
context of use [8]. This same review indicates that research on

accuracy has not kept up with the plethora of wearable physical
activity–tracking devices in the market [8]. This may be because
of the rapidly changing landscape as companies continue to
upgrade models with different technical specifications and
features. The purpose of this systematic review is to assess the
acceptability and accuracy of these wrist-wearable
activity-tracking devices through a focused in-depth review of
primary studies assessing these 2 characteristics.

Objectives
The first objective of this systematic review is to assess the
accuracy of wrist-wearable activity-tracking devices for
measuring physical activity.

The second objective is to assess the acceptability of
wrist-wearable activity-tracking devices for measuring physical
activity.

Methods

The methods used for this systematic review have been
registered in the PROSPERO database (CRD42019137420).

Search Strategy
The databases searched were MEDLINE, Embase, the Cochrane
Central Register of Controlled Trials, and SPORTDiscus from
inception to May 28, 2019. Search strategies were developed
to retrieve content on wearable activity trackers and on their
accuracy and reproducibility of results. We used search terms,
including Wearable device and Fitness tracker, to identity
studies on the use of a consumer-based wearable activity tracker,
whereas terms such as data accuracy and reproducibility of
results were included to bring in content focused on activity
tracker validation. The search strategy is available on the web
in the PROSPERO record. A snowball search was conducted
by checking the references of relevant studies and systematic
reviews on this topic that were identified in our original search.

Selection of Studies
For the acceptability objective, the population was the general
population, without sex or age restrictions. The intervention
was the use of a wrist-wearable activity tracker. The outcome
was any quantitative measure of acceptability, including wearing
time, data availability, and questionnaires to assess acceptability.

For the accuracy objective, the population was again the general
population, the index test had to be a wrist-wearable activity
tracker, and the reference standard could be another device or
any method used to measure physical activity, including
questionnaires and direct observation. The outcome could be
any measure of physical activity, including but not limited to
step count, heart rate, distance, speed, activity count, activity
time, and intensity of physical activity.

For both objectives, this review examined both research-grade
devices (activity trackers available only for research purposes)
and commercial devices (those available to the general public).
The included studies were limited to the community-based
everyday-life setting. Laboratory tests such as research studies
were included as long as everyday settings were reproduced,
thereby excluding patients who were institutionalized and those
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who were hospitalized. We set no restrictions on the length of
observation for the original studies.

The exclusion criteria included the following: device not worn
on the wrist, studies measuring sleep, and studies on patients
who were institutionalized or hospitalized.

All studies reporting primary data were considered for inclusion,
with the exception of case reports and case series.

Using the aforementioned inclusion and exclusion criteria and
a piloted form, we initially screened for inclusion from the titles
and abstracts of the retrieved articles, using the web-based
software Rayyan (Rayyan Systems Inc) [9]. Subsequently, we
screened the full texts of the studies identified as potentially
eligible from the title and abstract screening for selection.

Data Extraction and Risk-of-Bias Assessment
Data were extracted to an Excel (Microsoft Corp) file. The data
extraction form was based on a previous publication on the
same topic [8] and adapted to the needs of this review. The
following data were extracted: general study information: first
author’s name, publication year, type of study (prospective vs
retrospective and observational vs interventional), duration of
follow-up (in days), and setting (laboratory vs field);
characteristics of the population: number of participants,
underlying health condition (eg, healthy participants, people
with severe obesity, and chronic joint pain), gender, and age
distribution (mean and SD or median and minimum–maximum
or first and third quartiles); measures of accuracy: step count,
distance, speed, heart rate, activity count, time spent being
active, and intensity of physical activity; and acceptability of
the device, including but not limited to data availability, wearing
time, ease of use. The risk of bias was assessed using the Quality
Assessment of Diagnostic Accuracy Studies, version 2, tool
[10]. This tool guides the assessment of the risk of bias in
diagnostic accuracy studies in 4 domains: patient selection,
index test, reference standard, and flow and timing. We rated
the risk of bias in each domain as High, Probably high, Probably
low, and Low. When necessary, the study authors were contacted
for additional information.

Throughout title and abstract and full-text screening and the
data extraction, each step was performed in duplicate with 2
reviewers (NN and BAP) deciding independently on inclusion
or exclusion and, if needed, later having a discussion with
another author to make a final decision. Disagreements were
solved through discussion and, when needed, with the
intervention of a third reviewer (FG, VBD, or DP). The
reviewers were trained with calibration exercises until an
adequate performance was achieved for each of these steps.

Diagnostic Accuracy Measures
When available, we extracted the mean absolute percentage
error (MAPE) or the mean percentage error. When these were

not available, we extracted other measures in the following
order of priority: mean difference, mean bias (Bland–Altman),
accuracy determined through intraclass correlation coefficient,
and correlation coefficient (Pearson or Spearman). When the
outcome was dichotomized and sensitivity and specificity were
calculated, we reported on these values. When available, we
reported measures of variability or 95% CIs for all the
aforementioned measures. The formulas used for calculating
the MAPE, mean percentage error, mean difference, and mean
bias are reported in Multimedia Appendix 1 [11-75].

Synthesis of Results
Because of the significant heterogeneity observed in the studies’
populations, settings, devices assessed, reference standards,
outcomes assessed, and the outcome measures reported, we
decided not to perform a quantitative synthesis and have
provided a narrative synthesis of the results for both the
objectives. For the accuracy objective, given the high number
of studies retrieved, we summarized results only for devices
that were included in at least two studies reporting the same
outcome. All the remaining results are reported in Multimedia
Appendix 1.

Ethics Approval
This systematic review was based on published data and
therefore did not require a submission to a research ethics board.

Availability of Data and Materials
Most of the data that support the findings of this study are
available in Multimedia Appendix 1. A guide on how to use the
database provided in Multimedia Appendix 1 can be found in
Multimedia Appendix 2. The full data set can be made available
upon reasonable request.

Code Availability
This is not applicable to this systematic review because no
quantitative data synthesis was performed.

Results

Overview
The search identified 1633 records (1614, 98.84%, after the
removal of duplicates). The study flow diagram is presented in
Figure 1. After screening the full texts of 398 articles, 65
(16.3%) were included in the systematic review. The
characteristics of the included studies are summarized in Table
1 and Multimedia Appendix 3 [11-67] for the accuracy objective
and Table 2 for the acceptability objective. All the included
studies were single-center studies, with a prospective,
observational design. The complete results for accuracy and
acceptability have been reported in Multimedia Appendix 1.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2009 study flow diagram.
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Table 1. Characteristics of the studies reporting on accuracy (N=57).

Device brand and
model

OutcomeUnderlying health
condition

Female,
%

Age
(years),
mean
(SD)

Sample, nFUPa

time,
days

SettingFirst author, year

Fitbit FlexStep count and

MVPAb
Patients undergoing
cardiac rehabilitation

4866 (7)48<1LaboratoryAlharbi [11], 2016

Garmin VivofitStep count and
energy expendi-
ture

Healthy3840 (12)135FieldAlsubheen [12],
2016

Fitbit Flex, Garmin
Vivofit, Polar Loop,

Step countHealthy5131 (12)351Laboratory
and field

An [13], 2017

Basis B1 Band, Misfit
Shine, Jawbone UP24,
and Nike FuelBand
SE

ActiGraph GT3XActive timeHealthy4024 (5)62<1FieldAn [14], 2017

Fitbit AltaStep countCOPDc2565 (8)814FieldBlondeel [15], 2018

Polar A300Step count, ener-
gy expenditure,
and MVPA

COPD1566 (7)203FieldBoeselt [16], 2016

ActivPALActivity countRehabilitation after
radial fracture

——d32395Laboratory
and field

Bruder [17], 2018

ActiGraph GT3X+Physical activity
intensity

COPD—70 (10)201LaboratoryBulathsinghala [18],
2014

Fitbit Flex and Fitbit
Charge HR

Step countHealthy older adults6574 (6)31<1LaboratoryBurton [19], 2018

ActiGraph GT1MEnergy expendi-
ture

Healthy6213 (2)76<1LaboratoryChoi [20], 2010

ActiGraph
wGT3xBT-BT, Fitbit

Step countHealthy3924 (5)311.5LaboratoryChow [21], 2017

Flex, Fitbit Charge
HR, and Jawbone
UP24

Microsoft Band; Ap-
ple Watch, series not

Energy expendi-
ture

Healthy5027 (6)302Laboratory
and field

Chowdhury [22],
2017

specified; Jawbone
Up24; and Fitbit
Charge

ActiGraph Mini Mo-
tionlogger

SpeedCOPD—70 (10)573Laboratory
and field

Cohen [23], 2010

ActiGraph GT3X+Energy expendi-
ture

Stroke—65 (13)46<1LaboratoryCompagnat [24],
2018

Fitbit Charge HR and
Mio Fuse

Step count, ener-
gy expenditure,
and heart rate

Healthy5822 (2)403-62Laboratory
and field

Dondzila [25], 2018

Apple Watch, series
not specified; Fitbit

Heart rate and en-
ergy expenditure

Healthy5823 (4)621LaboratoryDooley [26], 2017

Charge HR; and
Garmin Forerunner
225

ActiGraph GT1MEnergy expendi-
ture

Healthy5526 (5)202LaboratoryDurkalec-Michalski
[27], 2013

Fitbit Charge HR, Fit-
bit Surge, and Garmin
Vivoactive HR

Step countHealthy——301LaboratoryFalgoust [28], 2018
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Device brand and
model

OutcomeUnderlying health
condition

Female,
%

Age
(years),
mean
(SD)

Sample, nFUPa

time,
days

SettingFirst author, year

Nike FuelBand, Misfit
Shine, and Jawbone
UP

Step count, MV-
PA, and energy
expenditure

Healthy5233 (10)212FieldFerguson [29], 2015

Fitbit Charge HR;
Apple Watch, series
not specified; Garmin
Vivofit 2; and Jaw-
bone UP2

Step count and
distance

Healthy6936 (8)32<1Laboratory
and field

Gaz [30], 2018

Garmin Forerunner
235; TomTom Spark;
Apple Watch, series
not specified; and Fit-
bit Blaze

Heart rateHealthy5438 (12)50<1LaboratoryGillinov [31], 2017

Actiwatch ScoreActivity countPain syndromes3143e3<1LaboratoryGironda [32], 2007

Fitbit ChargeMVPA, energy
expenditure, and
step count

Healthy6831e217Laboratory
and field

Hargens [33], 2017

Polar V800Energy expendi-
ture, vigorous ac-
tive time, active
time, and step
count

Healthy5021 (1)187FieldHernandez-Vicente
[34], 2016

Jawbone UP24,
Garmin Vivofit, Fitbit
Flex, and Nike Fuel-
Band

Step count and
distance

Healthy2524 (3)401LaboratoryHuang [35], 2016

Fitbit Flex, Jawbone
Up24, and Fitbit Flex

Energy expendi-
ture, MVPA, and
step count

Healthy5049 (19)30<1LaboratoryImboden [36], 2018

Basis Peak K and Fit-
bit Charge

Heart rateHealthy5025e24<1LaboratoryJo [37], 2016

Fitbit FlexStep countHealthy—33e30118LaboratoryJones [38], 2018

Fitbit Flex, Jawbone
UP24, Withings
Pulse, and Misfit
Shine

Step countHealthy1431 (0)7<1LaboratoryKaewkannate [39],
2016

Garmin Vivosmart
HR and Fitbit Charge
HR

Step countParkinson disease6467 (8)33<1LaboratoryLamont [40], 2018

Fitbit UltraStep countOlder adults56—18<1Laboratory
and field

Lauritzen [41], 2013

ActiGraph GT3X+Activity countHealthy7026 (6)30<1LaboratoryLawinger [42], 2015

Philips optical heart
rate monitor

Energy expendi-
ture

Parkinson disease10031 (5)40<1LaboratoryLemmens [43], 2018

ADAMO Care WatchStep countHealthy6074 (7)40<1LaboratoryMagistro [44], 2018

Actical and ActiGraph
GTX

Energy expendi-
ture

Stroke6068 (14)24<1LaboratoryMandigout [45],
2017

Fitbit One, Fitbit Flex,
Fitbit Zip, ActiGraph
GT3x+, and Jawbone
UP

Step countSevere obesity—15 (1)9<1LaboratoryManning [46], 2016
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Device brand and
model

OutcomeUnderlying health
condition

Female,
%

Age
(years),
mean
(SD)

Sample, nFUPa

time,
days

SettingFirst author, year

Fitbit Charge HRStep count, ener-
gy expenditure,
and heart rate

Healthy4724 (1)30<1LaboratoryMontoye [47], 2017

Fitbit ChargeHeart rateHealthy5522 (2)22<1FieldPowierza [48], 2017

Fitbit One, Garmin
Vivofit, and Jawbone
UP

Energy expendi-
ture

Healthy2123e14<1LaboratoryPrice [49], 2017

Fitbit FlexMVPAHealthy7242 (12)654LaboratoryRedenius [50], 2019

Fitbit FlexMVPA and step
count

Healthy10021 (2)224FieldReid [51], 2017

Suunto Ambit,
Garmin Forerunner
920XT, and Polar
V800

Energy expendi-
ture

Runners4024 (2)202LaboratoryRoos [52], 2017

Garmin VivofitStep countStroke4254 (13)24<1LaboratorySchaffer [53], 2017

GENEActivDaily mean activ-
ity and MVPA

Healthy54—897FieldScott [54], 2017

Fitbit FlexMVPAChronic joint pain6952e357LaboratorySemanik [55], 2020

Movband and SqordEnergy expendi-
ture, MVPA, and
step count

Healthy509 (2)147Laboratory
and field

Sirard [56], 2017

Fitbit FlexStep count and
MVPA

Pregnant10033 (4)167LaboratorySt-Laurent [57],
2018

Jawbone UP, Nike
FuelBand, Fitbit Ul-
tra, and Adidas mi-
Coach

Step count and
energy expendi-
ture

Healthy5022 (1)20<1LaboratoryStackpool [58], 2013

GENEActiv and Acti-
Graph GT3X+

Loading rate

(BWf/s)

Healthy pre-
menopausal women

10039 (6)10e1LaboratoryStiles [59], 2013

Garmin ForerunnerHeart rateHealthy4129 (9)29<1LaboratoryStøve [60], 2019

Fitbit Charge HR and
Xiaomi Mi Band 2

Step countHealthy5032 (9)30<1LaboratoryTam [61], 2018

Apple Watch, series
not specified; and Fit-
bit Charge HR2

Heart rateHealthy5024 (3)30<1LaboratoryThomson [62], 2019

Polar Loop, Beurer
AS80, Fitbit Charge
HR, Fitbit Charge,
Bodymedia
Sensewear, Garmin
Vivofit, Garmin
Vivosmart, Garmin
Vivoactive, Garmin
Forerunner 920XT,
Xiaomi Mi Band, and
Withings Pulse

Step count, ener-
gy expenditure,
and distance

Healthy5025 (3)20<1LaboratoryWahl [63], 2017

Apple Watch, series
not specified; Sam-
sung Gear S; Mio Al-
pha; and Fitbit Charge

Heart rate, energy
expenditure, and
step count

Healthy5024 (6)22<1LaboratoryWallen [64], 2016
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Device brand and
model

OutcomeUnderlying health
condition

Female,
%

Age
(years),
mean
(SD)

Sample, nFUPa

time,
days

SettingFirst author, year

Huawei B1, Xiaomi
Mi Band, Fitbit
Charge, Polar Loop,
Garmin Vivofit 2,
Misfit Shine, and
Jawbone UP

Step countHealthy4422 (1)9<1LaboratoryWang [65], 2017

Garmin Vivofit,
Withings Pulse, and
Basis Peak

Energy expendi-
ture

Healthy2925 (4)28<1LaboratoryWoodman, 2017
[66]

GENEActivActivity classifi-
cation (sedentary,
household, walk-
ing, and running)

Healthy6249 (7)601LaboratoryZhang [67], 2012

aFUP: follow-up.
bMVPA: moderate- to vigorous-intensity physical activity.
cCOPD: chronic obstructive pulmonary disease.
dNot available.
eSD not reported.
fBW: body weight.
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Table 2. Characteristics of the studies reporting on acceptability (N=11).

Device brand
and model

Outcome assessedUnderlying health
condition

Female,
%

Age (years),
mean (SD)

Sample, nFUPa

time,
days

SettingFirst author, year

Polar A300Ease of use and oth-
er characteristics

COPDb1566 (7)207Laboratory and fieldBoeselt [16],
2016

Fitbit Charge
HR

Data availabilityCHFc6765 (12)465FieldDeka [68], 2018

GENEActivWearing timeDementia; care-
givers of patients
with dementia

39; 7380 (6); 76
(6)

26; 262FieldFarina [69], 2019

AX3 data log-
ger

Ease of use and oth-
er characteristics

Parkinson disease—e69d347FieldFisher [70], 2016

Fitbit Flex,
Jawbone
UP24, With-
ings Pulse,
and Misfit
Shine

Ease of use and oth-
er characteristics

Healthy1431 (0)7<1FieldKaewkannate
[39], 2016

Garmin
Vivofit

Data availabilitySchizophrenia——40120LaboratoryLahti [71], 2017

Fitbit Flex 2Data availabilityIdiopathic pul-
monary fibrosis

2073 (7)2046FieldMarcoux [72],
2019

Nike Fuel-
Band

Wearing timeSerious mental ill-
ness

9048 (9)580-
133

FieldNaslund [73],
2015

Fitbit Charge
HR2

Wearing timeCoronary artery dis-
ease

——18690LaboratorySpeier [74], 2018

Fitbit FlexEase of use and oth-
er characteristics

Pregnant10033 (4)161LaboratorySt-Laurent [57],
2018

GENEActivData availabilityHealthy10013 (1)1724425FieldRowlands [75],
2018

aFUP: follow-up.
bCOPD: chronic obstructive pulmonary disease.
cCHF: congestive heart failure.
dSD not reported.
eNot available.

Accuracy
The accuracy of wrist-wearable activity trackers was assessed
in 57 studies on 72 devices from 29 brands. Step count, heart
rate, and energy expenditure (EE) were the most commonly
assessed outcomes in the appraised literature. The results of

these outcomes are summarized in Figure 2 (icons by Nikhil
Bapna, Yoyon Pujiyono, Chintuza, Gregor Cresnar, Andrejs
Kirma, and Yigit Pinarbasi from the Noun Project [76]), in
which we have highlighted the standout device for the most
frequently reported outcomes.
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Figure 2. Summary of the results for the main accuracy outcomes. MAPE: mean absolute percentage error.

Step Counts
A total of 31 studies on 72 devices from 29 brands reported data
on step counts. The reference standards used were manual count
(directly observed or on video, usually with the help of a tally
counter) or automated count through video analysis, an activity
tracker (8 different devices), or a photoelectric cell.

The ActiGraph wGT3xBT-BT, tested against manual count,
showed a mean percentage error of –41.7% (SD 13.5%) [21].
The ActiGraph GT3x+ showed no statistically significant
correlation with the same reference standard [46].

The Apple Watch (series not specified) was evaluated in 6%
(2/31) of studies using manual count as the reference standard
[30,64]. The mean difference between the device and the manual
count varied from –47 (SD 470) steps to 39.44 (SD 151.81)
steps in different walking conditions.

For the Fitbit Alta, the mean step count was 773 (SD 829) higher
(P=.009) than the one obtained with the reference standard, an
accelerometer [15]. For the Fitbit Charge, the mean difference
was –59 (SD 704) steps compared with direct observation [64].
The MAPE for the same device ranged from –4.4% to 20.7%,
using different automated step count methods as the reference
standard [33,63,65]. The Fitbit Charge HR was assessed in 29%
(9/31) of studies, using direct observation [19,21,28,30,61] or
an automated method of step count as the reference standard

[25,40,47,63]. The MAPE ranged from –12.7% to 24.1%. The
accuracy of the Fitbit Flex in measuring steps was assessed in
35% (11/31) of studies, using manual count
[13,19,21,35,36,38,39,46] or an ActiGraph device [11,51,57]
as the reference standard. The mean percentage error ranged
from –23% to 13%. For the Fitbit One and Fitbit Zip, no
statistically significant correlation was found in step counting
using direct observation as the reference standard [46]. The
correlation coefficient was not reported. For the Fitbit Surge,
the mean difference compared with direct observation was –86.0
steps (P=.004) [28]. For the Fitbit Ultra, the MAPE was 99.6%
(SD 0.8%) [41] and the Pearson correlation coefficient against
manual count ranged from 0.44 to 0.99 in different exercise
conditions [58].

The accuracy of the Garmin Vivofit was assessed in 16% (5/31)
of studies [12,13,35,53,63], with a MAPE ranging from –41%
to 18% [13,53,63]. For the Vivofit 2, a study reported a MAPE
of 4% [65] and another study reported a mean difference ranging
from 5.09 (SD 8.38) steps to 98.06 (SD 137.49) steps in different
walking conditions (over a maximum distance of 1.6 km) [30].

In a study by Wahl et al [63], the MAPE against automated step
counting using a photoelectric cell as the reference standard, in
different exercise types and conditions, ranged from –2.7% to
1.5% for the Garmin Forerunner 920XT, from –1.5% to 0.6%
for the Garmin Vivoactiv, and from –1.1% to –0.3% for the
Garmin Vivosmart [63]. For the Garmin Vivoactive HR, the
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mean difference against manual step count was –19.7 steps
(P=.03) [28]. For the Garmin Vivosmart HR, the mean
difference ranged from –39.7 (SD 54.9) steps to 5.4 (SD 5.8)
steps for different walking speeds and locations (outdoor vs
indoor) over a total of 111-686 steps [40].

For the Jawbone UP, the MAPE was –6.73% in a study [65]
and the mean absolute difference 806 over an average of 9959
steps in another study [29]. For the Jawbone UP2, the mean
difference ranged from 16.19 (SD 29.14) steps to 64 (SD 66.32)
steps for different walking conditions over a maximum distance
of 1.6 km [30]. For the Jawbone UP24, the mean percentage
error ranged from –28% to –0.8% [21,35,36].

For the Misfit Shine, the MAPE ranged from –13% to 23%
[13,65].

For the Mio Fuse, the MAPE ranged from –5% to –16% at
different treadmill speeds [25], whereas in another study, the
mean percentage error was <5% for the Xiaomi Mi Band 2 [61].

For the Nike FuelBand, the mean percentage error ranged from
–34.3% (SD 26.8%) to –16.7% (SD 16.5%) [35], whereas for
the FuelBand SE, the MAPE ranged from 10.2% to 45.0% [13].

The MAPE for the Polar Loop ranged from –13% to 27% in 3
studies [13,63,65]. Regarding 2 other devices from Polar, for
the A300, a Pearson correlation coefficient of 0.96 (P<.01) [16]
was reported, whereas for the V800, the Bland–Altman bias was
equal to 2487 (SD 2293) steps per day over a mean 10,832 (SD
4578) steps per day measured with the reference standard [34].

For the Withings Pulse, the MAPE for step count ranged from
–16.0% to –0.4% [63] and the accuracy from 97.2% to 99.9%
[39]. All the remaining devices were only used in 1 study each,
and the results are reported in Multimedia Appendix 1.

Heart Rate
A total of 9 studies on 15 devices from 7 brands evaluated the
accuracy of activity-tracking devices to measure the participants’
heart rates. The reference standards used were
electrocardiography, pulse oximetry, or another activity tracker
(4 different devices).

For the Apple Watch, the MAPE for measuring heart rate ranged
from 1% (SD ~1%) to 7 (SD ~11%) [26,31].

In the Fitbit family of devices, for the Fitbit Charge, the mean
bias estimated with the Bland–Altman method ranged from –6
(SD 10) bpm to –9 (SD 8) bpm [37,48,64]. For the Fitbit Charge
HR or Fitbit ChargeHR2, the MAPE for measuring heart rate
ranged from 2.4% (SD ~1.5%) to 17% (SD ~20%) [26,47,62].
For the Fitbit Blaze, the MAPE ranged from 6% (SD 6%) to
16% (SD 18%) for different activities [31].

Active Time: Time Spent in Moderate- to
Vigorous-Intensity Physical Activity and Other
Outcomes
A total of 13 studies on 11 devices from 8 brands reported on
the time spent being active, most frequently defined as the time
spent in moderate- to vigorous-intensity physical activity
(MVPA; 11 studies), expressed in minutes per day. The
reference standard for MVPA was another activity tracker (3

different devices). Other outcomes were time spent being active
(standing+walking+running), time spent running, or time spent
on different types of physical activity, with each of these
outcomes being reported in only 1 study.

For the Fitbit Flex, the MAPE for measuring the time spent in
MVPA varied from 7% (SD 6%) to 74% (SD 13%) [50] and
the mean percentage error ranged from –65% to 10% [11,36].
All the other devices were only used in 1 study each, and the
results are reported in Multimedia Appendix 1.

Intensity of Activity: EE and Other Outcomes
A total of 24 studies on 42 devices from 23 brands focused on
measuring the intensity of physical activity. The most frequent
measure of intensity was EE, expressed as kcal, evaluated in
92% (22/24) of studies. The less frequent measures of intensity
included loading rate and the classification of physical activity
(sedentary, household, walking, and running). For EE, the
reference standard used most commonly was indirect calorimetry
(6 different instruments). Less common reference standards
included EE estimated with other wearable activity trackers (5
different devices), estimated based on the treadmill settings, or
direct room calorimetry.

Among the ActiGraph family, the mean percentage difference
in the EE compared with the reference standard in people with
previous stroke was 3% for walking participants and 47% for
participants with wheelchair using the ActiGraph GT3X+ [24].
The Spearman correlation coefficient was 0.08 (P=.71) if worn
on the plegic side and 0.20 (P=.34) if worn on the nonplegic
side with the ActiGraph GTX [45]. Using the ActiGraph GT1M,
the mean percentage difference was 0.5% (SD 8.0%) in a study
[20], whereas another study found that the device overestimated
EE at moderate intensity by 60% and underestimated EE by
40% at vigorous intensity while being 86% accurate in
measuring EE at light intensity [27].

For the Apple Watch, the MAPE for EE ranged from 15% (SD
10%) to 211% (SD ~96%) [22,26].

In the Fitbit family, the MAPE from the Charge model ranged
from –4.5% to 75.0% in different studies [22,33,63] and from
–12% to 89% for the Charge HR [25,26,47,63]. For the Fitbit
Flex, a mean percentage bias of –13% was reported [36]. For
the Fitbit One, a study reported a mean bias of 2.91 (SD 4.35)
kcal per minute [49], whereas for the Fitbit Ultra, the Pearson
correlation coefficient ranged from 0.24 to 0.67 for different
physical activities [58].

Among the devices from Garmin, the MAPE for EE ranged
from –21% to 45% for the Vivofit [63,66], from –2% to –36%
for the Vivosmart [63], and from 5% to 37% for the Vivoactive
[63].

For the Garmin Forerunner, the MAPE ranged from –27% to
49% for the model 920XT [52,63] and from 31% (SD ~26%)
to 155% (SD ~164%) for the model 225 [26].

In the Polar family, the MAPE for EE ranged from 10% to 40%
for the V800 model [52], with a Bland–Altman bias of 957.5
(SD 679.9) kcal, when the mean EE measured with the reference
standard was 1456.48 (SD 731.40) kcal [34]. For the Polar
Loop, the MAPE for EE ranged from 6% to 56% [63]. The
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Pearson correlation coefficient was 0.74 (P<.01) for the Polar
A300 [16].

For the Withings Pulse, the MAPE for EE ranged from –39%
to 64% [63,66].

Outcomes Reported Less Frequently
Other outcomes that were evaluated less frequently include
distance, reported in 3 studies on 15 devices from 7 brands,
always using the measured distance as the reference standard
[30,35,63]; speed, reported in a study using 1 device, with actual
speed (on a treadmill) as the reference standard [23]; and activity
count, defined as the number of activities (eg, number of arm
movements or body movements based on observation or
measured acceleration data), reported from 4 studies on 4
devices from 4 different brands using as the reference standard
manual count (video recording), video analysis (automated), or
an activity tracker [17,32,42,54].

Risk of Bias
The risk-of-bias assessment for each outcome is reported in
Multimedia Appendix 1. In summary, all the studies were at
high or probably high risk of bias for the domain Patient
selection because they used a convenience sampling technique.
Almost all the studies were at low risk of bias for the domains
Index test and Reference standard because the 2 measurement
methods were applied at the same time and interpreted without
knowledge of the results obtained with the other method. A
small number of studies was identified as high risk for the
domain Flow and timing based on the high percentage (>25%)
of missing data for the index test or reference standard.

Acceptability
The acceptability of wrist-wearable activity trackers was
assessed in 11 studies on 10 devices from 9 brands.

Data Availability
In all, 36% (4/11) of studies focused on data availability,
expressed as a proportion of time in which the data were
available, and a different device was used in each of these
studies. The denominator for the proportion could be the study
duration or the time spent exercising. Rowlands et al [75] found
that data availability was 52% in a pediatric healthy population
using the GENEActiv for 14 months. Deka et al [68] focused
on data availability during exercise time. In this study, adult
patients with cardiac heart failure activated their Fitbit Charge
HR in 75% of the exercise sessions (over 5 days) and data were
available for 99% of the time when activated. Marcoux et al
[72] studied the Fitbit Flex 2 in adults with idiopathic pulmonary
fibrosis (for 46 days). Of the 20 patients, 2 did not succeed in
activating the device. Among the remaining participants, data
were available for a mean of 91% (SD 20%) of the time. Lahti
et al [71] studied the Garmin Vivofit in adults with schizophrenia
and found data available for 97% of the time (over 4 months).

Wearing Time
In all, 27% (3/11) of studies reported on the wearing time. Farina
et al [69], using the GENEActiv, found that 89% of the
participants with dementia and 86% of their caregivers wore
the device for the duration of the study (28 days). Speier et al

[74], using the Fitbit Charge 2, enrolled participants with
coronary artery disease. The median time spent wearing the
activity tracker ranged from 44% to 90% over 90 days. Finally,
for Nike FuelBand, in a study on patients with schizophrenia,
the mean wearing time was 89% (SD 13%) over 80-133 days
[73].

Ease of Use and Other Characteristics
In all, 36% (4/11) of studies focused on the ease of use and
similar characteristics of wrist-wearing devices. The Polar A300
was assessed in patients with chronic obstructive pulmonary
disease wearing the device for 3 days using the Post-Study
System Usability Questionnaire, which calculates a score that
ranges from 1 to 7 (the lower the better) for 3 subdomains [16].
The mean scores were 1.46 (SD 0.23) for system quality, 2.41
(SD 0.53) for information quality, and 3.35 (SD 0.62) for
interface quality. The AX3 data logger was assessed in persons
with Parkinson disease wearing the device for 7 days [70]. A
questionnaire created ad hoc was used for the assessment; 94%
of the participants agreed that they were willing to wear the
sensors at home, and 85% agreed that they were willing to wear
the sensors in public. However, some of the participants reported
problems with the strap fitting and the material (number not
reported). The Fitbit Flex was assessed with a questionnaire
created ad hoc in a study on pregnant women followed for 7
days [57]. The Fitbit Flex was reported by 31% to be
inconvenient, 6% to be poorly esthetic, and 12% to be
uncomfortable. Kaewkannate et al [39] asked healthy
participants to wear 4 different devices over 28 days and
compared them using a questionnaire created ad hoc. The
Withings Pulse had the highest satisfaction score, followed by
Misfit Shine, Jawbone UP24, and Fitbit Flex.

Discussion

Study Findings
We systematically reviewed the available evidence on the
acceptability and accuracy of wrist-wearable activity-tracking
devices for measuring physical activity across different devices
and measures. We found substantial heterogeneity among the
included studies. The main sources of heterogeneity were the
studies’ population and setting, the device used, the reference
standard, the outcome assessed, and the outcome measure
reported.

Acceptability was evaluated in 11 studies on 10 devices from
9 brands. Data availability was ≥75% for the Fitbit Charge HR,
Fitbit Flex 2, and Garmin Vivofit. Data availability is defined
as the amount of data captured over a certain time period, which,
in this case, is over a predetermined duration of each respective
study. Data availability can be a measure of how accurate a
device is at capturing data when the device is worn. For
example, if an individual wears the device for 8 hours but only
4 hours of data are available, some questions may be raised on
the capability of the device to capture information accurately.
The wearing time was 89% for both the GENEActiv and Nike
FuelBand. Wearing time is defined as the amount of time the
device is worn over a predetermined duration for each study.
For each study, wearing time may have been assessed
differently; for example, a study may measure wearing time
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over a day, whereas another study may measure over a week.
Both data availability and wearing time can provide a deeper
look into acceptability because participants may wear a device
more frequently and, ultimately, have more data available if a
device is more acceptable. Accuracy was assessed in 57 studies
on 72 devices from 29 brands. Among 14 outcomes assessed,
step counts, heart rate, and EE were the ones used most
frequently. For step counts, the Fitbit Charge (or the Fitbit
Charge HR) had a MAPE <25% across 20 studies. For heart
rate, the Apple Watch had a MAPE <10% in 2 studies. For EE,
the MAPE was >30% for all the brands, showing poor accuracy
across devices.

Comparison With Other Systematic Reviews
Feehan et al [77] conducted a systematic review on the accuracy
of Fitbit devices for measuring physical activity. The review
did not specifically focus on wrist-wearable activity trackers;
it also included studies using activity trackers worn on other
body locations (torso, ankle, or hip). This systematic review
reported a good accuracy of Fitbit devices in measuring steps,
with 46% of the included studies reporting a measurement error
within –3% to +3%. Regarding EE, the authors concluded that
“Fitbit devices are unlikely to provide accurate measures of
energy expenditure.” Studies on heart rate were not included in
the review. Evenson et al [78] performed a systematic review
focusing on Fitbit and Jawbone devices. Similarly, wearing the
device on the wrist was not an inclusion criterion. The authors
concluded that for step counts, the included studies often showed
a high correlation, with the correlation coefficient ≥0.80 among
devices from both brands, with the reference standards. The
correlation was frequently low for the outcome EE. Similar to
the review by Feehan et al [77], the outcome heart rate was not
included in this systematic review. The results of these
systematic reviews are consistent with our findings for the
devices and outcomes assessed.

Strengths and Limitations
The main strengths of our systematic review include the
inclusion of all the devices reported in the literature; the
reporting on all the outcomes related to acceptability and
accuracy, with no restrictions; and the assessment of the risk of
bias of the included studies. These characteristics make this
review unique for this topic. However, in our systematic review,
we decided to exclude studies in which a wearable device was
not positioned on a wrist. Some devices can be positioned both
on the wrist and other sites (torso, hip, ankle, arm, or brassiere),
and the acceptability and accuracy can vary for the same device
depending on where it is positioned, increasing heterogeneity
[77,78]. Therefore, our results cannot be generalized to the
acceptability and accuracy of devices worn on sites other than
wrists. Acceptability is defined and measured in many different
ways in the literature about wearing devices and about
information technology in general [79]. These definitions are
often broad and nonspecific, with published literature suggesting
that acceptability research should become more robust [80]. For
the purpose of our paper, acceptability was operationalized
using proxies such as wearing time or data availability.
However, other definitions have proposed that acceptability is
related more to the extent to which individuals receiving a health

care intervention find it appropriate based on cognitive and
emotional responses to the intervention [80]. It is important to
recognize that acceptability may be more of a holistic and
subjective construct rather than an objective one, and thus wear
time or data availability may not do full justice to acceptability.
Although these metrics have the advantage of being relatively
easy to obtain and reproduce, allowing for quantitative
comparisons, they are only proxies for acceptability, which is
a more nuanced concept. For example, one might wonder if
wearing time is low because a person only wears the device a
few hours each day or only on weekends or if they completely
stopped wearing it after some time. Moreover, wearing time is
more likely to offer valuable information in studies with a long
follow-up, whereas 2 out of 3 studies reporting on this outcome
had a follow-up of <1 week. Because of the presence of
important heterogeneity among studies, we were not able to
perform a meta-analysis.

Regardless, the comprehensive reporting in this review will
allow researchers to assess the available evidence and inform
future studies, either to further assess the accuracy of wearable
devices or to inform the choice of one device over another to
use in interventional studies. To facilitate these choices, we
have provided to readers the database with the results of the
individual included studies and we did our best to offer a
synthesis of the 3 outcomes reported most frequently (step
counts, heart rate, and EE).

Future Research
Further high-quality studies are needed to determine the
accuracy and acceptability of wearable devices for measuring
physical activity. Given the number of devices available (72
included in this review), it is unlikely that a single study will
be able to answer this question. This makes it particularly
important to standardize some aspects of these studies, to reduce
the heterogeneity among them, and allow for meta-syntheses
of the results with comparisons across studies, devices, and
outcomes. If the heterogeneity was acceptable, a network
meta-analysis would also allow researchers to make indirect
comparisons. The main sources of heterogeneity that could be
controlled are the setting of the study, the population, the
reference standard used, and the outcome definition and
measure. A first step in this direction would be putting together
a task force of experts to issue guidelines on how to report these
experiments, similar to guidelines for the EQUATOR network.
A second step would be to issue recommendations on this aspect,
starting with accepted reference standards against which devices
should be tested for each outcome, the conditions in which the
experiment should be conducted, and the way in which the
outcomes should be measured and analyzed. Regarding the
reference standards, some of these are more accurate than others.
Our approach was to take accuracy to mean criterion and
convergent validity in this review, but once there is consensus
on the acceptable reference standard, other comparisons should
not be included in a meta-synthesis. Regarding the method to
report on the accuracy of continuous variables (more common
in this field), this is the order of priority that we suggest: MAPE,
mean percentage error, mean difference, Bland–Altman mean
bias, and measure of correlation as the least preferred. This is
because the percentage error gives the reader a better

J Med Internet Res 2022 | vol. 24 | iss. 1 | e30791 | p. 13https://www.jmir.org/2022/1/e30791
(page number not for citation purposes)

Germini et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


understanding of the importance of the error (a mean error of
50 steps is much more relevant if the total step count was 100
than if it was 10,000). We preferred the MAPE over the mean
absolute error because when the absolute value is not used, there
is a risk of negative and positive errors balancing each other,
with the risk of overestimating the accuracy. We prefer the mean
difference over the Bland–Altman mean bias because in an
accuracy study, the reference standard is supposed to be more
accurate than the index test, and therefore the latter should be
tested against the former, not against their mean. In the case of
the acceptability outcome, consensus should be reached also
on how to define and measure it. For example, defining a
minimum set of outcomes to be reported might help in this
context. This might include reporting the percentage of
abandonment over time. Furthermore, as new devices become
available, their acceptability and accuracy should also be tested
because they could differ from the acceptability and accuracy
of other devices, even those produced by the same company.
Regarding the choice of the device to use in interventional
studies, for example, in studies that aim at increasing physical
activity in a certain population, there is no one-device-fits-all
answer. This choice should be based on the available data on

acceptability and accuracy and be tailored to the outcome to
measure. In a study with step count as the main outcome, the
Fitbit Charge and Fitbit Charge HR might be appropriate
choices. The Apple Watch might be preferred if the main
outcome is heart rate. Active time was most often measured
through time spent in MVPA, and the Fitbit Flex is the only
device that was used in 3 studies, showing good results in 2 of
these. Regarding EE, we do not feel comfortable suggesting the
use of any device based on the current evidence because the
accuracy was poor across devices. The decision should probably
be driven by the other outcomes used. Broader recommendations
should be issued in the form of guidelines from a panel of
experts using this systematic review as a knowledge base.

Conclusions
We reported on the acceptability and accuracy of 72
wrist-wearable devices for measuring physical activity produced
by 29 companies. The Fitbit Charge and Fitbit Charge HR were
consistently shown to have a good accuracy for step counts and
the Apple Watch for measuring heart rate. None of the tested
devices proved to be accurate in measuring EE. Efforts should
be made to reduce the heterogeneity among studies.
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