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Abstract

Background: As social media is a major channel of interpersonal communication in the digital age, social media addiction has
emerged as a novel mental health issue that has raised considerable concerns among researchers, health professionals, policy
makers, mass media, and the general public.

Objective: The aim of this study is to examine the prevalence of social media addiction derived from 4 major classification
schemes (strict monothetic, strict polythetic, monothetic, and polythetic), with latent profiles embedded in the empirical data
adopted as the benchmark for comparison. The extent of matching between the classification of each scheme and the actual data
pattern was evaluated using sensitivity and specificity analyses. The associations between social media addiction and 2 comorbid
mental health conditions—depression and anxiety—were investigated.

Methods: A cross-sectional web-based survey was conducted, and the replicability of findings was assessed in 2 independent
samples comprising 573 adults from the United Kingdom (261/573, 45.6% men; mean age 43.62 years, SD 12.24 years) and 474
adults from the United States (224/474, 47.4% men; mean age 44.67 years, SD 12.99 years). The demographic characteristics of
both samples were similar to those of their respective populations.

Results: The prevalence estimates of social media addiction varied across the classification schemes, ranging from 1% to 15%
for the UK sample and 0% to 11% for the US sample. The latent profile analysis identified 3 latent groups for both samples:
low-risk, at-risk, and high-risk. The sensitivity, specificity, and negative predictive values were high (83%-100%) for all
classification schemes, except for the relatively lower sensitivity (73%-74%) for the polythetic scheme. However, the polythetic
scheme had high positive predictive values (88%-94%), whereas such values were low (2%-43%) for the other 3 classification
schemes. The group membership yielded by the polythetic scheme was largely consistent (95%-96%) with that of the benchmark.

Conclusions: Among the classification schemes, the polythetic scheme is more well-balanced across all 4 indices.
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Introduction

Background Context
The internet has turned the world into an interconnected, global
village in which information and problems alike spread swiftly
across countries. Apart from face-to-face interactions, social
media has emerged as a major channel of interpersonal
communication in the cyber age. Social media use is beneficial
in many aspects. For instance, social media allows people to
maintain contact with existing friends or family members who
live apart [1,2], and individuals who use social media to connect
with their social network members tend to experience greater
levels of subjective well-being [3,4]. In the extended period of
social distancing during the COVID-19 pandemic, social media
use is found to be associated with both social and physical
well-being [5,6]. For people who seek mental health professional
services, the interventions delivered through social media are
deemed more accessible and engaging than face-to-face
interventions [7].

Despite these psychological benefits, the misuse of social media
can incur considerable psychological costs, especially for
individuals who use social media as a refuge to evade unpleasant
feelings or real-life problems. According to the model of
compensatory internet use [8], social media use may improve
these individuals’ psychological condition in the short run, but
such short-term benefits may also strengthen their dependence
on social media, leading to continuous excessive use of social
media and the development of social media addiction [9].
Moreover, social media addiction is motivated by the need to
fulfill fundamental psychological needs that cannot be gratified
in the real world, such as the need to belong [10-13].

Social Media Addiction and Its Assessment
Social media addiction is a type of behavioral addiction that is
broadly defined as compulsive engagement in social media
platforms that significantly disrupts the users’ functioning in
important life domains, such as interpersonal relations, work
or study performance, and physical health [14,15]. According
to the components model of behavioral addiction [16], social
media addiction is conceptualized as a set of symptoms
pertaining to six types of problematic behavior: (1) salience,
which refers to the dominance of social media activities in one’s
thoughts and daily life; (2) tolerance, which refers to the
tendency of spending an increasing amount of time using social
media to attain the same amount of pleasure; (3) mood
modification, which refers to the use of social media to avoid
or mitigate unpleasant emotions experienced in real-life events;
(4) relapse, which refers to the failure of curbing excessive
social media use after attempts of abstinence or control; (5)
withdrawal, which refers to psychological distress experienced
when one cannot get access to social media; and (6) conflict,
which refers to the adverse impact on one’s job or studies
because of problematic social media use.

Although social media addiction is not currently a diagnosable
condition, researchers have constructed measures of social media
addiction based on the diagnostic criteria for other behavioral
addictions such as gambling disorder [16,17]. The most popular
ones include the Facebook Intrusion Questionnaire [18] and the

Bergen Social Media Addiction Scale (BSMAS) [19]. The
former measure assesses addiction specific to a single social
media platform, whereas the latter assesses addiction to social
media in general. Instead of creating new assessment tools,
another group of researchers have modified the current validated
scales of internet addiction. The modification typically involves
altering the context from Internet to Facebook or social media.
For instance, the items of the Problematic Facebook Use Scale
[20] were adapted from those of the Generalized Problematic
Internet Use Scale [21].

Classification Schemes for Social Media Addiction
Validated measures of social media addiction have been widely
used as screening tools for distinguishing individuals with and
without the problem [22,23]. Both monothetic and polythetic
formats have been adopted to yield prevalence estimates and to
screen cases [24,25], because these schemes have long been
used in case classifications of psychiatric disorders in the
Diagnostic and Statistical Manual of Mental Disorders (DSM)
[17,26,27]. The classical monothetic classification is generally
regarded as more conservative because a positive diagnosis
requires the endorsement of all the listed criteria [28]. For
polythetic classification, however, no single criterion is required
to make a diagnosis. The polythetic classification is more liberal
than the monothetic classification because a positive diagnosis
requires the endorsement of more than half of the listed criteria
rather than all; therefore, individuals with the same classification
may have different clinical presentations. Polythetic
classification is commonly used in a variety of clinical
diagnoses, including gambling disorder and substance abuse
[17,27].

Most existing measures of social media addiction consist of
items that are answered on a Likert-type scale ranging from 1
to 5 rather than dichotomous options. A usual practice for
indicating the presence of a symptom involves the recoding of
the 5-point ratings using the midpoint (ie, 3) as the cutoff such
that a particular criterion is met for a score of 3 or above. Some
researchers recently advocated stricter coding by setting a higher
cutoff of 4 instead of the midpoint [29,30]. Taken together, a
review of the literature reveals 4 commonly adopted
classification schemes: monothetic, polythetic, strict monothetic,
and strict polythetic. As these schemes vary in the extent of
strictness in case classifications, different prevalence estimates
are obtained, with higher prevalence yielded from more liberal
classifications such as the polythetic scheme.

Previous studies on social media addiction have adopted either
1 or at most 2 of the classification schemes for deriving
prevalence estimates, and the reported prevalence rates differ
vastly across studies. As social media addiction is a global
mental health concern, researchers worldwide have investigated
the prevalence of this emergent problem [31-34]. The samples
recruited in these prevalence studies vary considerably in their
demographic characteristics, such as age and ethnicity, making
between-study comparisons difficult. This study is the first to
apply all 4 major classification schemes such that comparisons
of the prevalence drawn from various schemes can be made. A
total of 2 independent, demographically heterogeneous samples

J Med Internet Res 2022 | vol. 24 | iss. 1 | e27000 | p. 2https://www.jmir.org/2022/1/e27000
(page number not for citation purposes)

Cheng et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


were included to evaluate the extent of cross-sample replicability
in the findings.

Evaluation of Classification Schemes for Social Media
Addiction
Sensitivity and specificity analyses are widely used for the
evaluation of classification schemes [35]. This method seeks
to test the performance of a classification in matching and
predicting a diagnosis or outcome. As a gold standard for
classifying social media addiction is currently unavailable, the
latent profiles embedded in a data set are adopted as a
benchmark to evaluate which existing classification scheme for
social media addiction can provide the best fit to empirical data.
Latent profile analysis (LPA) is a type of mixture modeling that
can reveal hidden subgroups of individuals from observed data

that share similar symptom profiles [36]. This person-centered
statistical approach is especially appropriate for classifying
disorders with heterogeneous symptoms, because highly
consistent classifications can be obtained by precise distinctions
among profiles and differences in characteristics among profiles
[37,38]. LPA has been applied to social media addiction and
can be used to estimate the proportion of the population with
different risk levels of this disorder [39]. This study extends the
literature by evaluating the extent to which the prevalence
estimate derived from a particular classification approximates
the latent profiles of symptoms actually endorsed by
respondents, and the results are indicated by 4 indices:
sensitivity, specificity, positive predictive value, and negative
predictive value (Figure 1).

Figure 1. The 4 indicators of sensitivity and specificity analysis.

In this study, sensitivity refers to the proportion of individuals
from the data-driven, latent high-risk group who are also
classified by a particular scheme as high risk. Specificity refers
to the proportion of individuals from the data-driven, latent
low-risk group who are also classified by a particular scheme
as low risk. Positive predictive value refers to the proportion of
high-risk participants classified by a particular scheme who also
belong to the data-driven, latent high-risk group. Negative
predictive value refers to the proportion of low-risk participants
classified by a particular scheme who also belong to the
data-driven, latent low-risk group.

Social Media Addiction and Comorbid Mental Health
Problems
To establish that social media addiction is not merely a
normative behavioral pattern, it is important to evaluate whether
it is associated with other comorbid mental health problems. In
the literature on social media addiction, a frequently researched
psychiatric condition is depression, which has been found to
have positive associations with social media addiction.
Specifically, individuals with depression tend to have a high
risk of developing social media addiction [40,41]. Although
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users generally have more pleasant experiences than unpleasant
ones when engaging in social media, unpleasant experiences
on social media (eg, cyberbullying and social comparison with
friends or strangers) tend to compromise mental health [42].
These adverse mental health impacts are especially salient
among individuals with depression owing to their ruminative
response style [43,44].

Another frequently researched psychiatric condition is anxiety
[10,45]. Some studies have shown that individuals with anxiety
are prone to social media addiction because of their strong
motivation to avoid face-to-face social interactions [46]. As
individuals with social media addiction tend to spend more time
on web-based than in-person social interactions, their prolonged
social media use may erode social skills and promote greater
fear of meeting people in real life [47]. Their anxiety may in
turn aggravate their symptoms of social media addiction, as
these individuals continue to perceive in-person interactions as
a source of threat [46]. People who fear face-to-face
communication experience a deficit in need for relatedness,
which may arise from feelings of insecurity in daily life
situations, and social media may thus be used as a
compensational tool to gratify their relatedness needs [47].
Prolonged, excessive use of social media may lead to social
media addiction among individuals with heightened anxiety
[48].

Methods

Participant Recruitment and Procedures
The 2 independent samples for this study were recruited from
Prolific because this web-based participant pool provides
heterogeneous samples with diverse demographic characteristics.
Moreover, the participants of this web-based survey platform
were found to be more honest and naïve, and their data quality
was better than that of members from other survey platforms
[49]. Eligible participants were residents of the United Kingdom
or the United States aged between 18 and 65 years and were
users of at least one social networking site. To maintain data
quality, only those who had an approval rating of ≥90% on the
survey site were included.

The samples were recruited from the United Kingdom and the
United States because members of both countries are the largest
body of consumers of the English version of the BSMAS. These
countries are appropriate for sample replication because they
are highly similar in their internet penetration rates,
socioeconomic development, and cultural values [50,51].
Recruitment was carried out from May 18, 2020, to May 24,
2020.

All participants completed a set of questionnaires that was
constructed and launched through a web-based survey tool,
Qualtrics (Qualtrics International Incorporation). The research
protocol of this study followed those adopted in previous
web-based surveys [29,52]. An advertisement was placed on
the survey platform, and those interested were invited to sign
up. All participants had to give their consent before the survey
began. Upon completion of the survey, they were paid according
to the standard rate set by the survey platform. The human

research ethics committee of the university where the principal
author is employed approved the research protocol before this
study was implemented.

Measures

Social Media Addiction
The symptoms of social media addiction were measured by the
BSMAS [10], which is by far the most widely used validated
assessment tool for addictive use of social media in general.
This scale comprises 6 items, each measuring a core symptom
(ie, salience, tolerance, mood modification, loss of control,
withdrawal, and conflict). Item wording was consistent with
the diagnostic criteria for gambling disorder [17]. The
respondents rated each item on a 5-point scale, ranging from 1
(very rarely) to 5 (very often). The item scores were aggregated
to obtain a composite score, and the 4 major classification
schemes outlined in the Introduction section (the Classification
Schemes for Social Media Addiction subsection) were adopted
to categorize respondents into groups: high- versus no-
to-low-risk. Prevalence rate refers to the proportion of
participants who were classified as having social media
addiction to the entire sample, and the prevalence rates derived
from various classification schemes were then compared. The
BSMAS was a reliable measure in this study (Cronbach α=.88
and .86 for the UK and the US samples, respectively).

Depression
In this study, depression and anxiety were included as criterion
variables owing to the high comorbidity between social media
addiction and both of these mental health conditions [53,54].
Probable depression was assessed using the Center for
Epidemiological Studies Depression Scale [55], which was
constructed for use with general, nonpsychiatric populations.
Respondents were instructed to rate each of the 20 items on a
4-point scale ranging from 0 (rarely or none of the time) to 3
(most or all of the time). A higher composite score indicated a
higher level of depression. This measure is widely adopted as
a screening tool for clinical depression, with a recommended
cutoff score of 16. This threshold score was thus adopted to
indicate probable depression. The measure exhibited excellent
psychometric properties in screening for major depression in
the general population as verified by the DSM [55]. The
depression measure displayed internal consistency in this study
(Cronbach α=.92 and .91 for the UK and the US samples,
respectively).

Anxiety
Probable anxiety was measured by the state anxiety subscale
of the State-Trait Anxiety Inventory Form Y1 [56], which was
selected because this extensively validated measure has by far
been the most popular screening tool for anxiety [57].
Respondents rated each of the 20 items on a 4-point scale
ranging from 1 (not at all) to 4 (very much so). A higher
composite score indicates a higher level of anxiety. According
to the community adult norms stated in the manual [56], a cutoff
score of 40 was used for screening. This measure was found to
be reliable (Cronbach α=.96 and .96 for the UK and the US
samples, respectively).
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Data Analysis
LPA was conducted because this person-centered approach is
currently widely applied for identifying latent groups with
similar characteristics [58]. A total of 6 BSMAS items were
included as indicator variables in this analysis. Multiple indices
were checked to determine the model with the best fit of data
[59]. Specifically, a number of models with different class
solutions (k ranging from 2 to 5) were tested, and better data fit
was indicated by lower values of 3 goodness-of-fit statistics:
Bayesian Information Criterion, sample size adjusted Bayesian
Information Criterion, and Akaike Information Criterion.
Entropy was also examined to evaluate the precision of assigning
latent group membership, with a value of ≥0.80, indicating
precision of classification. A class solution with an entropy
value of <0.80 was ruled out. In addition, the Lo-Mendell-Rubin
likelihood ratio test and bootstrap likelihood ratio test were used
to assist model selection, and a significant result (ie, P<.05)
showed that a k class model improved a k–1 class model. If the
results revealed that 2 or more models were adequate, model
parsimony and interpretability were considered. After the model
selection decision had been made, the profiles were plotted for
each group using a line graph.

The latent profiles identified in the LPA were then mapped onto
existing classification schemes using sensitivity and specificity
analyses [60]. A total of 4 indices—sensitivity, specificity,
positive predictive value, and negative predictive value—were
examined (the Evaluation of Classification Schemes for Social
Media Addiction subsection and Figure 1). In addition, an index
of overall consistency was reported to indicate the percentage
of overlap in group membership between the latent profiles and
high-versus-low-risk groups classified by a particular scheme.

Risk ratio was used to make two types of estimation: (1) the
individual contribution of demographic variables (sex and age
groups) to the risk for social media addiction and (2) the
individual contribution of social media addiction prevalence to
the risk for mental health problems. All statistical analyses were
conducted using SPSS version 26 (IBM), except for LPA, which
was conducted using MPlus version 8.5 (Muthén and Muthén).

Funding and Ethical Considerations
This study was funded in part by the General Research Fund
administered by the Research Grants Council of Hong Kong in
January 2020 (grant 17400714). The research protocol was
reviewed and approved by the human research ethics committee
of the University of Hong Kong before data collection (approval
number: EA2002033; approval date: March 4, 2020). All study
procedures were performed in accordance with the ethical
principles of the Declaration of Helsinki. All participants were
required to provide informed consent before completing the
survey.

Results

Sample Characteristics
The UK sample comprised 573 adults, whereas the US sample
comprised 474 adults. The sample size of each country met the
requirements for conducting covariance modeling [59] and
sensitivity and specificity analyses [35]. The average age of the
participants in the UK sample was 43.62 years (SD 12.24 years)
and that of the participants in the US sample was 44.67 years
(SD 12.99 years). Table 1 presents the sex and age distribution
of the participants from both samples as well as those of the
UK and the US populations. As shown in Table 1, sample
distributions of these major demographic variables were
comparable to those of their respective populations.

Table 1. Sex and age distribution of the 2 samples compared with that of their own population (N=1047).

The United States, n (%)The United Kingdom, n (%)Parameters

Population in 2020Sample (n=474)Population in 2020Sample (n=573)

Sex

165,899a (50.1)224 (47.4)33,821a (49.8)261 (45.6)Male

165,104 (49.9)250 (52.6)34,065 (50.2)312 (54.4)Female

Age group (years)

118,036 (35.6)169 (35.6)22,775 (33.5)192 (33.5)18-34

105,788 (32)152 (32.1)22,654 (33.4)191 (33.3)35-49

107,179 (32.4)153 (32.3)22,457 (33.1)190 (33.2)50-65

aFigures in these columns are expressed in thousands.

Case Classification With LPA
Table 2 presents the results of LPA that were tested and
compared among the 4 models derived from different
classification schemes. For the UK sample, the 3-class model

was selected because the Lo-Mendell-Rubin likelihood ratio
test showed that this model had better data fit than the 2-class
model, but the degree of data fit was highly similar for the
3-class, 4-class, and 5-class models. Hence, the 3-class model
was chosen for parsimonious considerations.
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Table 2. Summary of latent profile analysis comparing the various models (N=1047).

Model comparisonCharacteristics

5-class model4-class model3-class model2-class model

The UK Sample (n=573)

7882.238063.438196.688748.65BICa

7755.257958.678114.148688.33SSABICb

7708.207919.858083.568665.99AICc

0.930 900.900.94Entropy

.08.32.001.004LMR-LRTd, P value

<.001<.001<.001<.001BLRTe, P value

The US Sample (n=474)

5855.205946.036342.766755.99BIC

5728.245841.296260.246695.69SSABIC

5688.755808.716234.566676.93AIC

0.930.930.910.93Entropy

.09.005.02<.001LMR-LRT, P value

<.001<.001<.001<.001BLRT, P value

aBIC: Bayesian Information Criteria.
bSSABIC: sample size adjusted Bayesian Information Criterion.
cAIC: Akaike Information Criterion.
dLMR-LRT: Lo-Mendell-Rubin likelihood ratio test.
eBLRT: bootstrap likelihood ratio test.

The latent profiles of the participants from the United Kingdom
are shown in Figure 2. As shown in this figure, the 3 latent
groups differed in terms of symptom severity. Specifically,
more than half of the participants were assigned to the first
group (315/573, 55%) characterized by low mean item scores
across all 6 criteria of social media addiction (<1.34), and this
group was labeled as low-risk. The profile pattern of the second
group (190/573, 33.1%) was relatively more complex than that
of the first group. The participants from the second group were
more likely to endorse the salience, tolerance, and mood
modification criteria, with item mean scores clustered around
the midpoint (range 2.62-2.97), but not the remaining 3 criteria
(mean item scores<2.07). The second group was labeled as
at-risk because the mean item scores for half of the criteria
approached the cutoff (ie, midpoint) for both the monothetic
and polythetic schemes. The third group (68/573, 11.9%) had

high mean item scores for all the criteria that were above the
cutoff for the monothetic and polythetic schemes (>3.18), and
this group was labeled as high-risk.

For the US sample, both the 3-class and the 4-class models
demonstrated good data fit, but the former model was chosen
because its grouping of participants was more interpretable than
that of the latter. The 3 latent groups are shown in Figure 3. As
revealed in this figure, the profiles of the first 2 groups were
highly similar for the UK and the US samples. Specifically, the
low-risk group of the US sample (295/474, 62.2%) had low
mean item scores across all 6 criteria (<1.45), and the at-risk
group (136/474, 28.7%) tended to endorse the same 3 criteria
(salience, tolerance, and mood modification; mean item scores
ranged from 2.78 to 3.08) but not the other 3 (mean item
scores<1.89).
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Figure 2. Latent profiles for the 3-class solution for the UK samples.

Figure 3. Latent profiles for the 3-class solution for the US samples.

Although the profiles of the low-risk and at-risk groups of
participants from the United States were comparable with those
of the same 2 groups of the participants from the United
Kingdom, the profiles of the third group were different for the
2 samples. Instead of consistently having all scores above the
midpoint across all 6 items as their UK counterparts did, the
third group of the US sample (43/474, 9.1%) had mean item
scores above the midpoint only for two-thirds of the criteria (ie,
salience, tolerance, mood modification, and withdrawal; mean
item scores>3.34). The third group of the US sample was also

labeled as high-risk owing to their members’ endorsement of 4
out of 6 criteria that was consistent with the polythetic scheme.

Ad hoc Bonferroni tests were conducted among the 3 latent
groups for each of the 6 criteria. The results consistently showed
that all the criterion scores of the high-risk group were
significantly higher than those of the at-risk group, whose
criterion scores were in turn significantly higher than those of
the low-risk group (P<.001). These results provided evidence
for the distinctness of the profiles of the 3 latent groups.
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Prevalence of Social Media Addiction
As both of the samples were heterogeneous in terms of
demographic characteristics, risk ratios were computed to
identify sex and age differences. The results revealed
considerable age differences in the prevalence of social media
addiction for both samples (Table 3). For the UK sample,
younger adults aged between 18 and 34 years were at a 4-fold
higher risk of social media addiction than their older
counterparts aged between 50 and 65 years, and this pattern of

findings was consistent across the various classification
schemes. For the US sample, the risk of social media addiction
was 2 to 4 times higher in the group of younger adults compared
with the group of older adults. However, sex differences in the
prevalence of social media addiction were not prominent for
both samples, except female participants from the US sample
were found to have higher risks of social media addiction than
their male counterparts when the strict polythetic scheme was
adopted for classification.

Table 3. Prevalence of social media addiction by major classification scheme, sex, and age group for the 2 samples (N=1047).

Classification schemeParameters

Latent

profileb,
RR

Latent

profileb,
n (%)

Polythetic,
RR

Polythetic,
n (%)

Monothet-
ic, RR

Monothet-
ic, n (%)

Strict
polythet-
ic, RR

Strict poly-
thetic, n
(%)

Strict
monothet-

ic, RRa

Strict
monothet-
ic, n (%)

The UK Sample (n=573)

—68 (11.9)—86 (15)—29 (5.1)—23 (4)—c4 (0.7)Total

Sex

1.1872 (12.6)1.53101 (17.6)1.5835 (6.1)1.5628 (4.9)N/Ad7 (1.2)Male

Ref62 (10.8)Ref66 (11.5)Ref22 (3.8)Ref18 (3.1)Refe0 (0)Female

Age group (years)

6.20132 (23)3.78144 (25.1)4.0960 (10.5)4.0948 (8.4)4.0312 (2.1)18-34

2.4163 (11)2.3690 (15.7)1.4922 (3.8)1.4517 (3)N/A0 (0)35-49

Ref26 (5)Ref38 (6.6)Ref15 (2.6)Ref12 (2.1)Ref3 (0.5)50-65

The US sample (n=474)

—43 (9.1)—52 (11)—12 (2.5)—12 (2.5)—1 (0.2)Total

Sex

1.2547 (9.9)1.6664 (13.5)1.2313 (2.7)4.3821 (4.4)N/A2 (0.4)Male

Ref39 (8)Ref39 (8.2)Ref11 (2.3)Ref4 (0.8)Ref0 (0)Female

Age group (years)

2.7460 (12.7)2.1672 (15.2)4.1920 (4.2)2.2416 (3.4)N/A0 (0)18-34

1.1354 (11.4)1.7960 (12.7)3.1315 (3.2)2.0915 (3.2)N/A3 (0.6)35-49

Ref24 (5.1)Ref34 (7.2)Ref5 (1.1)Ref7 (1.5)Ref0 (0)50-65

aRR: risk ratio.
bThe low-risk and at-risk groups were coded as 0, and the high-risk group was coded as 1.
cNo reference group.
dN/A: not applicable (cannot be computed).
eRef: reference group.

Sensitivity and Specificity Analysis
The sensitivity and specificity analyses are summarized in Table
4. The various classification schemes generally had a high
sensitivity (83%-100%) for both the UK and the US samples,
with the exception of the polythetic scheme that had somewhat
lower sensitivity (74% and 73% for the UK and the US samples,
respectively). The specificity and negative predictive value were

also high across the various schemes (>88% and >95%).
Moreover, there were considerable consistencies or overlaps
(>88%) in group membership between the latent profiles and
the high-versus-low-risk groups classified by all the schemes,
indicating that the participants classified by the various schemes
were largely consistent with the latent groups embedded in the
data when their sensitivity, specificity, and negative predictive
value were examined.
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Table 4. Sensitivity and specificity analyses of various classification schemes with the latent group as the benchmark (N=1047).

Indicator of sensitivity and specificity analyses (%)Sample and classification

scheme

Overall consistencyNegative predictive valuePositive predictive valueSpecificitySensitivity

The UK sample (n=573)

89100689100Strict monothetic

921003492100Strict polythetic

931004393100Monothetic

9596949974Polythetic

The US sample (n=474)

91100291100Strict monothetic

93100239383Strict polythetic

931002893100Monothetic

9697889973Polythetic

Despite these similarities among the schemes, it is important to
note that the schemes differed vastly in their positive predictive
value. Only the polythetic scheme had a high positive predictive
value for both samples (>88%), whereas the other schemes had
a low positive predictive value (<43%). These results indicated
that only the polythetic scheme could identify high-risk
participants that were largely consistent with the data, whereas
all other schemes might fail to identify a considerable proportion
of participants who were classified as high risk by the
data-driven LPA.

In summary, the various classification schemes generally had
good sensitivity and specificity, but their positive predictive
value was low, indicating that those participants who were
classified by these schemes as having high risks only represented
a relatively small proportion of participants from the data-driven,
latent high-risk group. Despite having somewhat lower
sensitivity than other schemes, the polythetic scheme had a high
positive predictive value, indicating that the membership of

various groups derived from the polythetic scheme overlapped
with the group membership identified by the data-driven latent
profiles as much as 96% of the time. Taken together, the
polythetic scheme yielded the best balance of sensitivity,
specificity, positive predictive value, and negative predictive
value among the major classification schemes, and may thus
be optimal for classifying cases of social media addiction.

Risk Ratio of Mental Health Problems by Classification
Scheme and Criteria
Table 5 presents the descriptive statistics of mental health
problems for both low-to-at-risk and high-risk groups classified
by various schemes, whereas Table 6 displays the risk ratios of
various major mental health problems associated with the
incidence of social media addiction at both the scale and item
levels. In these analyses, the reference group referred to the
low-to-at-risk group classified by various schemes of social
media addiction.
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Table 5. Descriptive statistics of mental health problems by case classification of major schemes for the 2 samples (N=1047).

The US sample (n=474)The UK sample (n=573)Scheme and mental health problem

P valueLow-to-at-risk
group, mean (SD)

High-risk group,
mean (SD)

P valueaLow-to-at-risk
group, mean (SD)

High-risk group,
mean (SD)

Strict monothetic

N/AN/AN/Ab<.00116.87 (11.08)41.25 (9.64)Depression

N/AN/AN/A<.00140.07 (13.11)64.25 (12.61)Anxiety

Strict polythetic

.00216.11 (10.89)26.08 (8.62)<.00116.40 (10.79)32.39 (11.26)Depression

.0138.39 (13.12)48.25 (14.52)<.00139.56 (12.80)56.13 (13.88)Anxiety

Monothetic

.00216.12 (10.83)26.00 (11.08)<.00116.51 (10.88)27.03 (13.30)Depression

.00138.32 (13.11)52.00 (11.95)<.00139.55 (12.86)52.90 (14.20)Anxiety

Polythetic

<.00115.36 (10.58)24.65 (10.38)<.00115.47 (10.21)26.02 (12.67)Depression

<.00137.83 (13.04)45.25 (13.09)<.00138.76 (12.59)48.35 (13.94)Anxiety

Latent profilec

<.00115.62 (10.65)24.00 (11.02)<.00115.75 (10.39)26.59 (12.70)Depression

<.00137.91 (13.04)45.98 (13.07)<.00138.87 (12.56)50.10 (14.01)Anxiety

aP value indicates the significance level of an independent sample t test (1-tailed) for each mental health problem of a sample.
bN/A: not applicable (cannot be computed).
cThe low-risk and at-risk groups were coded as 0, and the high-risk group was coded as 1.
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Table 6. Risk ratio of mental health problems by classification scheme and criteria for social media addiction (N=1047).

Mental health problems in the US sample (n=474), RRMental health problems in the UK sample (n=573), RRaParameters

Probable anxietyProbable depressionProbable anxietyProbable depression

Classification schemeb

N/AN/AN/AN/AcStrict monothetic

14.816.596.175.99Strict polythetic

2.903.928.482.77Monothetic

2.656.213.274.46Polythetic

2.794.603.854.17Latent profile

Criteriad

1.682.512.181.97Salience

2.083.352.162.58Tolerance

2.996.333.544.34Mood modification

2.292.621.381.57Loss of control

8.957.293.525.99Withdrawal

4.333.882.797.02Conflict

Criteriae

1.662.191.671.44Salience

1.812.821.631.29Tolerance

3.205.222.833.93Mood modification

3.093.061.872.37Loss of control

2.794.603.543.17Withdrawal

2.653.303.794.08Conflict

aRR: risk ratio, with the low-risk and at-risk groups coded as 0, and the high-risk group was coded as 1.
bThis analysis was conducted at the scale level.
cN/A: not applicable (cannot be computed).
dThis analysis was conducted at the item level with a cutoff score of 4.
eThis analysis was conducted at the item level with a cutoff score of 3.

For the UK sample, the risk of probable depression or anxiety
was about 3 to 8 times higher in the high-risk group by various
schemes than in the low-to-at-risk group. Similarly, for the US
sample, the risk of having any of these mental health problems
was about 3 to 15 times higher for the high-risk (vs
no-to-low-risk) group identified by various schemes.

As the profiles of the latent groups revealed some interesting
patterns across the 6 criteria for social media addiction,
additional analyses were conducted at the item (criterion) level.
Specifically, each of the BSMAS items was dummy coded
according to the cutoff adopted in the strict monothetic and
strict polythetic schemes (ie, 4 out of a 5-point scale). As shown
in the middle panel of Table 6, the risk of probable depression
or anxiety was about 3 to 9 times higher for the mood
modification, withdrawal, and conflict criteria for both the UK
and the US samples when a high cutoff of 4 was applied.

The BSMAS items were also dummy coded according to the
cutoff adopted in the monothetic and the polythetic schemes
(ie, 3 out of a 5-point scale), and the results are summarized in
the lower panel of Table 6. Similar to the findings derived from

a higher cutoff of 4, the risk of probable depression or anxiety
was about 3 to 5 times higher for the mood modification,
withdrawal, and conflict criteria for both the UK and the US
samples.

Discussion

Principal Findings
Social media addiction has emerged as a prevalent problem of
public concern in the modern cyber era, and this emergent
problem has been examined in the context of the COVID-19
pandemic. Although the prevalence rates of social media
addiction for both samples obtained in this period are
comparable with those derived from the same countries before
the pandemic [61], the psychiatric problems reported by both
samples are more prevalent than those reported in previous
studies [62]. These findings indicate that the residents of the
United Kingdom and the United States could be emotionally
overwhelmed by enormous stressors elicited during the early
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phase of the pandemic [62,63], but the prevalence of social
media addiction remained largely stable at that stage.

This study is the first to adopt a nuanced analysis of the various
schemes that have been widely used for case classification
purposes. Our findings indicate that the application of diverse
schemes yields varied prevalence estimates, and testing these
schemes against the data-driven, latent profile analytic approach
thus generates valuable information that unveils the relative
performance of different schemes in case classification.

In our study, three latent profiles are found to be embedded in
the data: low-risk, at-risk, and high-risk. It is noteworthy that
the shape of the symptom profile of the at-risk group was distinct
from that of the other 2 groups. For the at-risk group, the
endorsement of half of the criteria (ie, salience, tolerance, and
mood modification) tended to be more similar to the
endorsement of those by the high-risk group, whereas the
endorsement of the other half (ie, loss of control, withdrawal,
and conflict) by the at-risk group tended to be more similar to
the endorsement of those by the low-risk group. These findings
show that a dichotomous (low-risk vs high-risk) classification
scheme may be inadequate. Instead, a tripartite classification
scheme may be more appropriate for capturing respondents’
distinct symptom characteristics of social media addiction,
especially for the at-risk group whose symptom profile is similar
to the low-risk and high-risk groups in certain criteria but not
others.

In general, most classification schemes used in existing studies
have good sensitivity and specificity when compared with the
latent groups identified in our latent profile analyses. However,
a low positive predictive value is found in most of the schemes,
with the exception of the polythetic scheme. The present
findings indicate that both strict monothetic and monothetic
schemes have perfect sensitivity (100%) but at the cost of low
positive predictive values (2%-43%). These 2 schemes may be
too conservative, such that a large proportion of individuals
with probable social media addiction are excluded from further
assessment or follow-ups. In contrast, despite having slightly
lower sensitivity than the other schemes, the polythetic scheme
appears to have a more balanced performance across all
psychometric indicators.

Research and Practical Implications
These new findings have research and practical implications.
Specifically, the study delineates the strengths and weaknesses
of each classification scheme, thus guiding decisions for
selecting an optimal scheme for making population-level
estimates of social media addiction. The findings indicate that
the various major classification schemes have a large degree of
heterogeneity, both in terms of estimating the prevalence rates
of social media addiction as well as screening and detecting
cases of social media addiction. With regard to prevalence
estimates, researchers utilizing strict classification schemes may
tend to obtain very low prevalence rates of social media
addiction. As shown in this study, such discrepancies can be as
large as 10% to 15% (eg, using polythetic vs strict monothetic
schemes). It is noteworthy that the polythetic scheme was found
to have relatively high consistency with the benchmark data of
the 2 independent samples, with discrepancies of only 2% to

3% (11% vs 9% in the United States; 15% vs 12% in the United
Kingdom). Thus, the present findings provide some empirical
evidence that polythetic classification may best reflect
classifications identified using a data-driven approach and is
optimal when the goal is to identify a broad group of individuals
at risk for social media addiction.

Furthermore, the assessment of social media addiction has
become an issue of growing importance for mental health
professionals, with some countries formulating public health
policies and providing extensive training to guide professionals
in distinguishing clients with varying severity levels of the
problem [64]. As precise case classification is crucial for
appropriate referral to tailored intervention, a better
understanding of how well a screening instrument function
using different scoring methods becomes important. In
evaluating screening tools, the sensitivity and specificity of
classification schemes have traditionally been emphasized.
However, basing classification schemes solely on these 2 indices
is insufficient for making clinical decisions at the individual
level and may even be misleading in some cases [65]. This is
because both indicators of sensitivity and specificity are
population-based indices that represent properties of the
screening test in itself [66], but the 2 predictive values further
include sample-relevant information, such as the base rate of a
given problem area [67]. Therefore, the use of multiple indices,
including positive and negative predictive values, is a notable
strength of our analyses, providing valuable data that could
inform the scoring and interpretation of the BSMAS within the
context of clinical assessment [65,68].

The BSMAS is a brief measure that has been commonly adopted
to assess symptoms of social media addiction, although our
results highlight several considerations relevant to clinicians’
choice of classification schemes. Despite demonstrating high
sensitivity and specificity, the use of the strict monothetic, strict
polythetic, and monothetic schemes are found to be more prone
to missing members of the high-risk group derived from the
actual data (ie, positive predictive values ranging from 2% to
43%) as compared with the polythetic scheme (ie, positive
predictive values of 88% and 94%). These findings demonstrate
that the polythetic scheme has superior positive predictive rates
of social media addiction compared with the other schemes,
indicating the greater utility of the polythetic scheme in detecting
individuals who are at high risk for social media addiction.

The polythetic scheme as compared with the monothetic scheme
is more consistent with the current theoretical approaches to
psychological functioning and mental health, as the polythetic
scheme emphasizes a prototypical perspective (ie, requiring the
presence of many rather than all symptoms) rather than a
classical, monothetic perspective (ie, requiring the presence of
all symptoms) to mental health [69]. Characterized by a
prototypical approach, the polythetic scheme does not
necessitate the presence of all symptoms within a problem area,
representing an approach that is more attuned toward individual
variability and heterogeneity, both of which are frequently
observed in clinical and research settings. Similar to many other
problem domains, the present findings indicate that social media
addiction may be conceptualized as a continuum ranging from
no to high risks, with a considerable proportion of at-risk
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individuals clustered somewhere between the 2 extremes. Hence,
the polythetic classification scheme is more similar to current
assessment approaches to mental health problems, such as the
DSM-5 and the 11th version of the International Statistical
Classification of Diseases and Related Health Problems
(ICD-11) [27,70]

Although information technology addiction (eg, social media
addiction and gaming disorder) is currently not a diagnosable
condition in the DSM-5 [71], a recent expert review has outlined
meta-level criteria for determining whether different behavioral
addictions may warrant the designation of other specified
disorders due to addictive behaviors under the ICD-11 [72]. To
determine whether social media addiction is present based on
specific symptoms, this study fills the knowledge gap by
revealing 3 symptoms of social media addiction with high-risk
ratios with comorbid problems of depression and anxiety: mood
modification, withdrawal, and conflict (Table 6). The replicable
findings across the 2 independent samples suggest that these
symptoms are crucial for the assessment of social media
addiction. More importantly, these findings echo the
classifications of a related problem of gaming disorder and other
behavioral disorders in the ICD-11, in which conflict and
adverse consequences in significant life domains are essential
for a diagnosis.

This study further reveals that individuals identified with social
media addiction have a high risk of probable depression and
anxiety. Primarily, these findings indicate that the classification
schemes of social media addiction may serve as a risk indicator
in the screening process for potentially detecting comorbid
problems with depression and anxiety. More importantly, several
specific symptoms of social media addiction tend to have
stronger connections with depression and anxiety, including
mood modification, withdrawal, and conflict. Our item-level
analyses identified several associations that warrant future
research and attention by clinicians. First, the association
between the specific symptoms of conflict and depression and
anxiety corroborates those that have been empirically unveiled
in a variety of contexts [73,74], highlighting conflict arising
from social media addiction as a potential pathway linked with
both mental health conditions. Clinicians may need to evaluate
how conflict arising from social media addiction is related to
depressive symptoms, such as the feelings of letting oneself and
their significant others down, feelings of worthlessness, or
anxiety symptoms associated with the monitoring of worry and
rumination thoughts that are attributable to addictive use of
social media [75,76]. Second, mood modification through
addictive use of social media to avoid facing real-life problems
is associated with a high risk of probable depression and anxiety.
This finding may reflect individuals who use social media as a
refuge to evade real-life challenges, duties, or responsibilities.
If this is the case, clinicians may need to address social media
addiction as a maladaptive, avoidant coping response that likely
serves as a maintaining factor for both depression and anxiety
[77,78]. Finally, as withdrawal symptoms are associated with
psychological distress, individuals who are at risk for social
media addiction may benefit from developing alternative coping
skills that can replace social media activities when experiencing
withdrawal.

In addition to the use of the BSMAS as a diagnostic tool for
identifying individuals with social media addiction for treatment
referral, this screening tool can also serve as an effective tool
for early screening of at-risk cases to prevent further
development into social media addiction. As prevention is often
more cost-effective than treatment [79], broad-based screening
can be valuable when mental health intervention resources are
available in the community to serve the identified at-risk
individuals. Given that this study evaluates the performance of
multiple classification schemes against the empirically-derived
benchmark, the findings can provide useful guidance for health
care professionals to select the scheme most appropriate for
their intervention schemes.

Research Limitations and Directions
Before concluding, caution should be exercised. First, this study
adopted a quantitative design that included only validated
measures with structured close-ended questions. The present
inquiry thus focused on the typical symptoms of social media
addiction, anxiety, and depression. The widely adopted
quantitative design should be supplemented with qualitative
data collection methods, such as narrative interviews and focus
groups, which can broaden the scope of inquiry by unveiling
participants’unique experiences [80,81]. Thus, a mixed methods
design is encouraged to combine quantitative and qualitative
methods to gain a more comprehensive perspective on social
media addiction.

Second, our study used a web-based survey method for data
collection and is thus vulnerable to the shortcomings inherent
in this type of method. Although the screening function of the
web-based survey platform allows the recruitment of the present
samples whose demographic profiles resemble those of their
respective populations, it is important to reiterate that
nonprobabilistic sampling method was used in participant
recruitment. Participants signed up for the web-based survey
voluntarily upon placing an advertisement on the website, and
such self-selection could potentially elicit sample bias.

Third, our study adopted a symptom approach in the
examination of social media addiction and its mental health
implications. Validated measures assessing a standard set of
symptoms of social media addiction and the 2 psychiatric
problems were administered. It is noteworthy that we did not
include any measures of time for overall internet use or social
media engagement [82,83]; thus, the amount and pattern of
social media use were not assessed. For criterion assessment,
only anxiety and depression were measured because both are
major psychiatric comorbidities of information technology
addiction [84,85]. Apart from psychiatric problems, individuals
with information technology addiction also experience
disruptions in other life domains, such as interpersonal relations
and job performance [86,87]. The scope of daily life dysfunction
should be broadened by including a greater variety of life
domains for a more comprehensive evaluation of daily life
challenges experienced by individuals with social media
addiction.

Fourth, it is noteworthy that this study was conducted during
the COVID-19 pandemic. As the massive global transmission
of this unknown virus was unprecedented, an avalanche of false
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and misleading information was disseminated through social
media. Frequent use of social media was associated with
COVID-19 anxiety that disturbed sleep quality [88,89]. Such
psychological responses may not be fully captured by the
traditional measures of mental health. Future research may
consider using measures that capture COVID-19–specific
stressors and experiences, such as loss of family and friends
because of COVID-19 or exposure to misinformation about the
pandemic via social media use [90].

Finally, although efforts have been made to replicate the findings
in 2 independent samples from English-speaking countries with
high internet penetration rates [50], the present findings cannot
be generalized to individuals from other countries or cultural
backgrounds. This is particularly the case as multinational
meta-analyses have revealed the prevalence of information
technology addiction and its differential underlying
psychological mechanisms across cultural regions [61,84].
Therefore, future research should be expanded to include more
countries with varying levels of cultural individualism and

internet penetration. Data derived from a myriad of countries
with diverse backgrounds enable researchers to make
cross-cultural comparisons at both the individual and country
levels [91].

Conclusions
In conclusion, this study evaluated 4 major schemes widely
adopted to classify cases of social media addiction. Using latent
profiles identified from empirical data as a benchmark, the
performance of the polythetic scheme is more well-balanced in
attaining relatively high levels of sensitivity, specificity, positive
predictive value, and negative predictive value compared with
those of the other 3 schemes. Although these findings are largely
replicable in the 2 independent samples, efforts should be made
to expand the scope of inquiry in countries with diverse cultural
backgrounds using a wider range of criterion variables through
qualitative methods, thus enriching the discussion and informing
future decisions about the potential inclusion of social media
addiction in the future versions of the DSM or ICD.
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