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Abstract

Background: The vaccination uptake rates of the human papillomavirus (HPV) vaccine remain low despite the fact that the
effectiveness of HPV vaccines has been established for more than a decade. Vaccine hesitancy is in part due to false information
about HPV vaccines on social media. Combating false HPV vaccine information is a reasonable step to addressing vaccine
hesitancy.

Objective: Given the substantial harm of false HPV vaccine information, there is an urgent need to identify false social media
messages before it goes viral. The goal of the study is to develop a systematic and generalizable approach to identifying false
HPV vaccine information on social media.

Methods: This study used machine learning and natural language processing to develop a series of classification models and
causality mining methods to identify and examine true and false HPV vaccine–related information on Twitter.

Results: We found that the convolutional neural network model outperformed all other models in identifying tweets containing
false HPV vaccine–related information (F score=91.95). We also developed completely unsupervised causality mining models
to identify HPV vaccine candidate effects for capturing risk perceptions of HPV vaccines. Furthermore, we found that false
information contained mostly loss-framed messages focusing on the potential risk of vaccines covering a variety of topics using
more diverse vocabulary, while true information contained both gain- and loss-framed messages focusing on the effectiveness
of vaccines covering fewer topics using relatively limited vocabulary.

Conclusions: Our research demonstrated the feasibility and effectiveness of using predictive models to identify false HPV
vaccine information and its risk perceptions on social media.

(J Med Internet Res 2021;23(9):e30451) doi: 10.2196/30451
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Introduction

About 13,000 women are newly diagnosed with invasive
cervical cancer and over 4000 women die from it every year
[1]. Cervical cancer is caused by certain types of human
papillomavirus (HPV) [2,3]. HPV is the most common sexually
transmitted infection in the United States with an estimated 6.2
million new infections every year among persons 14 to 44 years
of age [4-6]. In addition to cervical cancer, HPV is the causal
mediator in multiple head and neck cancers, genital cancers,
and anal cancers [7-9]. The overall burden of HPV-associated
cancers has been increasing in the United States [9]. Prevention
of HPV is more challenging than most sexually transmitted
infections as condoms do not provide complete protection
against infection [10]. Hence, prevention through vaccination
is critical in decreasing the burden of cancer due to this
ubiquitous infection.

The HPV vaccine is universally recommended for all
adolescents [10]. Despite the exceptional efficacy (up to 90%
protection) in preventing precancerous lesions caused by the
targeted HPV types [11-13], only 56.8% of 13 to 17-year-old
females and 51.8% of 13 to 17-year-old males in the United
States have completed the HPV vaccine series [14]. There are
many known barriers to HPV vaccination, including
misconceptions about the side effects and adverse events from
HPV vaccines, misbeliefs around the need for vaccines,
inconsistent advice received from health care givers, costs to
complete the vaccination, limited access to clinics, and
violations to cultural beliefs [15-21]. Among these barriers, the
bias in risk perceptions has not only been associated with low
intention of vaccination [22-25] but also with the actual
vaccination behavior [16,22,26-30]. The National Immunization
Survey revealed the top 3 parental concerns of HPV vaccines
to be a lack of knowledge, low perceived usefulness of vaccine
(low perceived risk of HPV infection), and high perceived risks
of side effects and safety concerns [31], underscoring the
importance of risk perceptions in HPV vaccination decisions.

Social media has become an important information source for
people to exchange vaccine-related opinions and form their
attitudes toward vaccines [32-38]. Its impact is striking,
especially for Twitter vaccine information, as HPV
vaccine–related opinions on Twitter have been associated with
actual vaccine acceptance and coverage [39]. Existing research
has investigated the emerging themes and public attitudes toward
the pro- and antivaccine online discussions about HPV vaccines
[19,24,40-44]. Although multiple false conspiracies and myths
around HPV vaccines have been identified, no research has used
an automatic computational approach to extract the causal cues
of the main vaccination arguments used in circulation of HPV
vaccine misinformation. Research has shown that none of
content quality, scientific robustness, or the veracity of the
information has been found to be indicative of the spread of
information, while false or unverified information sometimes

becomes more viral than true information [45,46]. As attention
to the propagation of false information on social media has
surged [45,47-50], an automatic, systematic, and generalizable
approach to detect socially endorsed false health information
remains understudied. The threats of false information are
critical because the reliance (ie, perceived accuracy) on false
information can be amplified with each exposure to it and further
magnified through social networks [51-53]. People can be
especially victimized by the proliferation of user-generated false
health information given their lack of health literacy,
incompetence in credibility judgments, and the mixed quality
of health news despite the sources cited [54-56]. Hence,
detecting false health information before it propagates is an
important step toward minimizing the threats of false
information [57].

Several works have targeted health misinformation [58,59],
with most studies using descriptive approaches to study known
health misinformation and performing analysis to uncover the
common misbeliefs, demographic and geographic patterns, and
social media user behaviors [25,60,61]. A few studies have
implemented computational models to identify health
misinformation from other social medial platforms (such as
YouTube and Instagram); however, none of them have attempted
to identify health misinformation from short and sometimes
incomplete text information, such as tweets [62,63]. In contrast
with other related work, we combined a classification model
for identifying false HPV vaccine information with unsupervised
causality mining to extract the risk perceptions considered to
be the attributable causes of HPV antivaccine health concerns
based on the content expressed in Twitter messages. To this
end, we conducted an infodemiology study to use natural
language processing and machine learning methods, such as
classification, clustering, dependency parsing, and phrase
mining, to identify those false HPV vaccination arguments that
frequently appear in social media. Our methodological analysis
can be applied to other domains, such as COVID-19 vaccination,
food safety, and politics, to extract insightful information
regarding the differences and similarities between truthful and
misleading claims shared online.

Methods

We collected a corpus related to HPV vaccines with tweets
published from December 2013 until December 2017. We used
the formerly known Crimson Hexagon's (now Brandwatch)
social media analytics application programming interface and
a list of HPV-related search terms, including, but not limited
to, “HPV vaccine,” “papillomavirus vaccine,” “cervical cancer
vaccine,” “HPV shot,” “cervical cancer shot,” and “Gardasil.”
Our modeling pipeline consists of several steps: sampling,
annotation and data preprocessing, training, and analysis (see
Figure 1). The data preprocessing stage includes rule-based
lexical normalization and unsupervised pretraining of word
embeddings.
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Figure 1. Causality mining data collection and modeling pipeline.

First, we randomly sampled 1000 tweets per year and passed
them to 2 annotators in 2 rounds. Both annotators received basic
training about HPV vaccines (including extensive reading of
the verified HPV vaccine-related materials from the National
Cancer Institute, Center for Disease Control and Prevention,
and American Cancer Society), and 1 had formal educational
training in medical sciences. Similar to related work in
misinformation detection [64-66], we framed the task as a binary
classification, in which each tweet is categorized as true or false
information (in which false information includes partial-false
or partial-true information). We thus not only asked the
annotators to judge the veracity of the content for each tweet
but also allowed them to select an additional option as “not
applicable” for tweets that did not fall under any of the 2
categories (eg, opinionated text and other nonfactual or
irrelevant posts). Tweets labeled as not applicable were filtered
out from the annotation pipeline. Any discrepancies of the
ratings from the 2 annotators were reconciled through
discussion. For the interrater reliability, a Cohen's kappa
coefficient (κ) of 0.75, was considered to indicate good
agreement on the task [67]. The resulting data set consisted of
5000 labeled and 702,858 unlabeled tweets. Character lengths
of the tweets, including all mentions, retweets, and hashtags,
ranged from 21 to 826 characters.

To reduce vocabulary size for the lexical normalization steps,
words were formatted in lower case and URLs were removed;
numerals, and Twitter-specific items, such as user mentions
(usernames prefixed by “@”) or retweets, were tagged and
mapped to a common special token per category (ie, NUMBER,
MENTION, RT, respectively). Selected contractions were then
replaced with their canonical forms: for example, “Can't” was
replaced with “Cannot,” “You'll” was replaced with “You will,”
“&” was replaced with “and,” etc. Additionally, hyphens and
forward slashes were replaced with spaces, alphanumeric
pairings were processed, instances of 2 or more user mentions
were reduced to 2 “MENTION” tokens, hashtag quotes and
other types of punctuation were removed, and multiple leading
or trailing white spaces were replaced with a single one. This
process reduced the length of each tweet, which could range
between 18 and 295 characters.

The final vocabulary size based on the training set was 4098
terms (including 1 vocabulary term representing a blank space).
Analysis of terms weighted by their frequency odds ratio (ie,
the ratio of occurrence in each category) showed certain terms
were overrepresented in the true category but appeared
infrequently in the false category, for example, words that
strongly indicated the effectiveness of HPV vaccines on cancer
prevention spread online, such as “prevent,” “protect,” and
“effective.” On the other hand, false messages contain terms
such as “danger,” “adverse,” and “deadly,” and focus more on
the negative causal effects that are used as arguments for
vaccination.

Results

Classification Model
Word embeddings map discrete word tokens to real-valued
vector representations, where semantically similar words have
similar vectors and are therefore closer in the embedding space.
In general, pretraining of such word embeddings has been found
to be beneficial for several natural language processing tasks,
allowing for faster model convergence and task performance
improvements. Therefore, we trained an unsupervised
embedding model, FastText [68], with our full Twitter collection
as training data and with the aforementioned preprocessing.
Compared to other word representation models, FastText can
produce word vectors for out-of-vocabulary words and has been
proven to be a strong baseline for short text similarity, with its
open-sourced implementation allowing for faster training [69].
More specifically, FastText produced 300-dimensional vector
representations for each term in our vocabulary, which was used
as the initialization for our model's embedding layer. We also
experimented with Wikipedia-pretrained embeddings and
without any pretrained embeddings: our experiments showed
that the model performed better in terms of accuracy when
initialized with HPV-related pretrained word embeddings.

Finally, we divided the annotated data into 60% training, 20%
validation, and 20% testing, keeping the same splits across all
models for a fair comparison. Deduplication of tweets with
exact matches within each set left 3661 tweets in total (2142
for training, 758 for validation, and 761 for the test set). We
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experimented with several model architectures, including
convolutional neural network (CNN) [70], bidirectional long
short-term memory (BiLSTM), and traditional models, including
support vector machine and Naive Bayes. We trained with

cross-entropy, Adaptive Moment Estimation with a 10–4 learning
rate, 0.01 decay, and a 32 batch size for the neural models.
Hyperparameter tuning was performed using the Tune library
[71]. In Table 1, we report the mean and SD of the top-5
performing model variations. Our experimental evaluation
showed that CNNs performed better than did the other models
(see Figures 2 and 3 for respective confusion matrices and the
area under the receiver operating characteristic curve

comparisons between neural networks). Of the top-5 best
performing models for either of the neural networks, the CNN
required less training time than did the BiLSTM. The mean
training time per epoch for the CNN was 11.5 ms (SD 1.09,
minimum 16, maximum 16, median 12), whereas the mean
training time per epoch for the BiLSTM was 51.3 ms (SD 34.07,
minimum 14, maximum 88, median 81). Our best-performing
CNN model had 256 convolutional filters, including –3 kernels
of width (3,4, and 5) and rectified linear unit nonlinearities; a
max pooling layer, a fully connected layer of 128 units with
rectified linear unit activations and 0.1 dropout, and a final
softmax output layer that produced the classification prediction.

Table 1. Identifying false human papillomavirus vaccine information: classification model comparison.

F scoreRecallPrecisionAccuracyModel

55.53256.72157.80657.424SVMa, mean

51.09052.30152.48551.774Naive Bayes, mean

91.946 (0.270) c91.946 (0.271)91.953 (0.272)91.958 (0.269)CNNb, mean (SD)

91.618 (0.438)91.574 (0.453)91.710 (0.396)91.643 (0.432)BiLSTMd, mean (SD)

aSVM: support vector machine.
bCNN: convolutional neural network.
cItalics indicate the highest F score in the table.
cBiLSTM: bidirectional long short-term memory.

Figure 2. Confusion Matrix for best-performing CNN model. BiLSTM: bidirectional long short-term memory; CNN: convolutional neural network.
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Figure 3. ROC for the best-performing convolutional neural network and bidirectional long short-term memory models. AUC: area under the curve;
ROC: receiver operating characteristic.

Causality Mining
To identify the risk perceptions attributed to the HPV vaccines,
we first applied our classifier to a set of 291,037 tweets from
which we are able to tag 124,031 as false tweets and 167,006
as true tweets. Using a dictionary of causal terms derived by
Kayesh et al [72] for Twitter causality detection, we screened
for tweets that contained at least 1 of these terms and kept tweets
classified as false information if the classification confidence
was at least 0.998, as this maintained high fidelity with our

classifier. Thus, a total of 9352 tweets were used for the causal
relationship mining process (Table 2). We then used a
dependency parser for tweets to tag and merge multi-word
expressions [73]. As tweets can have multiple utterances (ie,
independent sentences or fragments), we kept the noun phrases
that appeared with the causal cue regardless of whether they
had a dependency related to the causal cue, which is in contrast
to the work by Kayesh et al [72]. A candidate causal phrase is
a set of terms pertaining to a tweet that contains a causal cue
and precipitates the candidate effect phrase.

Table 2. Number of messages after applying several filters.

TotalTrueFalseModel

291,037167,006124,031No filter, n

177,338 (60.93)105,166 (62.97)72,172 (58.19)+ Confidence threshold, n (%)

9352 (3.21)5685 (3.40)3667 (2.96)+ Contains causal cue, n (%)

We could then compute the pointwise mutual information (PMI)
for the causal set C = {c1,...,cm} and the effect set E = {e1,...,em}
where the candidate causal phrase, ci and effect phrase, ej, are
sets that contain terms wc∈Vc and we∈Ve, respectively. Here,
Vc is the set of terms, noun phrases, and multi-word expressions
derived from candidate causal phrases in the tweets (excluding
terms with a minimum frequency of 1 and removing stopwords)
and Ve is the vocabulary derived from the candidate effect
phrases.

To compute the PMI for terms we ∈ej and wc ∈ci we have,

We can apply Laplace smoothing to ensure the probability
distributions are nonzero [74] and can compute the normalized
pointwise mutual information (NPMI) [75] as follows:

The range of values of NPMI are from –1 to 1, where –1 means
the terms never occur together, 0 means they are independent,
and 1 is complete co-occurrence.

Collapsing Candidate Effect Phrases and Ranking
Effects
As our model was completely unsupervised and included
retweets, tweet messages could become very redundant, but our
method could detect many near-duplicate candidate effect
phrases. To collapse these phrases, we clustered the terms using
semantic similarity derived from embedding representations of
the candidate effect phrases. In particular, we used the package
HuggingFace [76] to acquire the sum of the last 4 layers of the
bidirectional encoder representations from transformers model
[77]. To compute the word embedding, we then averaged these
word embeddings in the candidate effect phrase to produce the
embedding vectors.

Density-based spatial clustering of applications with noise
(DBSCAN) [78] was then used to cluster the candidate effect
phrases. There were 2 parameters of importance: (1)
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reachability, which is the max distance between the 2 “points”
to be considered in the same cluster; and (2) the minimum
number of “points” to be considered clusters. By points here
we mean an embedded real-valued vector representation of the
effect sets. We set the reachability to 0.1 and the minimum
number of points to 1, as we wanted to retrieve only the closest
semantically similar words while maintaining meaningful
clusters. Note that there are other alternatives to DBSCAN, such
as ordering points to identify the clustering structure (OPTICS)
[79] and hierarchical density-based spatial clustering of
applications with noise (HDBSCAN) [80] for spectral clustering;
however, we only needed to reduce the number of effects
compared at query time, meaning that DBSCAN was sufficient.
We then selected the cluster cores as representatives for each
cluster to collapse the effects.

To identify the perceptions associated with different causal
words, we formulated this as a retrieval problem. Given a
causality-related query q, we ranked the associated effects by
using the NPMI. To compute the scoring function, we used the
following:

This scoring function computes the average NPMI for all pairs
of terms in the query and candidate effect phrase. We can then
compute the cumulative NPMI score for a category Ca of effect
phrases as follows:

Causality Mining Results
To validate the candidate causal mining approach, we took a
lexicon pertaining to risk perceptions (ie, perceived effects)
concerning HPV vaccines. The HPV-Vaccine Risk Lexicon
(HPVVR) is a consumer-facing lexicon to capture how laymen
describe their risk perceptions about HPV vaccines (including
their perceived harms and benefits about HPV vaccines) [81].
The HPVVR was developed in 2 stages. The first stage involved
adopting the risk expressions and HPV-vaccine–related
consumer-facing vocabulary from the Department of Homeland
Security Risk Lexicon, MedlinePlus Consumer Health Topic
Vocabulary, and Consumer Health Vocabulary (Unified Medical
Language System) [82,83]. The second stage was to extract
layman language about the descriptions of risk perceptions
based on the user-generated content (from randomly sampled
user-generated content from 2013 to 2018, including from
Twitter and Facebook) by 2 trained annotators (interrater
reliability: Cohen's kappa coefficient (κ)=0.80). The HPVVR
covers more than 200 terms or phrases across 29 categories of
risk perception-related vocabulary.

This gold standard list of effects, G, was then matched with the
effect set E. In particular, we defined a partial match to be
present if some terms in the ground truth effect phrase were
matched with some of the candidate effect phrase (ie, g∩e ≠
Ø). For example, we mined “prevent throat cancer” from the
data, which is a partial match to “prevent cervical cancer” in
the HPVVR. There were 2 other kinds of partial match. We

defined a match to be proper if the candidate effect phrase was
a more specific example of the ground truth effect phrase, g ∈
G. For example, we mined “early onset menopause” from the
data, which is a proper match to “menopause” in the HPVVR.
We considered a reverse match to be present if the candidate
effect phrase was a more general form of the ground truth effect
phrase, e ⊆ g. For example, we mined “fatigue” from the data,
which is a reverse match to “extreme fatigue” in the HPVVR.
Out of a total of 136 ground-truth effect phrases, we found 55
(40.4%) matches, 78 (57.4%) partial matches, 48 (35.3%)
reverse matches, and 103 (75.7%) either partial or proper
matches or both. Meanwhile, there were also some candidate
effect phrases which were newly discovered effects.

As the causality mining method is a completely bottom-up,
unsupervised method, we could automatically mine candidate
effects for any set of tweets. In particular, for the predicted false
tweets, one of the largest candidate effect clusters contained
terms relating to the reactions of different entities, such as
“Japan,” “Denmark,” and “college,” on the potential issues with
the HPV vaccine, such as “recall,” “lose support,” and “banned.”
Another such cluster contained terms relating to infertility
misconceptions of the HPV vaccine, such as “premature ovarian
failure” and “early menopause on young girls.” Another large
candidate effect cluster was about the misconceptions of severe
adverse events and complications, such as “sudden death,”
“paralysis,” and “stroke.” Note that it is possible that some
candidate effect phrases may not be directly related to health
effects. Thus, to alleviate this limitation in further analysis, we
limited the effects to the terms in the ground truth (ie, Ve = G).

Discussion

Principal Results
The performance of the CNN and BiLSTM models used in this
study showed the feasibility of discerning misinformation from
factual information regarding HPV vaccines using the text of
tweets. On average, both models predicted either class with
high confidence. Although both models performed almost
identically in terms of accuracy (and confidence) during testing,
the CNN trained much more expediently than did the BiLSTM
model, leading to its choice as the preferred model.

To examine the risk perceptions pertaining to HPV vaccines,
we leveraged the false information classifier and the effect
ranker. Figure 4 shows the cumulative NPMI scores after our
effect ranker querying for both “HPV Vaccine” and “Gardasil”
was applied. We could categorize these perceptions around the
costs and benefits of HPV vaccines. In general, people discussed
the benefits or low risk of harms in the true HPV vaccine tweets
and various adverse events in the false HPV vaccine tweets.
The main effects associated with the HPV vaccines in the true
HPV vaccine tweets were about the prevention of HPV
infection–related cancer and the denial of risk of increased
unprotected sexual behavior of the vaccinated teens. The main
effects associated with the HPV vaccines in the false HPV
vaccine tweets were regarding infertility-related conditions
(such as ovarian injury), child developmental disorder, death,
and toxic ingredients in the HPV vaccines. Following our
previous work on the patient-driven HPVVR, the findings from
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causality mining aided us in identifying the major concerns
related to HPV vaccines, whose solutions could then be
prioritized.

The results show that false HPV vaccine messages not only
span a wide variety of topics in risk perceptions but also involve
a more diverse vocabulary to describe these topics compared
to the fewer topics and relatively limited terminology found in
true messages. This phenomenon of medical-based term
frequency and topic diversity within false or misleading
messages has also been noted in similar work regarding anti-
and provaccine literature [84]. A possible explanation for this
discrepancy is that true information requires an evidentiary
consensus, thereby restricting terminology and outcomes to a
specific selection of topics or phrases used to describe these
topics. Misinformation lacks such restrictions to terms or
outcomes and tends to use narrative language or mention novel
topics to gauge attention [46,85].

We also observed differences in message framing in true and
false HPV vaccine messages through causality mining (see
Figure 4). True information contained both gain-framed and
loss-framed messages, especially those highlighting the
effectiveness of the vaccine at preventing HPV-related cancers,
the link between HPV infection and cancer, and negating the
potential harms of vaccines such as carefree or unprotected
sexual behavior (Figure 4). Conversely, false messages were
largely loss-framed, focusing on negative outcomes purportedly
caused by the vaccine, such as those causing HPV-related cancer
or other serious adverse events (infertility, neurological disorder,
or death; Figure 4). The use of the risk-indicating causative verb
(eg, vaccines “prevent” versus vaccines “harm” or “cause”, etc)
might be diagnostic for differentiating the true and false
information. Future studies should leverage previous findings
on the effectiveness of message framing to examine the impact
of misinformation with different framing [86,87].

Figure 4. The cumulative NMPI scores when querying for “HPV Vaccine” and “Gardasil”. The sections in the bar width correspond to the NPMI
contribution of effect terms for each category. HPV: human papillomavirus; NPMI: normalized pointwise mutual information.

Comparison With Prior Work
Health-related misinformation research spans a broad range of
disciplines [58,59], with several studies focusing on different
medical domains, such as cancer, sexually transmitted disease
and infections, influenza, and more recently, COVID-19
[25,60,61]. In vaccine-related domains, several papers have
examined vaccine behavior as well as geographic and
demographic patterns on the dissemination of antivaccine and
misinformation tweets in social media with respect to autism
spectrum disorder [60], influenza (flu) vaccines [88], and cancer
treatments [89]. Several research endeavors tackle key issues,
such as mitigating label scarcity with additional weak social
supervision signals, improving intractability with attention

mechanisms, and leveraging network and group or user
information [65,90-92]. In general, the distinction between
vaccine hesitancy identification and vaccination behavior
detection is that the former involves an attitude or stance, while
the latter is concerned with detecting the action of getting
vaccinated [93]. Our study is more similar to the research in
vaccine hesitancy but differs in that we focused on extracting
causality from tweets through examining risk perceptions;
attributable causes of HPV vaccine–related health concerns or
expected gain; and using natural language processing, machine
learning, and unsupervised causal mining techniques.

We observed that the convolutional models with multiple filter
sizes [70,94] worked better than did BiLSTM models for
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domains with short text, such as tweets. Intuitively, the CNN
architecture captures the most common n-grams (of lengths 3,
4, and 5) and therefore is better at discovering discriminative
text patterns in short text. Although we tested more sophisticated
BiLSTM architectures, overall, the CNN model performed better
than did the other model variations and was faster to train. These
findings can be useful for social media health–related analysis,
in particular with regards to the set of models that practitioners
in this domain should explore for social media text classification.

With respect to causality mining, early works use hand-coded,
domain-specific knowledge bases [95,96]. A challenge in
identifying causal relations is the variety of ways in which it
can be observed via various linguistic constructions. A previous
study [97] showed that a classifier can determine whether a
causal-verb expression, automatically extracted from predefined
linguistic patterns of the form <noun phrase–verb–noun phrase>
is a causal relationship or not. However, supervised methods
require large amounts of manually annotated causes and effects
and are thus resource demanding. Recent work has compared
unsupervised methods for causal relationship mining including
co-occurrence methods, such as point-wise mutual information,
and discourse cue-based methods, which are based on
information retrieval techniques, to count the number of matches
in a cause-effect query [98]. Such comparisons were performed
on large-scale document collections, and thus their insights are
not applicable to our tasks that, in contrast, have limited amounts
of data. Finally, event causality detection in tweets restricts the
causal relationship mining to certain events of interest. In “Event
causality detection in tweets by context word extension and
neural net” [72], the authors propose an approach to encode
both the candidate causal phrase and the candidate effect phrase
for developing a feed-forward network classifier. Our method
is not restricted to certain events. Most importantly, we focus
on health-related messages pertaining to HPV vaccines, an
approach which can be generalized to other health topics.

Limitations
One common bottleneck when applying supervised learning
methods is the requirement of large amounts of high-quality
annotated data for training. Due to the complex nature of the
task-at-hand, and the need for extensive manual effort, our data
set size might be restrictive in providing insights that can
generalize across other domains and data sources. Additionally,

due to frequent linguistic variations found in informal
user-generated language, closely worded instances might have
evaded deduplication. In the future, we hope to address the
shortage of available labeled data by incorporating weak
supervision methods and denoising mechanisms. Nevertheless,
we chose to continue with supervised learning for higher
precision, as weak supervision may result in label noise being
injected into the false information detection models and thus
affecting the subsequent causality mining steps.

Another limitation stems from the misalignment of model
confidence and accuracy. In other words, model confidence
might not be indicative of model correctness, a problem that is
well-known in the machine learning research community [99].
In our experiments, we observed that the BiLSTM model
produced high confidence estimates for most false negatives
(ie, it misplaced more confidence when predicting factual text),
while the CNN model had an equal number of false positives
and false negatives for high-confidence examples.
Approximately 20% of CNN’s incorrect predictions had low
confidence. Overall, the BiLSTM model seems to be
overconfident in one direction and could be potentially
calibrated better. Further analyses on these high-confidence
inaccurate predictions are required to discover interpretable
patterns that can identify misinformation subtopics and
statements that share strong similarities to factual counterparts.

Finally, we should note that any use of additional metadata
requires caution, especially for information that is added by the
user, such as user profile characteristics, as well as reported
timestamps and social network links, as recent studies show
that misinformation spreaders tend to manipulate not only social
network structure by forming groups to increase influence [100]
but also several types of metadata [101]. In this study, we did
not use these types of additional data sources, and thus we can
only interpret content-based results and not along any other
dimension other than the relationships found in the text.

Conclusions
The study has demonstrated a systematic, automatic approach
to developing computational models for identifying false HPV
vaccine–related information and its associated effects on social
media. This approach could be generalized to other social media
health information and provide insights into estimating the
potential effects of a given health topic.
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