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Abstract

Background: COVID-19 is caused by the SARS-CoV-2 virus and has strikingly heterogeneous clinical manifestations, with
most individuals contracting mild disease but a substantial minority experiencing fulminant cardiopulmonary symptoms or death.
The clinical covariates and the laboratory tests performed on a patient provide robust statistics to guide clinical treatment. Deep
learning approaches on a data set of this nature enable patient stratification and provide methods to guide clinical treatment.

Objective: Here, we report on the development and prospective validation of a state-of-the-art machine learning model to
provide mortality prediction shortly after confirmation of SARS-CoV-2 infection in the Mayo Clinic patient population.

Methods: We retrospectively constructed one of the largest reported and most geographically diverse laboratory information
system and electronic health record of COVID-19 data sets in the published literature, which included 11,807 patients residing
in 41 states of the United States of America and treated at medical sites across 5 states in 3 time zones. Traditional machine
learning models were evaluated independently as well as in a stacked learner approach by using AutoGluon, and various recurrent
neural network architectures were considered. The traditional machine learning models were implemented using the
AutoGluon-Tabular framework, whereas the recurrent neural networks utilized the TensorFlow Keras framework. We trained
these models to operate solely using routine laboratory measurements and clinical covariates available within 72 hours of a
patient’s first positive COVID-19 nucleic acid test result.

Results: The GRU-D recurrent neural network achieved peak cross-validation performance with 0.938 (SE 0.004) as the area
under the receiver operating characteristic (AUROC) curve. This model retained strong performance by reducing the follow-up
time to 12 hours (0.916 [SE 0.005] AUROC), and the leave-one-out feature importance analysis indicated that the most
independently valuable features were age, Charlson comorbidity index, minimum oxygen saturation, fibrinogen level, and serum
iron level. In the prospective testing cohort, this model provided an AUROC of 0.901 and a statistically significant difference in
survival (P<.001, hazard ratio for those predicted to survive, 95% CI 0.043-0.106).

Conclusions: Our deep learning approach using GRU-D provides an alert system to flag mortality for COVID-19–positive
patients by using clinical covariates and laboratory values within a 72-hour window after the first positive nucleic acid test result.
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Introduction

COVID-19 is caused by the SARS-CoV-2 virus and is suspected
to be of zoonotic origin, with spillover from bats or pangolins
into humans in Wuhan, China [1,2]. COVID-19 has become
one of the largest public health emergencies of the past century
with over 203 million confirmed cases and 4.3 million deaths
as of August 2021 according to the World Health Organization
[3]. The COVID-19 pandemic has overwhelmed global medical
supply chains, hospitals, and economies, which has led
governments to respond with varying policies, including mask
mandates and travel restrictions [4,5]. At times, hospitals and
health care workers have become so overburdened with patients
with COVID-19 that they have been forced to ration care, raising
logistical and ethical concerns [6].

The clinical course of COVID-19 is diverse with most
individuals experiencing mild or asymptomatic disease, but
many patients develop life-threatening diseases, including
features such as cytokine storms, thrombotic complications, or
severe acute respiratory syndrome requiring mechanical
ventilation or extracorporeal membrane oxygenation [7]. A
major medical challenge is therefore to reliably triage patients
according to their risk for severe disease. Age is consistently
observed to be a predominant risk factor for severe disease [7],
but deaths are not limited to older adults and the majority of
older patients survive COVID-19 [7]. Other comorbidities and
laboratory test values are expected to be capable of further
individualizing and enhancing mortality prediction. Recent
studies investigating statistical and machine learning (ML)
models for mortality prediction have confirmed that detailed
evaluation of medical records can facilitate further stratification
of patients [8-12].

A systematic review of 147 published or preprint prediction
models found consistent problems with inherent biases in the
data sets investigated or created in all such studies, ultimately
concluding that “we do not recommend any of these reported
prediction models for use in current practice” [12]. Clinical
practices differ in the nature of their observational electronic
health record (EHR) data set, patient population, clinical
practices, and electronic record or laboratory ordering practices.
Correspondingly, the literature review conducted at the outset
of this study indicated that the existing prediction models were
likely unsuited to our clinical setting without essentially starting
afresh by retraining, validating, and testing predictions.

We describe Mayo Clinic’s experience assembling, what is to
our knowledge, the largest reported COVID-19 database for
mortality prediction and using this database to create a system
for COVID-19 mortality prediction, tailored to a unique patient
population. Despite the biases inherent to it, because this large
and growing database represents a health care system spanning
5 states and 3 time zones over a study window greater than 11
months, our model is expected to be the least confounded and
the most generalized COVID-19 mortality predictor published

to date. We report the successful development and validation
of a state-of-the-art ML model to provide mortality prediction
shortly after confirmation of SARS-CoV-2 infection in this
Mayo Clinic patient population and discuss in detail the various
logistical and scientific challenges involved in the early
deployment of such a system in a rapidly changing pandemic
environment.

Methods

Study Design
This work required the development of a data set and the
subsequent modeling of the resultant cohort. After data
collection and cleaning, 2 broad classes of algorithms were
considered to model this data. The first approach ignores the
time series nature of the underlying data and applies traditional
ML classifiers. The second approach explicitly models the time
series data while dealing with the missing-not-at-random
(MNAR) values by using specialized recurrent neural networks
(RNNs). Both types of modeling methods were run
independently and compared using cross-validation, and a single
winning model was selected for prospective performance
validation.

EHR and Laboratory Information System
Observational Cohort Data Collection
This study adheres to a research protocol approved by the Mayo
Clinic Institutional Review Board. Data were retrospectively
collected after March 1, 2020 on COVID-19–positive
individuals presenting to a Mayo Clinic site or health system,
while excluding patients without research consent or from
European Union countries covered by the general data protection
regulation law. We restricted our focus to 11,807 patients with
a positive COVID-19 nucleic acid test result on or before
January 27, 2021 and at least one non-COVID test result.
Although the data collection system is deployed and ongoing,
the January cutoff was selected for this study to provide
sufficient cohort size while allowing a minimum of 3 weeks of
follow-up to accurately establish survival status. Mayo Clinic’s
EHR and laboratory information system (LIS) contain data from
each of its 3 campuses (Rochester, Minnesota; Jacksonville,
Florida; Scottsdale, Arizona) as well as the surrounding health
system sites spanning 5 states (MN, IA, WI, FL, and AZ).
Although the EHR contains clinically reportable laboratory
results, many of these can only be reported within defined
ranges, which can result in qualitative text values rather than
the raw numeric measurements. Because many ML algorithms
typically work better with quantitative rather than qualitative
results, we used the LIS to gather such laboratory testing
measurements and the EHR to gather the remaining variables.
The EHR data were queried from an underlying Db2 database
(IBM Corp), and the LIS data were queried from an SQL
database (Microsoft).
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Multivariate Time-Series Data With Missingness
The clinical covariates collected were age, sex, height, weight,
Charlson comorbidity score, temperature, blood pressure,
respiratory rate, oxygen saturation (SpO2) levels, and diagnoses
of chronic kidney disease or diabetes mellitus. Furthermore, we
included laboratory test values from a basic metabolic panel,
complete blood counts, and some less routine test results of
relevance to COVID-19, as determined by scientific literature
and physician collaborators. Table 1 details the features collated
into our database. In Multimedia Appendix 1, we provide a
detailed breakdown of these clinical covariates and laboratory
values in our cohort (Table S1 of Multimedia Appendix 1) as
well as the cohort’s geographic distribution (Figure S1 of
Multimedia Appendix 1). Differentiating between missing data
and absence of a condition is not possible from EHR diagnostic
codes, particularly for patients treated in an outpatient setting.
Therefore, we focused mainly on the Charlson comorbidity
index [13], which is populated in our EHR when there is a
recorded medical history during a “patient encounter” in the
EHR. Thus, this variable is available and can be assigned a
value corresponding to no comorbidities, which is distinct from
missingness in the case of no recorded medical history in the
EHR. However, owing to their emphasis within the literature,
we also included chronic kidney disease [9] and diabetes
mellitus [14] as independent comorbidity variables using their
ICD-10 (International Classification of Diseases) codes while

acknowledging that these variables conflate missingness with
lack of a condition.

Clinical covariates such as pre-existing conditions, height, and
weight were sampled infrequently, whereas heart rate and SpO2

were recorded every 15 minutes for inpatients in our EHR, and
other laboratory tests were intermediate in terms of frequency.
Therefore, to deal with these multiscale time series
measurements, we used the laboratory measurements as the
starting point to define our sampling time points. For the
variables of sex, age, weight, height, diabetes mellitus, chronic
kidney disease, and Charlson comorbidity index, we encoded
these variables to exist at the first time point only; in our top
performing RNN models, we observed no difference in
performance using this strategy when compared to repeating
the observations at each time point. For the frequently observed
variables of blood pressure systole, blood pressure diastole,
temperature, pulse, respiratory rate, and SpO2, we computed
the minimum and maximum measurements for each calendar
day and appended these to each laboratory time point during
those dates; if no laboratory time point existed on a given day,
we created a new one at noon using these minimum and
maximum values. We considered time points within ±72 hours
of each patient’s first positive polymerase chain reaction (PCR)
result and performed a sensitivity analysis on the length of the
patient follow-up after this positive test result.
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Table 1. Feature measurements collected.

Description (units or levels)Abbreviation

Sex (male or female)sex

Age at time of polymerase chain reaction–positive test result (years)age

Weight (kg)weight

Height (cm)height

SARS-CoV-2 nucleic acid test (+ or –)PCR

SARS-CoV-2 serology antibody test (+ or –)SERO

Basophil count test (109/L)BASAA

Eosinophil count test (109/L)EOSAA

Hematocrit test (%)HCT

Hemoglobin test (g/dL)HGB

Lymphocyte count test (109/L)LYMAA

Mean corpuscular volume test (fL)MCV

Monocyte count test (109/L)MONAA

Neutrophil count test (109/L)NEUAA

Platelet count test (109/L)PLTC

Red blood cell count test (1012/L)RBC

Red cell distribution width test (%)RDW

White blood cell count test (109/L)WBC

C-reactive protein test (mg/L)CRP

D-dimer test (ng/mL)D-DIMER

Ferritin test (mg/L)FERR

Interleukin-6 test (pg/mL)IL6

Troponin T test (ng/L)TRPS

Fibrinogen test (mg/dL)FIBTP

Lactate dehydrogenase test (U/L)LD

Serum iron test (mg/dL)IRON

Total iron binding capacity test (mg/dL)TIBC

Percent iron saturation test (%)SAT

Transferrin test (mg/dL)TRSFC

Blood urea nitrogen test (mg/dL)BUN

Chloride test (mmol/L)CHL

Glucose test (mg/dL)GLU

Calcium test (mg/dL)CALC

Creatinine test (mg/dL)CREA

Potassium test (mmol/L)POTA

Albumin test (g/dL)ALB

Bicarbonate test (mmol/L)BICA

Sodium test (mmol/L)SODI

Bilirubin test (mg/dL)BILI

Blood pressure systole (mm Hg)BPsystole
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Description (units or levels)Abbreviation

Blood pressure diastole (mm Hg)BPdiastole

Temperature (°C)Temp

Heart rate (1/min)Pulse

Respiratory rate (1/min)Resp

Oxygen saturation (%)SpO2

Charlson comorbidity index (10-year survival probability)Charlson

Chronic kidney disease (+ or –)CKD

Diabetes mellitus (+ or –)DM

Time-Flattened ML Models
Time series data were flattened/encoded to a fixed length list
of features by carry forward imputation (ie, selection of the
most recently observed covariate values), ensuring compatibility
with traditional ML models. Specifically, after the data are
flattened in this fashion, it forms a tabular prediction task
suitable for any canonical supervised classification algorithm.
The recently published [15] Python-based automated ML tool
AutoGluon-Tabular (v0.2.0) was utilized to enable standardized
and reproducible ensemble stacking of many model classes (eg,
deep neural networks, LightGBM boosted trees, CatBoost
boosted trees, Random Forests, Extremely Randomized Trees,
XGBoost, and k-Nearest Neighbors).

AutoGluon-Tabular models were fit to our tabular data frames
using the “AutoGluon.TabularPrediction.fit” function using all
the default parameters except eval_metric='roc_auc'. After
running the fit function, access to each individual model created
by AutoGluon was achieved by the “get_model_names” method
on the resulting prediction object. This then allowed us to pass
the specified model to the “predict_proba” method’s optional
“model” argument for each of the following model types:
KNeighborsUnif, KNeighborsDist, NeuralNetFastAI,
LightGBMLarge, NeuralNetMXNet, RandomForestGini,
ExtraTreesGini, RandomForestEntr, ExtraTreesEntr, LightGBM,
XGBoost, LightGBMXT, CatBoost, WeightedEnsemble_L2.
Hereon, we refer to WeightedEnsemble_L2 as the “AutoGluon”
model since this was the output of the “predict_proba” method
when no single model type was specified.

For relatively static features such as height, weight, or Charlson
comorbidity index, we would expect the time-flattened models
to be at no disadvantage, whereas the more frequently measured
data such as laboratory values or blood pressure will lose
information, particularly about trends in the covariates. For
instance, 2 individuals with a fever of 39°C recorded in the most
recent observation would be treated the same even if one had a
sustained high fever and the other had a brief downward trending
spike. Of course, there are many potential degrees of freedom
to capture more information in the flattened data; one could
define a fixed number of the most recent observations or fit a
line through the observations over time and pass the slope and
intercept as features to the classifier. However, ultimately, the
choice to flatten the time series is a choice of convenience and
one that attempts to leverage the extensive research efforts
devoted to tabular prediction, and therefore, we study here only

the last observation carried forward modeling, since proper
modeling efforts should account for the time series structure in
the EHR data. We next look at models of this form.

RNN Time Series Models
As the second approach, we implemented the modified gated
recurrent unit (GRU) binary classification models proposed by
Che et al [16] that are capable of accounting for the MNAR
patterns within EHR data, and we adopt their notation. For a
given patient, we have D = 54 variables and a given time series
of T time points can be represented as a T × D matrix X whose

rows xt ∈ D, t= 1, . . . , T represent the t-th observation with

D variables , d = 1, . . . , D. Accompanying each observation

xt is a time stamp st ∈ , which starts at time 0, s1 = 0 and a

binary masking vector mt ∈ {0, 1}D with taking value 1

when is observed and 0 otherwise. From these values, we
can compute the time intervals.

With these definitions, we can look at various modifications to
the standard GRU architecture whose j-th hidden unit has a reset

gate and update gate with hidden state at time t and
update the equations.

With matrices Wz, Wr, W, Uz, Ur,U and vectors bz, br, b
composed of model parameters, ⊙ is the Hadamard product,
and σ(·) is the elementwise sigmoid function. Before modifying
the architecture, there are 3 methods to use the GRU above to
handle missing data: in “GRU-Mean,” missing values are
imputed by their means in the training data; in “GRU-Forward,”
missing values are imputed by their last observed value; and in
“GRU-Simple,” we simply concatenate the xt, mt, and δt

variables into a single observation vector x ‘t and pass this
through the GRU equations above. The GRU-D method uses
trainable decay weights.
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With Wγ and bγ being trainable model parameters. The
observations are then replaced by the update.

where is the last observed value of the d-th variable and 
is the empirical mean of the d-th variable in the training data.
The modified GRU update equations for GRU-D become the
following.

where Vz, Vr, V are new model parameters to directly handle
the masking vector mt in the model.

Our implementation of the above equations in Python is a
slightly modified version of the code available on the GRU-D
paper’s [16] GitHub repository. For the core RNN algorithms,
we only edited the original GRU-D code, where required, to be
compatible with the more recent versions of tensorflow.keras

(version 2.1.0) and numpy (version 1.19.2) used in our
high-performance computing cluster environment. We selected
the specific RNN algorithm by setting the “--model“ argument
to be “GRUforward,” “GRU0,” “GRUsimple,” and “GRUD”
for GRU-forward, GRU-mean, GRU-simple, and GRU-D,
respectively. We utilized the default hyperparameters of the
algorithm; however, in our testing, we found that increasing the
batch size from 32 to 256 facilitated faster training of the
algorithms. Therefore, a batch size of 256 is the only nondefault
hyperparameter selection made in our implementation of the
RNN algorithms.

Temporal Cohort Split
As depicted in the CONSORT (Consolidated Standards of
Reporting Trials) diagram of Figure 1, patients who first tested
positive for COVID-19 from March 1, 2020 through December
15, 2020 (9435/11,807, 79.9%) were assigned to a model
selection cohort, whereas patients who first tested positive for
COVID-19 from December 16, 2020 through January 27, 2021
(2372/11,807, 20.1%) were used as a prospective testing cohort
for the final algorithm. All experiments in the model selection
cohort were performed using an identical 10-fold stratified
cross-validation using binary classification with the positive
class defined as death within 21 days of the first positive PCR
test result. Only the single best performing model was evaluated
on the prospective cohort after being fit against the entire model
selection cohort.

Figure 1. CONSORT (Consolidated Standards of Reporting Trials) diagram demonstrating the temporal split of our cohort for model selection and
prospective validation.

Results

Model Selection
In Figure 2 and Table 2, we compared the results of our various
models by using cross-validation area under the receiver
operator characteristic (AUROC) curve in the training cohort.
Although not in a statistically significant way, we recapitulated

the findings of Che et al [16], discovering that the GRU-D model
has the highest average cross-validation AUROC curve among
all other standard variants of GRU modeling in time series with
missing values. In addition, GRU-Simple has higher average
cross-validation AUROC curve than the GRU-Forward and
GRU-Mean, and the most notable difference underlying these
categories is the inclusion of missingness indicators as features
to GRU-Simple, which could indicate the value of MNAR
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patterns in the classification task. GRU-D’s biologically inspired
architecture attempts to make even more efficient use of this
information and exceeds the performance of all the tested RNN
methods. AutoGluon, which only had access to the last
measurement of each variable, showed strong performance
despite this limitation. In Table 2, each individual AutoGluon
model was also benchmarked (those with suffix “-AutoGluon”),
along with the final ensemble estimate (labeled simply as
“AutoGluon”). Although GRU-D ultimately outranked

AutoGluon, each method’s performance fell within the other’s
standard error intervals. AutoGluon’s automated hyperparameter
tuning and model stacking may indicate that GRU-D could
benefit from the addition of hyperparameter search. However,
this process may risk overfitting this cross-validation data set,
and thus, we selected GRU-D with the default settings rather
than attempting to further improve the cross-validation AUROC
curve via hyperparameter optimization.

Figure 2. Receiver operating characteristic curves for the 18 models evaluated. AUROC: area under the receiver operating characteristic.

J Med Internet Res 2021 | vol. 23 | iss. 9 | e30157 | p. 7https://www.jmir.org/2021/9/e30157
(page number not for citation purposes)

Sankaranarayanan et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Modeling results sorted by performance.

Area under the receiver operator characteristic curve (SE)Model

0.648 (0.011)KNeighborsUnif-AutoGluon

0.649 (0.011)KNeighborsDist-AutoGluon

0.858 (0.013)NeuralNetFastAI-AutoGluon

0.867 (0.014)LightGBMLarge-AutoGluon

0.907 (0.008)NeuralNetMXNet-AutoGluon

0.911 (0.007)RandomForestGini-AutoGluon

0.911 (0.009)ExtraTreesGini-AutoGluon

0.917 (0.008)RandomForestEntr-AutoGluon

0.918 (0.007)ExtraTreesEntr-AutoGluon

0.929 (0.007)LightGBM-AutoGluon

0.931 (0.006)XGBoost-AutoGluon

0.931 (0.005)LightGBMXT-AutoGluon

0.932 (0.005)GRU-Mean

0.933 (0.006)GRU-Forward

0.933 (0.005)CatBoost-AutoGluon

0.934 (0.005)AutoGluon

0.935 (0.004)GRU-Simple

0.938 (0.004)GRU-D

Length of Time Series
Clearly, we would expect availability of more time series data
to result in improved model performance. To determine if
predictions could be made utilizing data prior to 72 hours of a
patient’s first positive PCR test result, we assessed the
performance of GRU-D when we restricted the time series to

12, 24, 48, and 72 hours of follow-up after the first positive
PCR test result. The results in Table 3 demonstrate that although
we lose performance when predicting earlier in the patient’s
disease, we are still able to provide accurate predictions even
using data within the same day (12 hours of follow-up) that a
patient tests positive for COVID.

Table 3. GRU-D performance versus length of time series.

Area under the receiver operator characteristic curve (SE)Follow-up after positive finding for polymerase chain reaction

0.916 (0.005)12 h

0.919 (0.006)24 h

0.925 (0.005)48 h

0.938 (0.004)72 h

MNAR as an Asset and Feature Importance
To demonstrate the fact that MNAR data can improve model
predictions by GRU-D, we generated a synthetic data set with
laboratory test values replaced by Bernoulli coin flips.
Therefore, the only valuable information contained within this
data set’s laboratory values is the missing data patterns that can
be viewed as encoding clinical suspicion or concern. For
instance, the D-dimer laboratory value is ordered less frequently
than other tests, and therefore, its presence alone can be
informative of clinical concern for thrombotic events. Our results
found that randomizing the laboratory values resulted in an
AUROC curve of 0.904 (0.006), which indicates that the
laboratory values in aggregate contributed 0.034 to the AUROC
score (since this is the drop in performance compared to the
model with actual laboratory values). We ran a further

experiment omitting the laboratory values entirely, which
produced a lower AUROC of 0.890 (0.006). Therefore, the
missing patterns alone contributed 0.014 to the AUROC. To
contextualize this finding, we dropped each feature individually
from the model, assessed the decrease in the AUROC score,
and summarized the top 10 features in the decreasing order of
the difference in the AUROC score (Figure 3). We note here
that the drop due to missing patterns exceeds the drop due to
removing any single variable from the analysis, making the
MNAR pattern one of the most valuable pieces of information
available to GRU-D. In Multimedia Appendix 1, we show a
detailed error analysis of our model using these top 10 features.
The fact that age and Charlson comorbidity index are the most
significant contributors to mortality prediction is consistent with
the well-known risk factors for COVID mortality. The findings
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of the fibrinogen test, serum iron test, and ferritin test were the
3 most important laboratory values in our models. The presence
of chronic kidney disease, weight, serology test, and SpO2 were
the clinical covariates that also ranked in the top 10 variables
by importance. Interestingly, height had low importance,

indicating that BMI may not be as effective as weight itself in
mortality prediction. However, a limitation of this
drop-one-feature variable importance is that a low-ranking
feature such as height cannot be said to be irrelevant, just that
any information it carries is redundant within other features.

Figure 3. Feature importance in the GRU-D recurrent neural network model as defined by the average drop in the area under the receiver operator
characteristic curve (with 95% CI) when each feature is individually removed from the analysis. The top 5 features are seen to be age, Charlson
comorbidity index, minimum oxygen saturation, fibrinogen levels, and serum iron levels. AUROC: area under the receiver operator characteristic.

Prospective Validation and Survival Analysis
To demonstrate the efficacy of our proposed mortality
prediction, we performed a Kaplan-Meier analysis using the
survival R library [17]. Specifically, we chose a decision
boundary on the GRU-D model’s ROC curve, which provided
a specific delineation of high-risk and low-risk groups of
patients. In our cross-validation cohort, binary classification
provides accuracy of 89% (95% CI 88%-90%), recall of 80%
(95% CI 74%-85%), precision of 17% (95% CI 15%-19%), and
a negative predictive value of 99% (95% CI 99%-100%).
Furthermore, although the precision is somewhat low with
numerous false positives, we see among the survivors over twice
the rate of mechanical ventilation or extracorporeal membrane
oxygenation when they are predicted to die by GRU-D (Fisher
exact test P<.001, odds ratio 2.1, 95% CI 1.8-2.5). We validated
this performance in our prospective testing cohort, finding an
AUROC of 0.901, accuracy of 78% (95% CI 76%-79%), recall

of 85% (95% CI 77%-91%), precision of 14% (95% CI
12%-17%), and a negative predictive value of 99% (95% CI
99%-100%).

Our Kaplan-Meier analysis results in Figure 4 demonstrate the
statistically significant stratification provided by our ML model
in both the cross-validation and prospective testing experiments.
Building a Cox Proportional Hazards model for our prediction
in the cross-validation cohort provides a statistically significant
difference in survival between the 2 groups (P<.001 for the
likelihood ratio, logrank, and Wald tests), with a prediction of
survival having a substantially improved hazard ratio of 0.053
(95% CI 0.043-0.066). We validated this finding in the
prospective testing cohort with a statistically significant
difference in survival between the 2 groups (P<.001 for the
likelihood ratio, logrank, and Wald tests), with a prediction of
survival having a substantially improved hazard ratio of 0.067
(95% CI 0.043-0.106).
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Figure 4. Kaplan-Meier survival curves for the GRU-D stratified populations in the cross-validation cohort (main figure) and the prospective test cohort
(inset), where teal is the prediction of low risk of death and red is the prediction of high risk. Both figures have 95% CIs visualized for the teal and red
curves, although the teal confidence bands are tight due to our large sample sizes.

Discussion

Study Overview
In this study, we collected and processed over 50 laboratory
and clinical covariates in a population of nearly 12,000 Mayo
Clinic patients who tested positive for SARS-CoV-2 by PCR.
In this large and geographically diverse data set, we found that
the GRU-D RNN could provide state-of-the-art mortality
prediction. This performance remained strong even in a held-out
test set that mimics how a deployed system would be trained
retrospectively and then prospectively utilized in a clinically
evolving pandemic setting.

Principal Results
Our cross-validation experiments summarized in Table 2
indicated that the top performing model to predict mortality in
our cohort was the GRU-D RNN. We thus selected the GRU-D
method to predict the mortality of patients with COVID-19 and
prospectively found an AUROC of 0.901, accuracy of 78%
(95% CI 76%-79%), recall of 85% (95% CI 77%-91%),
precision of 14% (95% CI 12%-17%), negative predictive value
of 99% (95% CI 99%-100%), and a statistically significant
difference in survival (P<.001, hazard ratio for those predicted
to survive, 95% CI 0.043-0.106). As can be expected in
prospective validation, we observed a modest drop in AUROC
although most of the performance characteristics were close to
their original cross-validation estimates, that is, the negative
predictive value was largely unchanged, while precision and
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accuracy showed minor decreases with the recall showing
modest improvements.

We chose a prospective/retrospective split in time since this is
the most realistic way to assess the potential performance of a
system if launched clinically, because it would be trained on
data up until its go-live date and then run prospectively in a
potentially evolving pandemic environment. Notably, the cutoff
date for the 80/20 split creating the prospective test set was
December 15, 2020, which is the day after the first COVID
vaccine received the United States Food and Drug
Administration approval, meaning that our prospective cohort
represented a distinctly different clinical environment compared
to the period in which the model was trained. The relatively
minor loss of performance in prospective validation shows the
robustness of the modeling herein, but the observed loss of
performance also demonstrates the need for continued
retraining/validation of such a model during a constantly
evolving pandemic.

Limitations
The application and deployment of ML methods in clinical
practice require concerted care and diligence. One may be
inclined to interpret the high negative predictive value of our
prediction algorithm as an indication that the best use of the
algorithm in practice is as a screening mechanism to discharge
patients who are not at risk in order to conserve resources for
higher-risk individuals. However, such a conclusion illustrates
a pitfall of using a correlative prediction algorithm to make
causal conclusions. The algorithm is highly confident that under
the current standards of care at Mayo Clinic, these individuals
are not likely to succumb to their illness; this is quite distinct
from asserting that it is safe to reduce the care for these patients.
Arriving at this latter conclusion would likely require a
randomized controlled trial, and given the much lower survival
rate published in the New York City data set [11] where medical
systems were overcapacity, it seems unlikely that reducing care
from those who survived in our cohort would have been a safe
measure. Because the Mayo Clinic health systems have not been
overcapacity, our mortality predictions should be viewed as
representing patient stratification when full clinical support is
available.

Therefore, we conclude that the algorithm is better deployed as
an alert system that flags only those patients it deems as high
risk to provide the treating physician with an additional data
point that aims to summarize the many covariates and the
laboratory values routinely available. In this context, the
algorithm has had abundant experience in the provider’s system,
effectively “seeing” all patients with COVID-19 that have
attended Mayo Clinic and conveying these lessons to physicians
who could not have gained such experience personally.

A web interface to this model may allow for widespread usage
but given the complexity and error-prone nature of users
providing the high dimensional time-series measurements with
correct units, the system is better suited for integration within
the EHR/LIS infrastructure. We are now exploring the details
of deployment of such a GRU-D alert system, which involves
discussions with physicians to assess numerous implementation
details, for example, deciding whether the alerts would be

passive EHR/chart-based flags or a direct page to the frontline
clinical provider. Passive chart alerts are less intrusive to
existing workflows (ie, a direct page interrupts a physician while
tending to other patients) but also provide less-immediate
feedback. Additionally, active alerts could also be sent to a
triage group to consider if evaluation is needed (for example,
from the registered respiratory therapist) rather than interrupting
bedside clinicians. Furthermore, for either type of alert, there
is the question of prescribing a bedside assessment or leaving
it to provider discretion, which is again a matter of balancing
disruption of the workflow with the likelihood of missing a
critical event. There will not be a universally appropriate
implementation for all hospital systems owing to staffing and
procedural differences. However, since our algorithm predicts
overall COVID-19 mortality and is not tailored to flag imminent
events such as cardiopulmonary arrest, it may be appropriate
to consider less intrusive chart alerts without prescribed bedside
follow-ups.

We have also seen nuances in the challenges and opportunities
presented by MNAR data. In the context of traditional statistical
inference and imputation, MNAR data is a worst-case scenario
so challenging that many practical applications effectively ignore
the reality and proceed with algorithms designed for the missing
completely at random or missing at random settings. A diligent
statistician making this decision may perform a sensitivity
analysis under a very limited set of assumed MNAR mechanisms
to provide some assurances regarding the robustness of the
chosen imputation or analytical strategy [18]. However, here
we have demonstrated that classification problems can be quite
distinct in this regard. Specifically, if the missing data
mechanism is tightly coupled to the ultimate prediction task, it
is entirely possible for MNAR data to be an asset rather than
an impediment. One can construct a context where the class
label is so tightly linked to the missing data mechanism that the
patterns of missingness provide more discriminative power than
the underlying values themselves (see Multimedia Appendix
2) [19]. In LIS systems, the number of potential laboratory tests
that could be ordered at any time is astronomical, and it is
unlikely that a practicing physician will ever order a “complete
observation” of every test available on a single patient at every
point in time. Instead, tests are ordered based on reasonable
clinical suspicion that a test might return an abnormal result.
From a prognostication point of view, this clinical suspicion is
an enormously valuable piece of information that will almost
never be captured in a structured data field in the EHR. If an
algorithm cannot build off of this clinical suspicion as a starting
point, it is also likely that its conclusions may appear to be a
“step behind” the ordering clinician. Instead, an algorithm
should learn what it can from the MNAR data patterns (here
partly encoding clinical suspicion) in addition to the final value
returned by the laboratory test.

We also note some of the real-world challenges that are faced
when attempting to deploy such an alert system into clinical
practice. First, in the retrospective experimental design followed
here and by other papers in the literature, the time series data
are constructed using the time of sample collection since this
is the most biologically accurate way to represent the data and
build predictive models. However, in practice, if there can be
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delays in the turnaround for certain tests, this will either result
in delayed predictions (so that the deployed testing data match
its retrospective training counterpart) or result in biased
predictions when delayed laboratory test results are treated as
missing. Therefore, although 72 hours is early in the course of
illness, it is crucial that we have demonstrated reasonable
performance even when only considering data collected on the
same day as the first positive PCR result, because a real-world
delay of 48 hours on certain laboratory test values may occur
during a global pandemic, and thus, it is critical that the system
can still provide accurate and timely predictions even when
laboratory test results are delayed. Additionally, with vaccines
now being delivered, the models presented herein should be
considered as mortality predictions for an unvaccinated
individual, and in practice, a vaccinated individual will be
expected to be at low risk for mortality based on the clinical
trials data.

Another challenge in dealing with LIS data comes from
nonstandardization of test coding prior to reporting to the EHR.
In a multisite system, the same laboratory test may have multiple
test codes to account for the different ordering facilities or
variability in local billing regulations. This creates the potential
for discrepancies in the values stored within the underlying
database such as differing units of measure. Substantial effort
is therefore devoted to linking the LIS results to the EHR to
ensure consistency across test codes and complete coverage of
results in the EHR. The COVID-19 pandemic has created added
complexity due to the rapidly evolving and continuously
updating availability of COVID-19 nucleic acid and antibody
tests. Therefore, effective data collection and deployment of
ML methodologies necessitates extensive team-based laboratory
and medical expertise to ensure that data aggregation and
modeling efforts can be rapidly modified to suit the changing
nature of the underlying data set. Scalability also presents
practical challenges. This is illustrated by a scenario in which
internal workflows began to fail due to limitations in the number
of query results being returned by Tableau, necessitating that
SQL queries take place on a high-performance computing cluster
using a Python/Pandas toolchain. Although these logistical
challenges may be of limited academic interest, they are
important to document, as such barriers have been a greater
impediment to rapid real world deployment than more traditional
topics in the ML literature such as the identification of
appropriate classification algorithms.

Comparison With Prior Work
For context, in Table 4, we summarize some of the largest
published COVID-19 mortality studies and specifically, the
cohorts analyzed and the most relevant features identified. When
smaller cohorts see insufficient numbers of deaths for direct
mortality prediction, studies tend to focus on the prediction of
severe outcomes. For instance, in a cohort of 123 patients with
COVID-19 in Vulcan Hill Hospital, China, in the study of Pan
et al [20], the mortality classifier based on XGBoost yielded an
AUC of 0.86-0.92. Likewise, in a cohort of 372 Chinese cases
(99.7% cohort survival rate), Gong et al [9] found that the
following variables provided an AUROC of 0.85. Similarly, in
a study of 375 patients with COVID-19 conducted by Ko et al
[21], the mortality prediction model based on XGBoost had
92% accuracy. In a study of 398 COVID-19–positive patients
by Abdulaal et al [22], 86% accuracy was achieved (95% CI
75%-93%). In a large study of 2160 cases over 54 days from 3
hospitals in Wuhan, China with sufficient cases to assess
mortality (88% cohort survival rate), Gao et al [8] reported
0.92-0.98 as the AUROC using an ensemble classifier.
Furthermore, Vaid et al [11] used 4098 inpatient cases over 68
days in New York City (83% cohort survival rate) to achieve
an AUROC of 0.84-0.88 in mortality prediction. Kim et al [23]
studied 4787 patients and their XGBoost-based classifier
demonstrated an AUC of 0.88-0.89 (95% CI 0.85-0.91) in
predicting the need for intensive care, which is distinct from
mortality prediction. Bolourani et al [24] studied 11,525 patients
to achieve an AUROC of 0.77 in predicting respiratory failure
within 48 hours of admission, which is also distinct from
mortality prediction, based on data from the emergency
department by using an XGBoost model.

The dramatically different cohort mortality rates and the
associated predictive accuracies may be in part due to the
differing straining of the local health care systems at the time
of study (both Wuhan and New York City experienced waves
of patients that at different times overwhelmed the health care
infrastructure), and the relatively geographically narrow nature
of each of these data sets underscores why it is unlikely that
these mortality predictions would extend directly to our patient
population in a health care system spanning 3 time zones and
multiple locales unrepresented in the literature.
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Table 4. Summary of the related studies.

Feature importanceArea under the re-
ceiver operating
characteristic curve

PredictionCohort

survival

Model/algorithmPatients (n)Study

Lymphocyte percentage, prothrombin
time, lactate dehydrogenase, total biliru-
bin, eosinophil percentage, creatinine,
neutrophil percentage, and albumin level

0.86-0.92Mortality52.8%XGBoost123Pan et al [20]

Higher lactate dehydrogenase, C-reactive
protein, red blood cell distribution width,
direct bilirubin, blood urea nitrogen, and
lower

albumin

0.85 (95% CI 0.790-
0.916)

Severity99.7%Nomogram372Gong et al [9]

Not assessed—,a accuracy of
92%

Mortality98.1%XGBoost375Ko et al [21]

Altered mentation, dyspnea, age, collapse,
gender, and cough

—, accuracy of 86%
(95% CI 75%-93%)

Mortality—Artificial neural

network

398Abdulaal et al
[22]

Advanced age, presence of hypertension,
and being male

—Severity100%Custom risk score

calculation

487Shi et al [10]

Consciousness, chronic kidney disease,
lymphocyte counts, sex, sputum, blood
urea nitrogen, respiratory rate, oxygen
saturation, D-dimer, number of comorbidi-
ties, albumin, age, fever, and platelet count

0.92-0.98Mortality88%Ensemble model based
on logistic regression,
gradient-boosted deci-
sion tree, neural net-
work, and support

vector machine

2160Gao et al [8]

Age, anion gap, C-reactive protein, lactate
dehydrogenase, oxygen saturation, blood
urea nitrogen, ferritin, red cell distribution
width, and

diastolic blood pressure.

0.84-0.88Mortality83%XGBoost4098Vaid et al [11]

Activities of daily living, age, dyspnea,
body temperature, sex, and

underlying comorbidities

0.88-0.89Need for

intensive
care

—XGBoost4787Kim et al [23]

Invasive mode of oxygen delivery being
a nonrebreather mask, emergency severity
index values of 1 and 3, maximum respira-
tory rate, maximum, oxygen saturation,
Black race, age on admission, eosinophil
percentage, serum sodium level, and
serum lactate level.

0.77Predicting

respiratory
failure

—XGBoost11,525Bolourani et al
[24]

Figure 2, top 5: age, Charlson comorbidity
index, minimum oxygen saturation, fibrino-
gen level, and serum iron level

0.938 cross-valida-
tion; 0.901 prospec-
tively

Mortality95.4%GRU-D11,807This study

aNot available.

As indicated in Table 4, this study represents the largest cohort
collected for mortality prediction in COVID-19, and the GRU-D
algorithm shows state-of-the-art performance. Notably, many
papers selected models based on XGBoost, which also showed
strong cross-validation performance in our data. However, Table
2 demonstrates that XGBoost was not even in the top 5
algorithms that we assessed. Additionally, in agreement with
Gao et al [8], we find that ensemble algorithms such as
AutoGluon can provide stronger performance, although as noted

previously, the GRU-D algorithm ended up ranked most highly
in our cross-validation experiments.

Conclusions
We have aggregated and analyzed one of the largest multistate
COVID-19 EHR databases for mortality prediction. Using this
database, we have trained and prospectively validated a highly
effective ML algorithm using the GRU-D neural network
architecture to predict the mortality of patients with COVID-19
shortly after their first positive PCR test result.
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