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Abstract

Background: Crowdsourcing services, such as Amazon Mechanical Turk (AMT), allow researchers to use the collective
intelligence of a wide range of web users for labor-intensive tasks. As the manual verification of the quality of the collected results
is difficult because of the large volume of data and the quick turnaround time of the process, many questions remain to be explored
regarding the reliability of these resources for developing digital public health systems.

Objective: This study aims to explore and evaluate the application of crowdsourcing, generally, and AMT, specifically, for
developing digital public health surveillance systems.

Methods: We collected 296,166 crowd-generated labels for 98,722 tweets, labeled by 610 AMT workers, to develop machine
learning (ML) models for detecting behaviors related to physical activity, sedentary behavior, and sleep quality among Twitter
users. To infer the ground truth labels and explore the quality of these labels, we studied 4 statistical consensus methods that are
agnostic of task features and only focus on worker labeling behavior. Moreover, to model the meta-information associated with
each labeling task and leverage the potential of context-sensitive data in the truth inference process, we developed 7 ML models,
including traditional classifiers (offline and active), a deep learning–based classification model, and a hybrid convolutional neural
network model.

Results: Although most crowdsourcing-based studies in public health have often equated majority vote with quality, the results
of our study using a truth set of 9000 manually labeled tweets showed that consensus-based inference models mask underlying
uncertainty in data and overlook the importance of task meta-information. Our evaluations across 3 physical activity, sedentary
behavior, and sleep quality data sets showed that truth inference is a context-sensitive process, and none of the methods studied
in this paper were consistently superior to others in predicting the truth label. We also found that the performance of the ML
models trained on crowd-labeled data was sensitive to the quality of these labels, and poor-quality labels led to incorrect assessment
of these models. Finally, we have provided a set of practical recommendations to improve the quality and reliability of crowdsourced
data.

Conclusions: Our findings indicate the importance of the quality of crowd-generated labels in developing ML models designed
for decision-making purposes, such as public health surveillance decisions. A combination of inference models outlined and
analyzed in this study could be used to quantitatively measure and improve the quality of crowd-generated labels for training ML
models.
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Introduction

Background
In recent years, social media data have been extensively used
in different areas of public health [1-3], such as detecting
outbreaks and emerging diseases [4,5], monitoring adverse drug
reactions [6], and predicting or modeling health-related
behaviors and outcomes [7-9]. Since 2011, Twitter has been
the most popular form of social media used for public health
communication [10,11]. In 2020, Twitter alone reported 500
million tweets generated per day from 145 million daily active
users. A recent scoping review of 755 articles on digital public
health surveillance shows that Twitter is the most studied of all
platforms and the most used platform to study communicable
diseases, behavioral risk factors, mental health, drug use, and
vaccines [11]. In addition to the inherent limitations of social
media data, such as lack of demographic data and biased
populations, when integrated with complex data-driven models
such as artificial neural networks, these publicly accessible
resources can be used for population-level surveillance to
complement traditional public health surveillance (eg, surveys)
with faster and less costly longitudinal information.

Although linguistic annotation is crucial for developing machine
learning (ML) and natural language processing (NLP) models,
manual labeling of a large volume of data is a notorious problem
because of its high cost and labor-intensive nature. In recent
years, this problem has been tackled using crowdsourcing
technologies such as Amazon Mechanical Turk (AMT) [12],
Crowdflower [13], and Prolific Academic [13] to obtain
relatively low-cost labeled data more quickly and easily. AMT
is a software service operated by Amazon that allows users to
crowdsource work, broken into microtasks called HITs (Human
Intelligence Tasks), to a large number of workers who are
compensated for each HIT completed. With the vast potential
applications of crowdsourcing in public health [14-16], the
research community has seen steady growth in the use of AMT
in the past 10 years. The number of studies indexed in PubMed
using the search term Amazon Mechanical Turk AND public
health has increased sharply from 42 studies in 2015 to 118
studies in 2019.

However, because of the uncertain quality of AMT workers
with unknown expertise, their labels are sometimes unreliable,
forcing researchers and practitioners to collect information
redundantly, which poses new challenges in the field. Given
that in large-scale crowdsourcing tasks the same workers cannot
label all the examples, measuring interannotator agreement and
managing the quality of workers differ from those of a team of
in-house expert workers. Despite the growing popularity of
AMT for developing ML models in public health research, the
reliability and validity of this service have not yet been
investigated. At least several public health studies have used
AMT for training data-driven ML models without external gold
standard comparisons [17-21]. Ayers et al [17] used AMT to
create a gold standard data set to develop predictive models to

detect electronic nicotine delivery systems on social media. Yin
et al [18] developed a scalable classifier to detect personal health
mentions on Twitter based on a gold standard data set generated
by AMT workers. The reliability of the crowd-labeled data set
in this study was measured based on the agreement among
workers.

Similarly, to characterize sleep quality using Twitter, McIver
et al [19] used AMT for sentiment annotation of text data and
used interannotator agreement to assess the reliability of
workers. Reece et al [20] used AMT to build a data set and
develop a prediction model to detect depression emergence and
posttraumatic stress disorder in Twitter users. To control the
quality of the data collected, they required the workers to have
completed at least hundred tasks, with a minimum 95% approval
rating. Although research has supported the efficacy of using
reputation to evaluate the quality of crowdsourced data [22],
the reliability of using this metric in developing ML-based
digital public health systems has not yet been investigated. Thus,
in this study, in addition to defining qualification requirements
for AMT workers, we studied the reliability of crowd-generated
training data for developing ML models in the context of public
health surveillance. We used AMT to collect 296,166 labels for
98,722 unique tweets, labeled by 610 AMT workers, to develop
ML models that can detect the physical activity, sedentary
behavior, and sleep quality (PASS) of Twitter users.

Objectives
The primary aim of this study is to evaluate the application of
AMT for training data-driven ML models by analyzing the
quality of crowd-generated labels. As the quality of
crowd-generated labels, regardless of the type of the task being
studied, is critical to the robustness of ML models trained based
on these labels, we created a gold standard data set of labels
and applied several statistical and ML-based models to assess
the reliability of using the crowd-labeling task from different
perspectives (eg, process, design, and inference). To interpret
the results of our quality assessment and explore the effect of
noisy labels on the applicability of inference models in dealing
with these labels, our approach involved evaluating the
performance of 4 consensus methods, which do not involve task
features in their truth inference, and exploring their feasibility
in improving the quality of crowd-labeled data. As these
methods are modeled purely as a function of worker behaviors
concerning labeling tasks, they cannot leverage the value of
context-sensitive information (ie, the task’s meta-information)
in their inference decisions. Thus, we collected additional
features for our labeling data set and developed 7 ML models,
including a deep learning (DL) model and a hybrid convolutional
neural network (CNN) architecture to couple worker behaviors
with the task’s meta-information when inferring the truth label.
To detect and correct noisy labels, we also developed 5
pool-based active learners to iteratively detect the most
informative samples (ie, samples with more uncertainty) and
remove them from the validation set. Finally, we used SHAP
(Shapley Additive Explanations) [23] to explore the contribution
of different features, including worker behaviors and
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context-sensitive features, to the results of our supervised
inference models.

Methods

Labels
The crowdsourcing tasks, referred to as HITs by AMT, were
designed to collect 5 labels based on 2 conditions, self-reported
and recent PASS experience, to develop binary and multiclass
classification models that can detect PASS-related behavior in

Twitter users. The labels of the multiclass prediction models
were defined as 11, 10, 01, and 00, based on the value of each
condition (Figure S1 in Multimedia Appendix 1). We also let
workers choose a fifth option, called unclear, to ensure they
did not give random labels to tasks they were not confident in
performing successfully (Figure 1). We excluded this label for
both inference and classification tasks. We defined the binary
labels as 1 if both conditions were met and 0, otherwise. The
binary labels did not directly come from the AMT workers and
were generated by dichotomizing the collected labels.

Figure 1. A sample labeling task (ie, human intelligence task [HIT]) for sedentary behavior. Each HIT contains 4 questions (section 1), and each asks
if the presented tweet is a self-reported physical activity, sedentary behavior, or sleep quality–related behavior (section 2). The fourth question is an
easy, qualification question that was used to check the quality of the worker (section 3).
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Crowdsourcing Workflow
We implemented a pipeline to create the HITs, post them on
AMT, collect the labels through a quality check process, approve
or reject the HITs, and store the results. To minimize noisy and
low-quality data, we added a qualification requirement to our
tasks and granted labeling access to workers who had
demonstrated a high degree of success in performing a wide
range of HITs across AMT (ie, master qualification). In addition,
we added a simple qualification question to each HIT to detect
spammers or irresponsible workers. Each HIT contained 4
questions, including the qualification question, and was assigned
to 3 workers (Figure 1 and Figures S2 and S3 in Multimedia
Appendix 1). Workers were asked to select exactly 1 choice per
tweet, and HITs with zero or more than one label were rejected
during the approval process. Through different iterations of data
labeling, workers were paid from US $0.03 to US $0.05 after
completing each HIT. We collected the labels for the 98,722
tweets used in this study through different iterations, from April
2019 to June 2020. We regularly checked the quality of the
submitted tasks to detect low-quality workers during each
iteration and revoke their access to our tasks. Before the formal
initiation of the process, we pilot-tested the design, response
time, and complexity of the HITs through 2 different iterations
and revised the workflow accordingly. We did not collect any
personally identifiable information from the workers
(participants) during the data labeling task. The experiments
were carried out in accordance with the relevant guidelines and
the University of Calgary Conjoint Faculties Research Ethics
Board regulations. We implemented the entire workflow in
Python and used Boto3 Python software development kit to
connect to and work with AMT.

Data Collection
We collected data for this study from Twitter using the Twitter
livestream application programming interface (API) for the
period between November 28, 2018, and June 30, 2020. The
data set was filtered to include only Canadian tweets relevant
to PASS. A total of 103,911 tweets were selected from
22,729,110 Canadian tweets using keywords and regular
expressions related to PASS categories. Each of these 103,911
tweets was labeled by 3 AMT workers, from which 98,722
tweets received 3 valid labels, with almost half of them related
to physical activity.

The demographic variables of age and gender and the
information about the source of each tweet (eg, organization vs
real users) were not available within the data set collected from
Twitter. We estimated these variables for each tweet using the
M3 inference package in Python [24], which uses a multimodal
deep neural architecture for the joint classification of age,
gender, and information sources of social media data. The text
(tweet) field and each of the daytime, weekday, and month
variables were extracted from the metadata provided by the
Twitter API.

We have made the Twitter data set used in this study publicly
available [25].

Data Processing
Tweets have a bounding box of coordinates, which enables
spatial mapping to their respective city locations. As the Twitter
API returns datetime values in Coordinated Universal Time,
we used a time zone finder in Python and adjusted the time of
each tweet based on its spatial data. Given that daytime, month,
and weekday can be influential factors in twitting about each
of the PASS categories, and to better use the datetime data (%a
%b %d %H: %M: %S %Y), we extracted a: weekday, b: month,
and H: hour fields and stored them as separate features.

We cleaned the text column by eliminating all special characters
(eg, #, &, and @), punctuations, weblinks, and numbers. We
also replaced common contractions with their uncontracted
forms; for example, I’ll was resolved as I will. While developing
and evaluating our NLP models, we noticed that the impact of
removing stop words, stemming, and converting the text to
lower case on the performance of our predictive models was
not noticeable. This could relate to the ability of
transfer-learning techniques (ie, GloVe embeddings) to
generalize on unseen data. Thus, we applied neither stop-word
removing nor lexical cleaning on the textual features of our data
set. Moreover, as hashtags and emojis can be used as
independent words and facilitate emotional expressions, we did
not remove them during the cleaning process.

To develop the ML models, all categorical data were encoded
into dummy variables using one-hot encoding, and as we only
approved HITs with complete answers, this data set did not
contain any missing data.

Label Consistency
To measure the consistency of answers given by the workers,
we calculated label consistency (LC) as the average entropy of
the collected labels for each PASS category [26]. For each tweet
ti ∈ Ts, where Ts denotes the set of all tweets related to
surveillance category s ∈ {physical activity, sleep quality,
sedentary behavior}, nij defines the number of answers given

to the jth choice (j ∈ {1,2,3,4,5}, as we had 5 choices for each
tweet). We calculated LCs as follows:

|s| denotes the size of the surveillance category s and, as we
collected 3 labels for each tweet, the denominators in the entropy
formula received a constant value of 3. LC ranges from 0 to 1,
and values close to 1 show more consistency among the
workers’ input.

Ground Truth Data Set
To investigate the viability of unsupervised inference models
in predicting truth labels from crowd-labeled data and compare
it with that of supervised predictive models, we used a random
sample of our data set as a ground truth set (ie, 9000 tweets:
4000 tweets for physical activity, 3000 tweets for sleep quality,
and 2000 tweets for sedentary behavior). In total, 6 data
scientists manually labeled this sample, and the entire labeled
data set was reviewed manually and relabeled by an experienced
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in-house domain expert in both ML and public health
surveillance. The disagreements between this data set and the
crowd-labeled data set were manually checked to exclude any
labeling bias that could impact the results of this study.

Inference Models
The majority voting (MV) approach estimates the actual ground
truth based on most labels submitted by different workers. For

example, defining the estimated label as , and the submitted
label by worker w as lw, the MV approach, for a binary labeling

task, assigns 1 to if and 0, otherwise. Although
individual workers’ reliability coming from different
backgrounds with different quality levels varies, the MV
approach assumes equal expertise among the workers and does
not model worker behaviors [27]. As this approach is completely
task-independent, it does not involve task properties in the
inference process; thus, it is fast.

The David and Skene (DS) [28] approach uses
expectation–maximization (EM) to simultaneously estimate the
error rate of annotators (workers) and latent label classes, when,
similar to MV, the ground truth is unknown, and workers are
assumed to operate independently. Unlike MV, which is agnostic
to worker behavior, DS models worker k’s behavior as a
function of each task’s true label by creating a confusion matrix

πk with size L × L, where L is a fixed number and represents
the number of possible labels for a single-labeled classification

task. DS defines worker k’s error rate 
as follows:

As not all workers need to label all the tasks, and a worker may
label the same task more than once, sparsity can be a problem
in large-scale labeling tasks when using the DS approach [27].
DS iteratively estimates the true label of each task based on the
worker’s quality and estimates the worker’s error rate (quality)
based on the inferred labels until it converges. Although the
worker-specific confusion matrix generates the quality score of
each worker, it may not be sufficient to measure the actual
contribution of each worker [29]. The inherent complexity of
a task, especially in NLP, or a worker’s bias may result in wrong
labels, although the worker is quantitatively accurate.

The generative model of labels, abilities, and difficulties
(GLAD) [30] models the quality of workers as a function of the
input task using parameter α. The quality parameter ranges from
–∞ to +∞, implying that the worker always labels the tasks
incorrectly or correctly, respectively. When α=0, the worker
cannot distinguish among the labels, and their input does not
contribute to the task’s correct label. To estimate the ground
truth, in addition to the workers’ quality, GLAD models the
difficulty of task ti as di=1/βi, where βi>0. The difficulty index
ranges from 0 to ∞, where di=∞ classifies ti as the most difficult
task, and di=0 means that the task always receives a correct

label, even from the workers with α≤0. GLAD uses the EM
approach to obtain the maximum likelihood estimation of α and
β, and models the probability that worker k correctly labels ti

using .

Similar to DS, Raykar algorithm (RY) [31] forms a confusion
matrix to model a worker’s quality. In addition, in the case of
binary classification, it models worker’s bias toward the positive
class (ie, sensitivity) and toward the negative class (ie,
specificity) using beta prior [27]. Worker bias in this context
usually occurs when a worker underestimates or overestimates
the truth of a task [26]. As with DS and GLAD, RY uses an
unsupervised EM approach to estimate each of the model
parameters and truth labels. Depending on the availability of
task-specific features, RY can either use automatic supervised
classifiers or fall back to unsupervised EM models to estimate
the truth label.

Predictive Models
As the meta-information associated with each task may reveal
its underlying complexity and thus help model worker behaviors,
we developed a set of ML models to involve this metadata in
the inference process. Models were trained based on quintuple
F: (W,I,M,t,l), where W = {w1,...,wk} represents labels collected
from AMT workers, I = {MV,DS,RY,GLAD} denotes the results
of inference models, and M denotes metadata associated with
each tweet including time (ie, weekday, month, and daytime),
gender, age group, and the source of the tweet (ie, organization
vs real people). The text of each tweet is presented by t, and l
denotes the truth label.

To mitigate the risk of biased results caused by a specific
learning algorithm and overcome the overfitting problem, we
developed and evaluated 5 standard ML classifiers with different
architectures, including generalized linear (logistic regression
[LR]), kernel-based (support vector machines [SVM]),
decision-tree–based (random forest and XGBoost), and
sample-based (K-nearest neighbors [KNN]) classifiers.
Moreover, to incorporate textual features into our analysis, we
developed a hybrid DL architecture in which a CNN based on
long short-term memory (LSTM) learns textual data t and a
multilayer perceptron deep neural network learns metadata
(W,J,M). The cleaned text, represented as an integer-encoded
vector, is converted into pretrained tweet word embeddings
using GloVe [32] (containing 2 billion tweets, 27 billion tokens,
and 1.2 million vocabularies) in the embedding layer. The output
of this layer is passed through an LSTM layer for sequence
modeling, followed by 1 dropout layer to avoid overfitting and
2 dense ReLU (Rectified Linear Unit) layers. Simultaneously,
the metadata of each tweet is passed through 3 fully connected
layers with ReLU activation. The outputs of these networks are
concatenated into a dense layer, followed by 2 fully connected
dense layers, terminating at an output layer with softmax
activation, cross-entropy loss, and the adam optimizer. A
high-level presentation of this architecture is shown in Figure
2.
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Figure 2. The pipeline of the deep learning model used to predict labels using both textual information and meta-information. LSTM: long short-term
memory.

To counter the bias caused by class imbalance, for both
multiclass and binary classification tasks, we used the
class-weight approach to incorporate the weight of each class
into the cost function by assigning higher weights to minority
classes and lower weights to the majority classes. We also used
the SMOTE (Synthetic Minority Oversampling
Technique-Nominal Continuous) [33] approach to oversample
the minority classes by creating synthetic samples based on
their feature space. However, we did not notice much difference
between using and not using the synthetic minority oversampling
technique. Thus, our final models were trained using the
class-weight approach. The hyperparameters for each method
were determined using a nested 10-fold cross-validation
Bayesian optimization [34].

As the main goal of both supervised and unsupervised label
inference models was to minimize the number of false-negative
and false-positive inferences, to evaluate the models developed
in this study, we used precision, recall, F1, and precision-recall
area under the curve (AUCPR) metrics.

All the computations and predictive models were implemented
using Python 3.7 with TensorFlow 2.0 [35], Keras [36], and

Scikit-learn [37] libraries. To facilitate the replication of our
study, the code repository of this study is publicly available on
GitHub [38].

Results

Raw Labels From AMT Workers
In total, 610 unique workers participated in our data labeling
tasks and completed 103,911 HITs, from which 5189 HITs were
removed as they did not receive 3 valid answers. We approved
98,722 tasks for further analysis. Most workers (530/610,
86.9%) completed <100 HITs, of which 164 completed only 1
HIT. Among the workers who completed >5000 HITs, 1 worker
completed 21,801 HITs and 3 workers completed between 5000
and 10,000 HITs (Figure 3). The calculated LC for each PASS
category for multiclass labeling was 0.54, 0.58, and 0.55 and
for binary labeling was 0.75, 0.77, and 0.74 (Table 1). This
implies a high level of label inconsistency, prompting the need
for further label quality analysis for the development of ML
models.
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Figure 3. The number of workers who completed different numbers of human intelligence tasks (HITs). Most workers completed a relatively small
number of HITs.

Table 1. Details of the collected labels and label consistency (LC) score for each of the physical activity, sleep quality, and sedentary behavior categories.
LC ranges from 0 to 1, and the values close to 1 show more consistency among workers’ input.

Workers, n (%)LCbinaryLCmultiTweets, n (%)Type

232 (38)0.750.5448,576 (49.2)Physical activity

157 (25.7)0.740.5517,367 (17.6)Sedentary behavior

221 (36.2)0.770.5832,779 (33.2)Sleep quality

610 (100)0.750.5698,722 (100)Total

Truth Inference
Table 2 describes the ground truth data set of 9000 tweets that
was used to train the truth inference models. Table 3 lists the
inference results obtained from the 4 unsupervised models and
7 supervised predictive models, including 2 DL models, on the
ground truth data set. Each model was evaluated on both binary
and multiclass versions of the data set for each PASS category.
Among the unsupervised models for physical activity and sleep
quality, DS and RY performed better than MV and GLAD for
all performance metrics, whereas MV outperformed the other
models on the sleep quality data set. Interestingly, for binary
inference across all PASS categories, MV outperformed or
performed just as well as the other methods, indicating the
impact of task complexity on the performance of inference
methods.

DLmeta outperforms other methods with the minimum number
of false positives (precision: 78%) for the multiclass

classification task, but other methods performed better with
respect to recall, F1, and AUCPR metrics. Performance on each
PASS data set for binary classification did not highlight any
individual method constantly performing best. For example,
whereas SVM showed the best performance for physical activity,
KNN and LR outperformed other models for sleep quality and
sedentary behavior, respectively. LR achieved superior
performance across all data sets for the multiclass inference
task. To analyze this further, we modified the hyperparameters
of the LR algorithm presented in Table 3 to stochastic average
gradient solver and l2 regularization and the optimizer of the
hybrid neural network to stochastic gradient descent and
repeated the comparisons. LR still outperformed the neural
network model by more than 2% in all metrics. The poor
performance of the neural networks in this study could be
attributed to the imbalanced ratio of data (per class) to the model
parameters (ie, high variance).
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Table 2. Characteristics of the ground truth data set used to develop and evaluate the supervised and unsupervised inference models.

Sleep quality (n=3000)Sedentary behavior (n=2000)Physical activity (n=4000)Variable

Labels, n (%)

Binary

1063 (35.43)726 (36.3)1629 (40.73)Yes

1937 (64.57)1274 (63.7)2371 (59.28)No

Multiclass

1063 (35.43)726 (36.3)1629 (40.73)YYa

862 (28.73)395 (19.75)550 (13.75)YNb

52 (1.73)19 (0.95)179 (4.48)NYc

1023 (34.1)860 (43)1642 (41.05)NNd

Gender, n (%)

469 (15.63)576 (28.80)1131 (28.28)Female

490 (16.34)906 (45.30)1980 (49.50)Male

2041 (68.03)518 (25.90)889 (22.22)Unknown

Age range (years), n (%)

150 (5)170 (8.50)204 (5.10)≤18

331 (11.03)475 (23.75)743 (18.58)19-29

249 (8.30)365 (18.25)897 (22.42)30-39

229 (7.64)472 (23.60)1267 (31.68)≥40

2041 (68.03)518 (25.90)889 (22.22)Unknown

Day of week, n (%)

440 (14.66)325 (16.25)664 (16.60)Sunday

440 (14.66)307 (15.35)595 (14.88)Monday

435 (14.50)245 (12.25)493 (12.32)Tuesday

)393 (13.10)278 (13.9)504 (12.60)Wednesday

416 (13.86)270 (13.50)525 (13.12)Thursday

421 (14.03)274 (13.70)531 (13.28)Friday

2433 (14.43)283 (14.15)668 (16.70)Saturday

22 (0.76)18 (0.90)20 (0.50)Unknown

5-1810-1910-19Time (24 hours), Q1-Q3

January to AugustApril to SeptemberFebruary to JulyMonth (range)

Source, n (%)

97 (3.23)179 (8.95)563 (14.08)Organization

2903 (96.77)1821 (91.05)3437 (85.93)Users

aYY: self-reported and recent physical activity, sedentary behavior, and sleep quality experience.
bYN: self-reported but not recent physical activity, sedentary behavior, and sleep quality experience.
cNY: not self-reported but recent physical activity, sedentary behavior, and sleep quality experience.
dNN: neither self-reported nor recent physical activity, sedentary behavior, and sleep quality experience.
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Table 3. Performance of the truth interference methods using a ground truth data set of 9000 labeled tweets: 4000 physical activity, 2000 sedentary
behavior, and 3000 sleep quality tweets. The top 4 rows of each PASS (physical activity, sedentary behavior, and sleep quality) category represent the
results of the applied unsupervised truth inference models.

AUCPR
a (%)F1 (%)Recall (%)Precision (%)Tweets and method

BinaryMulticlassBinaryMulticlassBinaryMulticlassBinaryMulticlass

Physical activity

8556847185 c708572MVb

8554847085688574DSd

8457837184708473GLADe

8454847085688574RYf

8761857485758574LRg

8860847385748574KNNh

8861857385738672SVMi

8760857384748573RFj

8358817181728172XGBoost

7860847384688479DLmeta
k

7860847384708478DLtext_and_meta

Sedentary behavior

8054826882688271MV

7948816581628170DS

7754796879687971GLAD

7948816581628170RY

8158837083728372LR

8056826782718271KNN

8158837083728373SVM

8157836982728372RF

8054826782698268XGBoost

7356807180658078DLmeta

7556807180658078DLtext/meta

Sleep quality

8761897589748978MV

8762897789748980DS

8262857685758579GLAD

8762897689748980RY

8864887787778876LR

8963897789778976KNN

8864887788778876SVM

8963897689768975RF

8758877289728772XGBoost

8163867686728682DLmeta

8265877687728780DLtext/meta

aAUCPR: precision-recall area under the curve.
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bMV: majority voting.
cItalicization indicates best performance for the metric and each PASS (physical activity, sedentary behavior, and sleep quality) category.
dDS: David and Skene.
eGLAD: generative model of labels, abilities, and difficulties.
fRY: Raykar algorithm.
gLR: logistic regression.
hKNN: K-nearest neighbors.
iSVM: support vector machine.
jRF: random forest.
kDL: deep learning.

Across all data sets, supervised models consistently performed
better than unsupervised methods. This highlights the value of
the context-sensitive information that was used as
meta-information when training supervised models. However,
on sleep quality, a data set with the same features and level of
complexity as physical activity and sedentary behavior data
sets, MV appears sufficient for the binary inference task, with
supervised models providing little or no improvement.

The hybrid CNN architecture did not provide any gain on either
the unsupervised inference models or the supervised predictive
models (ie, LR, KNN, SVM, RF, XGBoost, and DLmeta), and
in some ways, underperformed them. It is possible that the
LSTM stream could not capture the underlying dynamics of the
features because of the inconsistencies between the poorly
labeled tasks and the textual features.

Active Learning
To further explore the feasibility of correcting mislabeled
samples, we used pool-based active learning [39] with
uncertainty sampling. Pool-based active learning assumes that

only a small set of data is labeled, and a large pool of data still
needs to be labeled through an iterative learning process. All
samples in the pool are queried based on an informativeness
measure, which improves the learner’s discrimination ability
[40]. In this study, our learners were modeled to query the most
ambivalent and uncertain samples. For example, for the binary

label inference task, samples for which p( = l | f) ≈ 0.5 are
the most informative samples that may help detect mislabeled
samples of the data set through different iterations. We used 5
different base learners with different architectures (ie, RF, LR,
KNN, SVM, and XGBoost) with a batch size of 5 and queried
the unlabeled pool through 100 iterations.

Our results show that, during the learning process, the accuracy
of the classifiers generally increased, slightly degraded at some
iterations, and stabilized around iteration 60 for KNN and
iteration 20 for other classifiers (Figure 4). Although the active
learners in this study could improve their predictive ability
through a self-learning process, they failed to correct mislabeled
samples and stabilized at performance scores lower than those
of the offline learners discussed earlier (Table 3).
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Figure 4. Incremental classification accuracy using pool-based active learning. KNN: K-nearest neighbors; LR: logistic regression; RF: random forest;
SVM: support vector machine; XGB: XGBoost.

Discussion

Practical Recommendations
We start this section with some practical recommendations and
guidelines on the use of AMT in specific and crowdsourcing in
general for developing ML-based public health surveillance
systems. Even under the assumption that more advanced
artificial intelligence models, including pretrained models on
general scope data sets and transfer-learning techniques, can
cope with the poor quality of crow-generated labels, the
guidelines provided in this study can still improve the
implementation, design, and qualification of the crowd-labeling
as well as the label inference processes. These guidelines are
supported by the results described earlier and the findings and
further analysis discussed in the rest of this section.

First, although the demographics of AMT workers are not
available, we can still implement the crowdsourcing process in
a way that accommodates a greater diversity of workers. A
longitudinal labeling process, rather than one-time labeling,
allows researchers to monitor the quality of the collected data
over time, and mitigates the impact of spammers, irresponsible
workers, and workers who are biased or mistake prone. Second,

the overall quality of AMT workers can be context-sensitive
and vary based on the type of labeling task. For example, the
familiarity of the workers in the context of the tasks in the sleep
quality data set, contrasting the broad context of physical activity
and sedentary behavior concepts, resulted in higher data quality.
Researchers should also be aware of the exclusion rate (eg,
5189/103,911, 4.99% in this study) and need to consider this
when planning for their study’s budget and design. Third, our
study results show that consensus-based inference models that
do not consider the task’s features may not always be efficient
for integrating crowdsourced labels and thus negatively impact
the performance of ML models. Fourth, in addition to
qualification requirements to filter crowdsourcing participants,
sound and illustrative instruction is a less direct way to increase
data quality. During the course of this project, we received
nearly 70 emails from AMT workers, with most of them asked
about scenarios that were mentioned in the instructions. This
implies that the instruction changed their default understanding
of the tasks, thereby improving the quality of the labels. Finally,
when controlling the quality of workers using a qualification
question, we recommend not informing the worker that this
technique is being used, as they might guess the questions based
on their simplicity.
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Key Findings

Information Loss About Label Uncertainty
Despite all the alternative models developed in this study to
improve the inference accuracy, there were still considerable
discrepancies between workers and the truth labels. These
disagreements may be attributable to the underlying uncertainty
in the data. Although reducing uncertainty by collecting more
labels from more workers might simplify the process of label
inference, it limits the learning ability of ML models in modeling
the inherent uncertainty of data and prevents them from
recovering from the mistakes made early during the inference
process [41].

Robustness of Inference Models
We observed from our inference results that, regardless of the
type of the classification task, none of the 11 methods
outperformed other methods across all data sets (Table 3). This
indicates that inference methods are sensitive to data set
characteristics. For example, the performance of all of the
methods on the sleep quality data set is better than that of
physical activity and sedentary behavior data sets, indicating
the low robustness of these models against the task context.

The Importance of Task Features
Compared with supervised models that require a large volume
of labeled data to integrate crowd-generated labels, using
unsupervised inference models is simple and straightforward.
However, this simplicity is gained through the cost of throwing
away the contextual characteristics of tasks, which may sacrifice
quality in context-sensitive scenarios. For example, the time
that a tweet is posted during a day can contribute to the decision
about its relevance to physical activity or sleep quality contexts.
The importance of these characteristics was far more pronounced
in the multiclass inference tasks than in the binary tasks (Table
3), suggesting the need for more complicated models when
inferring the truth label of tasks with a high level of uncertainty.

The Effectiveness of Qualification Requirements
In this study, we used two levels of quality control: (1) through
the task assignment process by accepting only workers with a
master qualification and (2) through the design and
implementation of the tasks by adding a qualification question
to our HITs and iteratively observing workers’ performance
based on their answer to this question. Our results show that
even though defining these requirements improved the quality
of crowd-generated labels to a great extent, 12.45% (498/4000),
13.3% (266/2000), and 7.7% (231/3000) of physical activity,
sedentary behavior, and sleep quality tweets, respectively, were
still mislabeled by all three workers, regardless of their context

or complexity level, indicating the need for further quality
assessment of crowdsourced data. These mislabeled samples
were not misclassified due to sample uncertainty or difficulty,
and our further analysis shows that they were not informative
enough (ie, prediction scores) to improve the performance of
predictive models through the iterative process of active learning
(Figure S4 in Multimedia Appendix 1). Considering the sparsity
of the (workers and tasks) matrix in large-scale crowdsourcing
tasks, distinguishing irresponsible workers and removing their
impact is a challenging task that should be carefully considered
when training ML models based on crowd-labeled data. A
sample list of low-quality labels for all the PASS categories is
provided in Figure S5 in Multimedia Appendix 1.

The Impact of Crowd-Generated Labels on the
Performance of Predictive Models
To further investigate the reliability of using crowdsourcing for
developing ML models, we used bidirectional encoder
representations from transformers [42] (ie, bert-base-uncased);
a transformer-based model with 12-layer, 768 hidden units, 12
heads; and 110M parameters as a contextual input to our DL
model, to classify 4000 physical activity tweets, using our binary
truth labels and crowd-generated labels. We used the labels
inferred by SVM for the crowd-generated labels, as it
outperformed other models on the physical activity data set
(Table 3). Interestingly, the model that was trained on our
ground truth data set outperformed the crowd-labeled data set
on all performance metrics by at least 8% (eg, crowd-labeled:
AUCPR of 72%; expert-labeled: AUCPR of 82%). This indicates
the importance of the quality of crowd-generated labels in
developing ML models designed for decision-making purposes,
such as public health surveillance decisions.

Label Prediction Explanation
To interpret the results of our predictive models in terms of the
individual contribution of each feature to the prediction results,
we used SHAP [23,43]. SHAP calculates the local, instead of
global, feature importance for each sample of the data set, which
mitigates the risks associated with inconsistency problems in
other feature importance techniques. Figure 5A illustrates the
interpretation of the prediction using XGBoost on a randomly
selected sample of the physical activity data set using SHAP.
The red arrows show the features that contribute to the increase,
and the blue arrows represent features that contribute to the
decrease in the prediction. The width of each arrow indicates
the height of its impact. From this example, we can see that l1=1
and daytime=7pm have the most positive impact on the predicted
label, whereas l2=0 and age ≥40 has the most negative impact.
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Figure 5. The estimated impact of each piece of meta-information on XGBoost when predicting the truth label. Age is in years. D&S: David and Skene;
GLAD: generative model of labels, abilities, and difficulties; LFC: Learning from Crowds (Raykar algorithm); SHAP: Shapley additive explanations.

We further used Shapely values to cluster our data set based on
the explanation similarity of samples, using hierarchical
agglomerative clustering (Figure 5B). From this figure, we can
see that the crowdsourced labels are the most influential features
in grouping the samples in our data set. The highlighted areas
in this diagram show the samples that have similar force plots,
implying the dominant and similar contribution of these features
across the physical activity data set.

Using the additive nature of Shapley values, we integrated all
the local feature values for each data point and calculated the

global contribution (I) of each feature. Considering as the
Shapley value of feature j for sample i, we can calculate the

global importance of this feature as . Figure 5C shows
the combination of feature importance (y-axis) and feature
effects (colored points) for the most influential features, ordered
based on their importance. This plot shows that crowdsourced
labels (l1, l2, and l3), followed by daytime, the results of the
inference models, and gender have the greatest impact on the
decision-making of XGBoost. From these results, which are
extendable to the other predictive models developed in this
study, it can be inferred that regardless of the complexity and
the architecture of the predictive models, the crowd-generated
labels are the factors that most influence predictive models’
prediction. Although meta-information such as daytime and
gender are among the most contributing features (Figure 5C),
they still cannot compete with the crowd-generated labels in
most of the samples. This can explain the vulnerability of our
ML and DL models to the noisy labels of the data set.

To triangulate the dominant impact of the crowdsourced labels,
we excluded al l  the samples for which

or from our data
set for both supervised and unsupervised techniques and

achieved an F1 score of approximately 99%. This implies that
inferring the truth label of crowdsourced data highly depends
on the quality of the collected data from the crowd, and even
advanced and complex predictive models might not be able to
compensate for the poor quality of these data.

Limitations
This study has several limitations. First, the compensation paid
to the workers could impact the quality of the collected labels,
and consequently, the evaluation results of this study. Workers
may show a higher quality in exchange for higher payments.
To investigate this, during the course of the project, we increased
HITs’ reward from US $0.03 to US $0.05 and did not notice
any significant changes in quality. However, this is still
debatable and requires further investigation.

Second, to develop the supervised models, we assumed that all
the tasks share the same level of complexity, whereas in reality,
some examples are more difficult than others. For example,
labeling “I can’t sleep” to a self-reported sleep problem is more
straightforward than labeling “I’m kind of envious of anyone
who is able to fall asleep before 2am.” We attempted to address
this by incorporating inherent task difficulties in the prediction
models by developing a hybrid CNN model. However,
crowd-generated labels dominated other features of our data
set, which had the greatest impact on their inference decisions.
Building crowdsourcing models sensitive to the complexity of
tasks to allocate more resources (workers) to more difficult tasks
is a worthwhile direction for future research.

Third, the way we designed and presented the HITs on AMT
could impact the performance of workers in various ways.
Considering the central role of people in maximizing the benefits
of crowdsourcing services, human factors should be considered
when designing crowdsourcing tasks [41]. To address this, we
added succinct, precise, and demonstrative instructions to each
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task and explained each label with an illustrative example (eg,
Figure S6 in Multimedia Appendix 1). In addition, through
different iterations of data collection, we tweaked the design,
presentation, and instructions to ensure that we met the basic
usability requirements of task design and presentation.

Fourth, we defined workers’ qualifications based only on their
historical performance in completing HITs across AMT (ie,
master qualification). Although this provided some degree of
quality control on the collected labels, alternative qualification
requirements such as workers’ education, work background,
and language could have also impacted our study results. To
further study the role of qualification filtering, we pilot-tested
the labeling process without any qualification requirements for
4500 physical activity tasks. These tasks were completed in <12
hours with a consistency score (LC) of <0.5, implying the
importance of workers’ quality in developing crowd-labeled
intelligent systems.

Fifth, various physical activities, based on their energy
requirements in metabolic equivalents (METs), can be
categorized into different movement behaviors, such as light
(1.6-2.9 METs), moderate (3-5.9 METs), and vigorous (≥6
METs) [44]. However, as the details provided by social media
data may not be enough to calculate the MET values, in this
study, we only used general terms related to physical activity
(eg, physical fitness, exercise, household, sports, or occupational
activities) to filter and form the physical activity subset. To
ensure that the lists of contextual terms for filtering all the PASS
categories are comprehensive enough, in addition to
domain-specific ontologies and WordNet [45], we used NLP
techniques (eg, topic modeling, language modeling, and lexical
analysis) to detect latent word patterns that can be used to
identify PASS-related contexts in unstructured text. However,
with no impact on the methodology and results of this study,
both data collection and population biases (inherent in social
media data) should be considered when discussing the data set
used for this study.

Despite these limitations, our study is one of the first to
rigorously investigate the challenges of using crowdsourcing
to develop ML-based public health surveillance systems. Our
findings support the argument that crowdsourcing, despite its
low cost and short turnaround time, yields noisier data than
in-house labeling. On the flip side, crowdsourcing can reduce
annotation bias by involving a more diverse set of annotators
[41]. This diversity, supported by the diversity of AMT workers
[46], is highly beneficial to subjective labeling tasks, such as
detecting a sedentary behavior based on a short text, which
highly depends on the worker’s understanding of sedentary
lifestyles.

The results of this study may inspire future research to
investigate and evaluate the application of crowdsourcing for
the development of ML-based digital public health surveillance
systems deployed and used in national surveillance
decision-making. As the potential for success of ML-based
digital public health surveillance relies on robust and reliable
data sets, a sensitivity analysis of health-related incidents
detected by ML-based surveillance models trained on
crowd-generated labels versus relevant national datasets is
required to ascertain this potential. Moreover, to assess whether
our conclusions are sensitive to the background and expertise
of participants, further investigation is required using a cohort
of experts who are familiar with the public health context under
study. Likewise, to untangle the effect of task context and the
quality of the crow-generated labels, replicating the approach
adopted in this study using other domains, including other public
health domains, remains a future work. Finally, as there is a
chance that the quality of the crowd-generated labels is subject
to the compensation amount, confounded by the socioeconomic
characteristics of the participant cohort, future investigations
are required to calibrate the results of this study considering
these factors.

Acknowledgments
This work was supported by a postdoctoral scholarship from the Libin Cardiovascular Institute and the Cumming School of
Medicine, University of Calgary. This work was also supported by a Discovery Grant from the Natural Sciences and Engineering
Research Council of Canada (RGPIN-2014-04743). The Public Health Agency of Canada funded the Amazon Mechanical Turk
costs. The funders of the study had no role in the study design, data collection and analysis, interpretation of results, and preparation
of the manuscript.

Authors' Contributions
ZSHA was responsible for data collection and curation, model development, data analysis, and visualization, and wrote the paper.
GPB and WT reviewed the paper and provided comments. JL conceived and designed the study and revised the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Additional figures that describe the Amazon Mechanical Turk labeling task, predictive model performance, and incorrectly labeled
tweets in more detail.
[PDF File (Adobe PDF File), 1434 KB-Multimedia Appendix 1]

J Med Internet Res 2022 | vol. 24 | iss. 1 | e28749 | p. 14https://www.jmir.org/2022/1/e28749
(page number not for citation purposes)

Shakeri Hossein Abad et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v24i1e28749_app1.pdf&filename=b2b2354043e3496caa62ac79811fc139.pdf
https://jmir.org/api/download?alt_name=jmir_v24i1e28749_app1.pdf&filename=b2b2354043e3496caa62ac79811fc139.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


References

1. Mavragani A. Infodemiology and infoveillance: scoping review. J Med Internet Res 2020 Apr 28;22(4):e16206 [FREE
Full text] [doi: 10.2196/16206] [Medline: 32310818]

2. Aiello AE, Renson A, Zivich PN. Social media- and internet-based disease surveillance for public health. Annu Rev Public
Health 2020 Apr 02;41(1):101-118 [FREE Full text] [doi: 10.1146/annurev-publhealth-040119-094402] [Medline: 31905322]

3. Sinnenberg L, Buttenheim AM, Padrez K, Mancheno C, Ungar L, Merchant RM. Twitter as a Tool for Health Research:
A Systematic Review. Am J Public Health 2017 Jan;107(1):e1-e8. [doi: 10.2105/AJPH.2016.303512] [Medline: 27854532]

4. Bernardo TM, Rajic A, Young I, Robiadek K, Pham MT, Funk JA. Scoping review on search queries and social media for
disease surveillance: a chronology of innovation. J Med Internet Res 2013 Jul 18;15(7):e147 [FREE Full text] [doi:
10.2196/jmir.2740] [Medline: 23896182]

5. Hossain L, Kam D, Kong F, Wigand RT, Bossomaier T. Social media in Ebola outbreak. Epidemiol Infect 2016
Jul;144(10):2136-2143. [doi: 10.1017/S095026881600039X] [Medline: 26939535]

6. Lardon J, Abdellaoui R, Bellet F, Asfari H, Souvignet J, Texier N, et al. Adverse drug reaction identification and extraction
in social media: a scoping review. J Med Internet Res 2015 Jul 10;17(7):e171 [FREE Full text] [doi: 10.2196/jmir.4304]
[Medline: 26163365]

7. Hu H, Phan N, Chun SA, Geller J, Vo H, Ye X, et al. An insight analysis and detection of drug-abuse risk behavior on
Twitter with self-taught deep learning. Comput Soc Netw 2019 Nov 06;6(1):10. [doi: 10.1186/s40649-019-0071-4]

8. Cavallo DN, Tate DF, Ries AV, Brown JD, DeVellis RF, Ammerman AS. A social media-based physical activity intervention:
a randomized controlled trial. Am J Prev Med 2012 Nov;43(5):527-532 [FREE Full text] [doi: 10.1016/j.amepre.2012.07.019]
[Medline: 23079176]

9. Dunn AG, Mandl KD, Coiera E. Social media interventions for precision public health: promises and risks. NPJ Digit Med
2018 Sep 19;1(1):1-4 [FREE Full text] [doi: 10.1038/s41746-018-0054-0] [Medline: 30854472]

10. Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst 2014 Feb 7;2(1):3
[FREE Full text] [doi: 10.1186/2047-2501-2-3] [Medline: 25825667]

11. Shakeri Hossein Abad Z, Kline A, Sultana M, Noaeen M, Nurmambetova E, Lucini F, et al. Digital public health surveillance:
a systematic scoping review. NPJ Digit Med 2021 Mar 03;4(1):41 [FREE Full text] [doi: 10.1038/s41746-021-00407-6]
[Medline: 33658681]

12. Paolacci G, Chandler J, Ipeirotis P. Running experiments on Amazon Mechanical Turk. Judgm Dec Mak 2010;5(5):1-9
[FREE Full text]

13. Peer E, Brandimarte L, Samat S, Acquisti A. Beyond the Turk: alternative platforms for crowdsourcing behavioral research.
J Experiment Soc Psychol 2017 May;70:153-163. [doi: 10.1016/j.jesp.2017.01.006]

14. Brabham DC, Ribisl KM, Kirchner TR, Bernhardt JM. Crowdsourcing applications for public health. Am J Prev Med 2014
Feb;46(2):179-187. [doi: 10.1016/j.amepre.2013.10.016] [Medline: 24439353]

15. Kim SJ, Marsch LA, Hancock JT, Das AK. Scaling up research on drug abuse and addiction through social media big data.
J Med Internet Res 2017 Oct 31;19(10):e353 [FREE Full text] [doi: 10.2196/jmir.6426] [Medline: 29089287]

16. Lu W, Guttentag A, Elbel B, Kiszko K, Abrams C, Kirchner TR. Crowdsourcing for food purchase receipt annotation via
Amazon Mechanical Turk: a feasibility study. J Med Internet Res 2019 Apr 05;21(4):e12047 [FREE Full text] [doi:
10.2196/12047] [Medline: 30950801]

17. Ayers JW, Leas EC, Allem J, Benton A, Dredze M, Althouse BM, et al. Why do people use electronic nicotine delivery
systems (electronic cigarettes)? A content analysis of Twitter, 2012-2015. PLoS One 2017 Mar 1;12(3):e0170702 [FREE
Full text] [doi: 10.1371/journal.pone.0170702] [Medline: 28248987]

18. Yin Z, Fabbri D, Rosenbloom ST, Malin B. A scalable framework to detect personal health mentions on Twitter. J Med
Internet Res 2015 Jun 05;17(6):e138 [FREE Full text] [doi: 10.2196/jmir.4305] [Medline: 26048075]

19. McIver DJ, Hawkins JB, Chunara R, Chatterjee AK, Bhandari A, Fitzgerald TP, et al. Characterizing sleep issues using
Twitter. J Med Internet Res 2015 Jun 08;17(6):e140 [FREE Full text] [doi: 10.2196/jmir.4476] [Medline: 26054530]

20. Reece AG, Reagan AJ, Lix KL, Dodds PS, Danforth CM, Langer EJ. Forecasting the onset and course of mental illness
with Twitter data. Sci Rep 2017 Oct 11;7(1):13006 [FREE Full text] [doi: 10.1038/s41598-017-12961-9] [Medline:
29021528]

21. Adrover C, Bodnar T, Huang Z, Telenti A, Salathé M. Identifying adverse effects of HIV drug treatment and associated
sentiments using Twitter. JMIR Public Health Surveill 2015 Jul 27;1(2):e7 [FREE Full text] [doi: 10.2196/publichealth.4488]
[Medline: 27227141]

22. Peer E, Vosgerau J, Acquisti A. Reputation as a sufficient condition for data quality on Amazon Mechanical Turk. Behav
Res 2013 Dec 20;46(4):1023-1031. [doi: 10.3758/s13428-013-0434-y]

23. Lundberg S, Lee S. A unified approach to interpreting model predictions - advances in neural information processing
systems. In: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017). 2017 Presented
at: 31st Conference on Neural Information Processing Systems (NIPS 2017); 2017; Long Beach, CA, USA p. 4765-4774
URL: https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

J Med Internet Res 2022 | vol. 24 | iss. 1 | e28749 | p. 15https://www.jmir.org/2022/1/e28749
(page number not for citation purposes)

Shakeri Hossein Abad et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://www.jmir.org/2020/4/e16206/
https://www.jmir.org/2020/4/e16206/
http://dx.doi.org/10.2196/16206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32310818&dopt=Abstract
http://europepmc.org/abstract/MED/31905322
http://dx.doi.org/10.1146/annurev-publhealth-040119-094402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31905322&dopt=Abstract
http://dx.doi.org/10.2105/AJPH.2016.303512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27854532&dopt=Abstract
https://www.jmir.org/2013/7/e147/
http://dx.doi.org/10.2196/jmir.2740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23896182&dopt=Abstract
http://dx.doi.org/10.1017/S095026881600039X
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26939535&dopt=Abstract
https://www.jmir.org/2015/7/e171/
http://dx.doi.org/10.2196/jmir.4304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26163365&dopt=Abstract
http://dx.doi.org/10.1186/s40649-019-0071-4
http://europepmc.org/abstract/MED/23079176
http://dx.doi.org/10.1016/j.amepre.2012.07.019
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23079176&dopt=Abstract
https://doi.org/10.1038/s41746-018-0054-0
http://dx.doi.org/10.1038/s41746-018-0054-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30854472&dopt=Abstract
http://europepmc.org/abstract/MED/25825667
http://dx.doi.org/10.1186/2047-2501-2-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25825667&dopt=Abstract
https://doi.org/10.1038/s41746-021-00407-6
http://dx.doi.org/10.1038/s41746-021-00407-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33658681&dopt=Abstract
http://journal.sjdm.org/10/10630a/jdm10630a.pdf
http://dx.doi.org/10.1016/j.jesp.2017.01.006
http://dx.doi.org/10.1016/j.amepre.2013.10.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24439353&dopt=Abstract
https://www.jmir.org/2017/10/e353/
http://dx.doi.org/10.2196/jmir.6426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29089287&dopt=Abstract
https://www.jmir.org/2019/4/e12047/
http://dx.doi.org/10.2196/12047
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30950801&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0170702
https://dx.plos.org/10.1371/journal.pone.0170702
http://dx.doi.org/10.1371/journal.pone.0170702
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28248987&dopt=Abstract
https://www.jmir.org/2015/6/e138/
http://dx.doi.org/10.2196/jmir.4305
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26048075&dopt=Abstract
https://www.jmir.org/2015/6/e140/
http://dx.doi.org/10.2196/jmir.4476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26054530&dopt=Abstract
https://doi.org/10.1038/s41598-017-12961-9
http://dx.doi.org/10.1038/s41598-017-12961-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29021528&dopt=Abstract
https://publichealth.jmir.org/2015/2/e7/
http://dx.doi.org/10.2196/publichealth.4488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27227141&dopt=Abstract
http://dx.doi.org/10.3758/s13428-013-0434-y
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


24. Wang Z, Hale S, Adelani D, Grabowicz P, Hartman T, Flöck F, et al. Demographic inference and representative population
estimates from multilingual social media data. In: Proceedings of the World Wide Web Conference. 2019 Presented at:
WWW '19: The Web Conference; May 13 - 17, 2019; San Francisco CA USA p. 2056-2067. [doi: 10.1145/3308558.3313684]

25. Shakeri Hossein Abad Z, Butler GP, Thompson W, Lee J. Physical activity, sedentary behaviour, and sleep on Twitter: a
multicountry and fully labelled dataset for public health surveillance research. JMIR Preprints. Preprint posted online July
23, 2021 [FREE Full text] [doi: 10.2196/32355]

26. Zheng Y, Li G, Li Y, Shan C, Cheng R. Truth inference in crowdsourcing: is the problem solved? Proc VLDB Endow 2017
Jan;10(5):541-552. [doi: 10.14778/3055540.3055547]

27. Sheshadri A, Lease M. Square: a benchmark for research on computing crowd consensus. In: Proceedings of the First AAAI
Conference on Human Computation and Crowdsourcing. 2013 Presented at: First AAAI Conference on Human Computation
and Crowdsourcing; November 7-9, 2013; Palm Springs, California, USA p. 156-164 URL: https://ojs.aaai.org/index.php/
HCOMP/article/view/13088

28. Dawid AP, Skene AM. Maximum likelihood estimation of observer error-rates using the EM algorithm. Appl Stat
1979;28(1):20. [doi: 10.2307/2346806]

29. Ipeirotis P, Provost F, Wang J. Quality management on Amazon Mechanical Turk. In: Proceedings of the ACM SIGKDD
Workshop on Human Computation. 2010 Presented at: KDD '10: The 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining; July 25, 2010; Washington DC p. 64-67. [doi: 10.1145/1837885.1837906]

30. Whitehill J, Wu T, Bergsma J, Movellan J, Ruvolo P. Whose vote should count more: optimal integration of labels from
labelers of unknown expertise. In: Proceedings of the 23rd Annual Conference on Neural Information Processing Systems.
2009 Presented at: 23rd Annual Conference on Neural Information Processing Systems; December 7-10, 2009; Vancouver,
British Columbia Canada p. 2035-2043 URL: https://papers.nips.cc/paper/2009/hash/
f899139df5e1059396431415e770c6dd-Abstract.html

31. Raykar V, Yu S, Zhao L, Valadez G, Florin C, Bogoni L, et al. Learning from crowds. J Mach Learn Res
2010;11(43):1297-1322 [FREE Full text]

32. Pennington J, Socher R, Manning C. Glove: Global vectors for word representation. In: Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). 2014 Presented at: Conference on Empirical Methods
in Natural Language Processing (EMNLP); October 2014; Doha, Qatar p. 1532-1543. [doi: 10.3115/v1/d14-1162]

33. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Technique. J Artif Intell
Res 2002 Jun 01;16:321-357. [doi: 10.1613/jair.953]

34. Snoek J, Larochelle H, Adams R. Practical bayesian optimization of machine learning algorithms. In: Proceedings of the
Advances in Neural Information Processing Systems 25 (NIPS 2012). 2012 Presented at: Advances in Neural Information
Processing Systems 25 (NIPS 2012); December 3-6, 2012; Lake Tahoe, Nevada, USA p. 2951-2959 URL: https://proceedings.
neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html

35. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: a system for large-scale machine learning. In:
Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. 2016 Presented at: 12th
USENIX Conference on Operating Systems Design and Implementation; November 2 - 4, 2016; Savannah GA USA p.
265-283. [doi: 10.5555/3026877.3026899]

36. Chollet F. Keras: the python deep learning library. Astrophysics Source Code Library. 2018. URL: https://ui.
adsabs.harvard.edu/abs/2018ascl.soft06022C/abstract [accessed 2021-12-11]

37. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J
Mach Learn Res 2011;12(10):2825-2830 [FREE Full text]

38. CrowdSourcing-for-Digital-Public-Health-Surveillance. GitHub. URL: https://github.com/data-intelligence-for-health-lab/
CrowdSourcing-for-Digital-Public-Health-Surveillance [accessed 2021-12-16]

39. Lewis D, Gale W. A Sequential Algorithm for Training Text Classifiers. London, UK: Springer; 1994:3-12.
40. Laws F, Scheible C, Schütze H. Active learning with Amazon Mechanical Turk. In: Proceedings of the 2011 Conference

on Empirical Methods in Natural Language Processing. 2011 Presented at: Conference on Empirical Methods in Natural
Language Processing; July 2011; Edinburgh, Scotland, UK p. 1546-1556 URL: https://aclanthology.org/D11-1143/

41. Lease M. On quality control and machine learning in crowdsourcing. Hum Comput 2011;11(11):1-6 [FREE Full text]
42. Devlin J, Chang M, Lee K, Toutanova K. Bert: pre-training of deep bidirectional transformers for language understanding.

arXiv. 2018. URL: https://arxiv.org/abs/1810.04805 [accessed 2021-12-11]
43. Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, et al. From local explanations to global understanding

with explainable ai for trees. Nat Mach Intell 2020 Jan 17;2(1):56-67 [FREE Full text] [doi: 10.1038/s42256-019-0138-9]
[Medline: 32607472]

44. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions
for health-related research. Public Health Rep 1985;100(2):126-131 [FREE Full text] [Medline: 3920711]

45. Miller GA. WordNet: a lexical database for English. Commun ACM 1995 Nov;38(11):39-41. [doi: 10.1145/219717.219748]
46. Difallah D, Filatova E, Ipeirotis P. Demographics and dynamics of mechanical Turk workers. In: Proceedings of the Eleventh

ACM International Conference on Web Search and Data Mining. 2018 Presented at: WSDM 2018: The Eleventh ACM

J Med Internet Res 2022 | vol. 24 | iss. 1 | e28749 | p. 16https://www.jmir.org/2022/1/e28749
(page number not for citation purposes)

Shakeri Hossein Abad et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1145/3308558.3313684
https://preprints.jmir.org/preprint/32355/accepted
http://dx.doi.org/10.2196/32355
http://dx.doi.org/10.14778/3055540.3055547
https://ojs.aaai.org/index.php/HCOMP/article/view/13088
https://ojs.aaai.org/index.php/HCOMP/article/view/13088
http://dx.doi.org/10.2307/2346806
http://dx.doi.org/10.1145/1837885.1837906
https://papers.nips.cc/paper/2009/hash/f899139df5e1059396431415e770c6dd-Abstract.html
https://papers.nips.cc/paper/2009/hash/f899139df5e1059396431415e770c6dd-Abstract.html
https://jmlr.csail.mit.edu/papers/v11/raykar10a.html
http://dx.doi.org/10.3115/v1/d14-1162
http://dx.doi.org/10.1613/jair.953
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
http://dx.doi.org/10.5555/3026877.3026899
https://ui.adsabs.harvard.edu/abs/2018ascl.soft06022C/abstract
https://ui.adsabs.harvard.edu/abs/2018ascl.soft06022C/abstract
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://github.com/data-intelligence-for-health-lab/CrowdSourcing-for-Digital-Public-Health-Surveillance
https://github.com/data-intelligence-for-health-lab/CrowdSourcing-for-Digital-Public-Health-Surveillance
https://aclanthology.org/D11-1143/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.670.5262&rep=rep1&type=pdf
https://arxiv.org/abs/1810.04805
http://europepmc.org/abstract/MED/32607472
http://dx.doi.org/10.1038/s42256-019-0138-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32607472&dopt=Abstract
http://europepmc.org/abstract/MED/3920711
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3920711&dopt=Abstract
http://dx.doi.org/10.1145/219717.219748
http://www.w3.org/Style/XSL
http://www.renderx.com/


International Conference on Web Search and Data Mining; February 5 - 9, 2018; Marina Del Rey CA USA p. 135-143.
[doi: 10.1145/3159652.3159661]

Abbreviations
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AUCPR: precision-recall area under the curve
CNN: convolutional neural network
DL: deep learning
DS: David and Skene
EM: expectation–maximization
GLAD: generative model of labels, abilities, and difficulties
HIT: Human Intelligence Task
KNN: K-nearest neighbors
LR: logistic regression
LSTM: long short-term memory
MET: metabolic equivalent
ML: machine learning
MV: majority voting
NLP: natural language processing
PASS: physical activity, sedentary behavior, and sleep quality
ReLU: Rectified Linear Unit
RY: Raykar algorithm
SHAP: Shapley Additive Explanations
SMOTE: Synthetic Minority Oversampling Technique-Nominal Continuous
SVM: support vector machine
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