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Abstract

Background: Digital clinical measures collected via various digital sensing technologies such as smartphones, smartwatches,
wearables, ingestibles, and implantables are increasingly used by individuals and clinicians to capture health outcomes or behavioral
and physiological characteristics of individuals. Although academia is taking an active role in evaluating digital sensing products,
academic contributions to advancing the safe, effective, ethical, and equitable use of digital clinical measures are poorly
characterized.

Objective: We performed a systematic review to characterize the nature of academic research on digital clinical measures and
to compare and contrast the types of sensors used and the sources of funding support for specific subareas of this research.

Methods: We conducted a PubMed search using a range of search terms to retrieve peer-reviewed articles reporting US-led
academic research on digital clinical measures between January 2019 and February 2021. We screened each publication against
specific inclusion and exclusion criteria. We then identified and categorized research studies based on the types of academic
research, sensors used, and funding sources. Finally, we compared and contrasted the funding support for these specific subareas
of research and sensor types.

Results: The search retrieved 4240 articles of interest. Following the screening, 295 articles remained for data extraction and
categorization. The top five research subareas included operations research (research analysis; n=225, 76%), analytical validation
(n=173, 59%), usability and utility (data visualization; n=123, 42%), verification (n=93, 32%), and clinical validation (n=83,
28%). The three most underrepresented areas of research into digital clinical measures were ethics (n=0, 0%), security (n=1,
0.5%), and data rights and governance (n=1, 0.5%). Movement and activity trackers were the most commonly studied sensor
type, and physiological (mechanical) sensors were the least frequently studied. We found that government agencies are providing
the most funding for research on digital clinical measures (n=192, 65%), followed by independent foundations (n=109, 37%) and
industries (n=56, 19%), with the remaining 12% (n=36) of these studies completely unfunded.

Conclusions: Specific subareas of academic research related to digital clinical measures are not keeping pace with the rapid
expansion and adoption of digital sensing products. An integrated and coordinated effort is required across academia, academic
partners, and academic funders to establish the field of digital clinical measures as an evidence-based field worthy of our trust.

J Med Internet Res 2021 | vol. 23 | iss. 9 | e29875 | p. 1https://www.jmir.org/2021/9/e29875
(page number not for citation purposes)

Shandhi et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:jessilyn.dunn@duke.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


(J Med Internet Res 2021;23(9):e29875) doi: 10.2196/29875

KEYWORDS

digital clinical measures; academic research; funding; biosensor; digital measures; digital health; health outcomes

Introduction

Digital clinical measures are health outcomes or physiological
characteristics of an individual’s health, wellness, or condition
that are collected digitally with a sensor [1]. Digital sensing
products enable rapid assessment of health outcomes and support
remote and longitudinal monitoring of patients with chronic
diseases under daily living conditions [2-5]. During the
COVID-19 pandemic, the utility of digital sensor technologies
in clinical research [6], clinical care [7], and public health [8,9]
have become even more apparent.

In recent years, digital clinical measures have drawn substantial
interest from industry, government agencies, academia, and
nonprofit institutions, as digital sensing tools, including
consumer products and medical devices, are becoming
increasingly popular. Consumer products such as smartwatches
and smartphones have become part of daily life for many
Americans. These have emerged as popular and multipurpose
real-time physiological monitoring products capable of
measuring sleep and stress in addition to the more traditional
actigraphy and heart rate monitoring. In 2020, 26% of
Americans owned a smartwatch [10] and 72% of Americans
owned a smartphone [11], with annual sales of over US $70
billion [12]. Apart from consumer products, digital sensing
products have demonstrated their efficacy as medical devices,
both in clinical and remote home monitoring settings to
continuously assess vital signs [13], pulmonary congestion in
patients with heart failure [14,15], blood and interstitial glucose
in patients with diabetes [3], and more.

To support the development and assessment of digital consumer
products and medical devices, the volume of academic research
has increased across the total product life cycle of digital clinical
measures [16]. However, academic contributions to advancing
the safe, effective, ethical, and equitable use of digital clinical
measures are poorly characterized and, we hypothesize,

underfunded. Trust in digital clinical measures is limited, and
engaging the academic community is essential to ensure that
the field evolves to be worthy of public trust.

For these reasons, a multi-stakeholder group of experts
collaborating on The Playbook [1], a precompetitive
collaborative of experts in digital health convened by the Digital
Medicine Society (DiMe), set out to investigate the nature of
academic research related to digital clinical measures. DiMe is
a nonprofit professional society dedicated to advancing digital
medicine to optimize health [17]. In this systematic review, we
explore the representation of subtypes of academic research on
digital clinical measures and compare and contrast the funding
support for these subareas of research. This systematic review
aims to describe the nature of academic research into digital
clinical measures, identify areas of focus and gaps, and explore
how and whether funding plays a role. With these findings, we
hope to establish an integrated and coordinated effort across
academia, academic partners, and academic funders to ensure
that the expertise within the field is harnessed to ensure that the
rapidly expanding domain of digital clinical measures is
established as an evidence-based field worthy of our trust.

Methods

Screening
We conducted a systematic search of peer-reviewed literature
indexed in PubMed and published between January 1, 2019,
and February 24, 2021. For the purposes of this review, we did
not restrict the scope of our search to any single digital clinical
measure or area of academic research. A multi-stakeholder team
of clinical, academic, technical, and operational experts
developed the search terms (Multimedia Appendix 1), inclusion
criteria (Textbox 1), and selection of data to be extracted from
the final publications (Table 1). A biomedical librarian supported
the development of the search terms.

Textbox 1. Inclusion criteria adopted to enable the identification of clearly defined academic research related to digital clinical measures.

Research lead

US-led research (ie, ≥50% US-based authors)

Academic research

Academic research with at least one US-based academic researcher (industry-only research articles were excluded)

Article types

Peer-reviewed journals and full-length conference articles (systematic reviews, meta-analyses, editorials, opinion pieces, case reports, and case studies
were excluded)

Sensing modality

All portable biometric monitoring technologies (BioMeTs) that rely upon a biometric sensor, such as microphones and accelerometers [16]. BioMeTs
are connected digital medicine products that process data captured by mobile sensors using algorithms to generate measures of behavioral or physiological
function. (Note: smartphone apps are excluded if they do not rely upon a biometric sensor.)

Publication date

Papers published between January 1, 2019, and February 24, 2021
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Table 1. Data fields extracted from identified academic research.

Allowed valuesDefinitionField

Free textN/AaTitle

Free textLast name, first nameAuthors

Free textN/AAuthor affiliation

Free textNameJournal

2019, 2020, 2021N/AYear

Free textDigital object identifier: a unique alphanumeric string used to
identify content and provide a persistent link to the manuscript’s
online location.

DOI

Verification, analytical validation, measure identification,
clinical validation, security, ethics, data rights and gover-
nance, usability and utility (human factors/behavioral eco-
nomics), standards, usability and utility (data visualization),
economic feasibility, operations (care), operations (research
design), operations (research analysis), and operations (data)

Academic research measured here by the publication of peer-re-
viewed journals and full-length conference articles by study teams
that include researchers from either a university or academic in-
stitute and society or nonprofit foundation.

Nature of academic
research

Biochemical, movement and activity, physiological (electri-
cal, mechanical, optics and imaging)

Health outcomes or physiological characteristics of an individu-
al’s health, wellness, or condition that are collected digitally with
a sensor [1]

Digital clinical mea-
sure

Government, industry, independent foundation, and unfundedFunding informationFunding sources

aN/A: not applicable.

Following the PubMed search, we conducted a multistep review
process to screen articles for inclusion following the PRISMA
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines [18]. First, we used natural language
processing (ie, a custom built Python script; provided in
Multimedia Appendix 2 and available on the digital biomarker
discovery pipeline [19]) to select papers based on the “Research
Lead” and “Academic Research” criteria (Textbox 1). We also
excluded articles with “Review” in the title in this step. Second,
two of our three trained analysts (authors MMHS, KR, and AB)
independently reviewed each publication title against the
inclusion criteria. Third, each remaining abstract was reviewed
by two of the three analysts (MMHS, KR, and AB) to determine
whether the article met our inclusion criteria (Textbox 1). When
there was disagreement between two reviewers during either
the title or abstract review phase, the decision whether to
advance a publication was resolved by the third analyst. Finally,
two of three analysts (MMHS, KR, and AB) reviewed the full
text of each of the publications that passed the abstract screening
stage, with the involvement of a third analyst to settle interrater
disagreements (approximately 15% of papers reviewed), to
establish the final list of publications for inclusion. The list of
articles excluded from the full-text screening process is given
in Multimedia Appendix 3.

Data Extraction and Categorization
Following the screening phase, seven analysts (authors MMHS,
KR, AB, AVK, AF, YJ, and WKW) extracted data from the
articles included in the data extraction phase and categorized
each publication as described in Table 1. The articles were
categorized according to the following three criteria: nature of
academic research, category of digital clinical measures, and
source of funding.

The categories to subgroup the “nature of academic research”
included verification, analytical validation, measure
identification, clinical validation, security, ethics, data rights
and governance, usability and utility (human factors and
behavioral economics), standards, usability and utility (data
visualization), economic feasibility, operations (care), operations
(research design), operations (research analysis), and operations
(data).

The categories to subgroup “digital clinical measures” included
biochemical, movement and activity, and physiological
(electrical, mechanical, and optics and imaging).

“Funding sources” were subgrouped by government, industry,
independent foundation, and unfunded. Articles with missing
funding information were categorized as unfunded. The details
of these categories are given in Table 2.
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Table 2. Categories for data extraction.

ReferenceDefinitionsCategory

Nature of academic research

[16]Evaluates and demonstrates the performance of a sensor technology within a BioMeTa, and the sample-
level data it generates, against a prespecified set of criteria

Verification

[16]Evaluates the performance of the algorithm, and the ability of this component of the BioMeT to measure,
detect, or predict physiological or behavioral metrics

Analytical validation

[16]Evaluates whether a BioMeT acceptably identifies, measures, or predicts a meaningful clinical, biolog-
ical, physical, functional state, or experience in the stated context of use (which includes a specified
population)

Clinical validation

[20]Research studies to identify key variables from the information extracted from digital sensors, to support
decision-making

Measure identification

[21]Research studies to assess the risks associated with digital clinical measures and taking necessary
measures for information security

Security

[22]Research studies to assess the data access, privacy, and sharing (following the FAIRb guiding principle)Data rights and governance

[23]Research studies to ensure equity and justice during every step of the development and deployment of
digital clinical measures (eg, reduce health disparities or racial injustice)

Ethics

[24]Research studies to investigate human factors associated with digital clinical measures (eg, how usable,
useful, or unobtrusive a digital clinical measure can be for an end user). It involves surveys from the
participants on user experience.

Usability and utility (human
factors/behavioral eco-
nomics)

[25]Involves standardization of the data extracted from digital clinical measures for interoperabilityStandards

[24]Involves data visualization/result presentation for all end usesUsability and utility (data
visualization)

[26]Research studies to investigate economic feasibility of a digital clinical measureEconomic feasibility

[27]Involves clinicians and economists to design clinical workflow and corresponding evaluation that is
typically done for a clinical trial

Operations (care)

[28]Involves clinicians and biostatisticians to design a research study and execution plan, which is typically
done for a clinical trial via power analysis and statistical analysis plan

Operations (research design)

[29]Involves analyzing data from digital clinical measures (eg, data analyst or data scientists)Operations (research analy-
sis)

[30]Involves monitoring data and metadata from digital clinical measures (eg, bioinformatics)Operations (data)

Digital clinical measures

[31]Senses biochemicals (eg, sweat sensor or continuous glucose monitors)Biochemical

[31]Tracks movement and activity (eg, step count or actigraph)Movement and activity

[32-34]Senses electrical signals related to physiological phenomena (eg, electrocardiography, electroencephalog-
raphy, electromyography, bioimpedance, electrodermal activity, or electroooculography)

Physiological (electrical)

[35,36]Senses mechanical signals related to physiological phenomena (eg, phonocardiography, speech, lung
sounds, joint acoustic emission, seismocardiography, or ballistocardiography)

Physiological (mechanical)

[37]Senses optical signals related to physiological phenomena (eg, photoplethysmography, camera for
blood volume pulse, or bioradar)

Physiological (optics and
imaging)

Funding sources

[38]US Government funding agenciesGovernment

[38]Pharma, tech, and medical device industryIndustry

[38]Universities, private nonprofits, societies, and independent associationsIndependent foundation

Investigator initiated with no funding sources explicitly statedUnfunded

aBioMeT: biometric monitoring technology.
bFAIR: Findable, Accessible, Interoperable, and Reusable.

For the data extraction process, each publication was reviewed
by at least three of the seven analysts (MMHS, KR, AB, AVK,
AF, WKW, and YJ). Each publication was assigned to one or

more categories of a particular criterion as a result of two or
more votes for a particular category for each publication. This
method of subgrouping was used to reduce the impact of
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individual analyst subjectivity at this stage. Following the initial
categorization, articles falling into the government funding
subgroup were further categorized by US government agency
(ie, National Institutes of Health [NIH], National Science
Foundation [NSF], Department of Defense [DOD], Veteran
Affairs [VA], National Aeronautics and Space Administration
[NASA], Department of Energy [DOE], and “Other”). The
“Other” category constitutes government funding sources that
were listed for just one article in our pool. Articles with NIH
funding were further subgrouped by NIH institutes and centers
[39]. Data was standardized after extraction by the five analysts
(MMHS, KR, AVK, AF, and AB), and the details of this process
are presented in Multimedia Appendix 4.

Following the data extraction process, we performed Pearson
chi-square tests with one categorical variable to determine
whether the representation of academic research studies varies
significantly within the following categories: academic research,
digital sensors, and funding sources. We assumed equal
representation for all categories as the null hypothesis. In this
work, we considered P values less than .05 to be statistically
significant. The statistical tests and data visualization were

performed using Python 3.8.5 (Python Software Foundation)
on the Spyder-integrated development environment 4.1.5.

Results

Screening
Our initial search on PubMed retrieved 4240 articles (Figure
1). With our custom built Python script, we excluded 843 articles
from this initial list based on research lead, publication year,
and publication type. Of the 3397 identified articles for
subsequent screening, we excluded over 75% (n=2736) after
title screening and a further 30% (n=196) after abstract
screening, based on our inclusion criteria. The majority of the
excluded articles were not related to biosensing, were review
articles, or explored nonhealth applications. Following the
abstract screening, a total of 465 articles were included in the
full-text review, during which we further excluded 170 (37%)
articles on the basis of our inclusion criteria. At this stage,
articles were mainly excluded because the sensors being studied
were nonportable biosensors or because they covered topics
unrelated to biosensing; Multimedia Appendix 3 lists the articles
excluded in this phase. Data for further analysis was extracted
from the remaining 295 articles.

Figure 1. Article screening process and diagram following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) review
methodology.
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Data Categorization
The 295 articles used for analysis were categorized by research
study type, sensor type, and funding source, including broad
US government funding sources and specific NIH funding
sources (Figure 2). The list of the 295 articles included in the
data extraction process with their corresponding categories is
located in Multimedia Appendix 4. We observed statistically
significant differences (Pearson one-sample chi-square test
P<.001), indicating unequal distribution of research studies
across subcategories for all three overarching categories:
academic research, digital sensors, and funding sources. Nearly
76% (n=225) of the studies evaluated were conducted in
operations research analysis (Figure 2a). Analytical validation
(n=173, 59%), usability and utilities (data visualization; n=123,
42%), verification (n=93, 32%), and clinical validation (n=83,

28%) were other commonly represented study types. On the
contrary, ethics (n=0), security (n=1), and data rights and
governance (n=1) were uncommon study types. Research on
standards (n=6), economic feasibility (n=7), and operations care
(n=8) were also uncommon in this pool of articles.

Categorization by sensor types (Figure 2b) revealed that
movement and activity were the most commonly studied sensors
in the article pool (n=123, 42%), followed by physiological
(electrical) sensors (n=90, 31%), physiological (optics and
imaging) sensors (n=71, 24%), biochemical sensors (n=62,
21%), and physiological (mechanical) sensors (n=33, 11%).
For those studies evaluating movement and activity sensors,
actigraphy and activity monitors with wearable accelerometers
were the most commonly studied sensors.

Figure 2. Distribution of articles across (a) research study types, (b) different sensing modalities, (c) different funding sources, and (d) different
government funding agencies. The bars are showing the percentage of studies, with 100% equivalent to 295 papers included in the data extraction
process for (a-c) and 100% equivalent to 192 papers with government funding for (d). The text on top of the bars in all the plots showing the actual
number of articles per category. Others in (d): state governments, National Institute of Justice, US Department of Agriculture, National Institute of Food
and Agriculture. One article can be grouped into multiple categories for (a-d). DOD: Department of Defense; DOE: Department of Energy; Gov:
governance; NASA: National Aeronautics and Space Administration; NIH: National Institutes of Health; NSF: National Science Foundation; Ops:
operations; Phys: physiological; U&U: usability and utility; Visual: visualization; VA: Veteran Affairs.
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Studies categorized by funding source (Figure 2c) indicated
that government agencies are funding the majority (n=192, 65%)
of academic research on digital clinical measures, followed by
independent foundations (n=109, 37%) and industry (n=56,
19%). Interestingly, more than 1 in 10 digital clinical measures
studies (n=36, 12%) was unfunded. Of these unfunded studies,
22 articles explicitly stated that the research team did not receive
any external funding, and 14 did not include a statement on
funding.

For studies receiving government funding, the NIH was the
most frequent contributor in terms of the number of articles
funded—66% (n=126) of the studies with government funding
were funded by the NIH (Figure 2d). The NSF was the second
most frequent government funder of research on digital clinical
measures (n=55, 29%), followed by DOD (n=16, 8%), VA (n=6,
3%), NASA (n=3, 2%), DOE (n=3, 2%), and others (the 5
remaining studies were funded by state governments, National
Institute of Justice, US Department of Agriculture, or National
Institute of Food and Agriculture). Of the 27 institutes and
centers at the NIH [39], 24 institutes funded studies on digital
clinical measures (Figure 3), indicating widespread interest and
applications in this field. The majority of studies were funded
by the National Institute of Neurological Disorders and Stroke
(n=18, 14% of the studies with NIH funding); the National
Institute of Biomedical Imaging and Bioengineering (n=18,
14%); the National Heart, Lung, and Blood Institute (n=17,
13%); and the National Center for Advancing Translational
Sciences (n=14, 11%).

Of the articles that reported receiving funding from independent
foundations (n=109), 75 (69%) studies received funding from

institutional funds at universities, 46 (42%) studies received
funding from private nonprofits (eg, Bill and Melinda Gates
Foundation or Chan Zuckerberg Initiative), and 6 (6%) received
funding from societies and associations (eg, American Heart
Association).

To understand whether specific funding types may be driving
specific sectors of digital clinical measures research, and where
a lack of funding may be contributing to low research output,
we explored the distribution of funding across different research
study types (Figure 4). Subdividing the research topics by
funding type, we found that the proportion of research support
from each of the four funding categories was fairly consistent
across research areas. The most frequent research and funding
combination out of the 295 articles was operations research
analysis supported by government funding (n=148, 50%). The
second most common combination was analytical validation
studies supported by government funding (n=105, 36% of
overall studies). Operations research analysis and analytical
validation also represent the first- and second-largest sectors of
overall digital clinical measures research, respectively (Figure
2a). Interestingly, the third most frequent research and funding
combination was not another research category but rather an
operations research analysis funded by foundations (n=80, 27%
of overall studies), indicating the large overall footprint that
operations research analysis occupies in the academic digital
clinical measures research space. By contrast, even given the
large proportion of government funding, research categorized
as analytical validation was also the most likely to be unfunded,
with 30 out of the 173 (17%) studies reported as unfunded.

Figure 3. Distribution of articles across different NIH institutes and centers. The bars are showing the percentage of studies, with 100% equivalent to
126 papers with NIH funding. The text on top of the bars showing the actual number of articles per category. One article can be grouped into multiple
categories. FIC: Fogarty International Center; NBIB: National Institute of Biomedical Imaging and Bioengineering; NCATS: National Center for
Advancing Translational Sciences; NCCIH: National Center for Complementary and Integrative Health; NEI: National Eye Institute; NHLBI: National
Heart, Lung, and Blood Institute; NIA: National Institute on Aging; NIAAA: National Institute on Alcohol Abuse and Alcoholism; NICHD: National
Institute of Child Health and Human Development; NIDA: National Institute on Drug Abuse; NIDCD: National Institute on Deafness and Other
Communication Disorders; NIDCR: National Institute of Dental and Craniofacial Research; NIDDK: National Institute of Diabetes and Digestive and
Kidney Diseases; NIEHS: National Institute of Environmental Health Sciences; NIGMS: National Institute of General Medical Sciences; NIH: National
Institutes of Health; NIMH: National Institute of Mental Health; NIMHD: National Institute on Minority Health and Health Disparities; NINDS: National
Institute of Neurological Disorders and Stroke; NLM: National Library of Medicine; OAR: Office of AIDS Research; OD: Office of Dietary Supplements.
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Figure 4. Distribution of funding sources across different research study types, with the heat map color showing the percentage of studies (100%
equivalent to 295 papers included in the data extraction process) and the text in each cell showing the actual number of articles per category. One article
can be grouped into multiple categories. Gov: governance; Ops: operations; U&U: usability and utility; Visual: visualization.

Similar to the previous analysis subdividing research topics by
funding type, we sought to understand whether the volume of
literature surrounding particular types of digital sensors is related
to funding. Therefore, we subdivided the articles in the different
digital sensor categories from Figure 2b by funding type. We
found that the most frequent digital sensor and funding
combination was movement and activity sensors funded by
government agencies (n=67, 23% of overall studies; Figure 5).
Government funding also supported the majority of research
into physiological (electrical) sensors (n=61, 21%),
physiological (optics and imaging) sensors (n=50, 17%), and

biochemical sensors (n=48, 16%). By contrast, even given the
large proportion of government funding, digital sensors
categorized as movement and activity were the second most
likely to be unfunded, with 15% (n=19) of the 123 studies on
movement and activity sensors being unfunded. Biochemical
sensors were the least likely to be studied without funding (n=1,
1% of studies that used biochemical sensors), whereas studies
into physiological (mechanical) sensors were most the
commonly unfunded, with 8 of 33 (24%) studies reported as
unfunded.
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Figure 5. Distribution of funding sources across different digital sensor types, with the heat map color showing the percentage of studies (100%
equivalent to 295 papers included in the data extraction process) and the text in each cell showing the actual number of articles per category. One article
can be grouped into multiple categories. Phys: physiological.

Discussion

Principal Findings
In this systematic review, we describe the nature of academic
research related to digital clinical measures and the distribution
of funding across different types of academic research and
sensing modalities.

Verification, analytical validation, and clinical validation studies
[16] are, together, the most frequently published study types in
this review. As verification, analytical validation, and clinical
validation is foundational to establishing whether a digital
clinical measure is fit-for-purpose [16], these findings indicate
that academic research supporting the development and
evaluation of digital clinical measures is appropriate for a
nascent field. However, the paucity of published studies
examining the security, data rights and governance, ethics,
standards, and economic feasibility of digital sensing products
are alarming given the rapid growth and adoption of digital
clinical measures [40]. The risks of harm to individuals from
unauthorized access to data arising from inadequate security,
misuse of data due to poor data rights and governance, and
inequities arising from the development and deployment of
digital clinical measures without sufficient consideration of the
ethical implications are substantial [21,23,41,42]. It is imperative
that academic investigators skilled in these areas are motivated
and funded to pursue a systematic evaluation of the current state
of affairs and to propose best practices to ensure that digital
clinical measures fulfill their promise without causing harm to
individuals or populations.

Research studies examining the usability and utility of digital
sensing products are relatively common compared to
publications reporting research into security, data rights and
governance, and economic feasibility, which ought to trend

together [24]. This is not to say that usability and utility of
digital clinical measures is overstudied, but rather suggests that
research into these other characteristics of digital sensing
products is lagging. Similarly, the number of publications
reporting measure identification is relatively low compared to
research into the development and deployment of these same
measures. This may be cause for concern if we cannot be certain
that digital clinical measures being developed have already been
determined to be clinically relevant and grounded in aspects of
health that patients and clinicians care most about [20]. As we
strive to increase the patient focus and efficiency of health care,
it is critical that we are separating signals from noise and not
advancing digital clinical measures that offer little value to
individual patients and the health care system.

Research into the operational aspects of deploying digital
clinical measures is the largest single study type identified by
our review. Although digital clinical measures cannot add value
unless they are successfully operationalized during routine
clinical care and in clinical trials, focusing academic research
on deployment without first ensuring that the digital clinical
measures are fit-for-purpose and trustworthy leaves the entire
field of digital health at risk of collecting vast swaths of data
that, at best, are of no value and, at worst, could cause harm.
During the rapid acceleration of digital clinical measurements,
research into the selection and development of high-quality
measures and tools must be a primary focus of academic
research in this new field.

Research related to movement and activity sensors are most
common when we parse the article pool by sensor type. This
finding is consistent with other literature where digital measures
of activity have been found to be most commonly used to answer
clinical questions [43]. Movement and activity sensors also
inform the majority of digital end points used by the industry
in medical product development [40]. Physiological (electrical),
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physiological (optical and imaging), and biochemical sensors
are well represented in this review, which is consistent with the
recent growth in the use of portable electrocardiograms,
photoplethysmography, and continuous glucose monitoring,
respectively.

Our review indicates that government agencies and independent
foundations are funding most of the academic research studies
related to digital clinical measures. Industry funding was
relatively low, and this is likely due to our definition of
academic studies that excludes studies that only have
industry-affiliated authors without academic research
partnerships. Of the government agencies, the NIH is funding
most of the academic research studies, which is consistent with
previous research examining funding of US biomedical research
[38]. The distribution of funding across different NIH institutes
and centers demonstrates that certain therapeutic areas might
be getting more funds compared to others. However, we have
not extracted information on funding distribution across different
therapeutic areas, as it was out of scope for this systematic
review. Future work should explore which therapeutic areas are
more likely to receive funding and which areas are least funded.
Of the independent foundation–funded research studies,
institutional funds at universities are funding the majority on
digital clinical measures as compared with private nonprofits
and public charities, which is also consistent with the literature
[38].

After operational research, analytical validation is the most
common government-funded study type in digital clinical
measurement. This is critically important as analytical validation
includes examination of algorithmic bias [16], which must be
an area of focus given research findings that digital sensing
products may not perform equally well across different skin
tones, among other factors [44,45]. However, although the total
number of government-funded analytical validation publications
is high, analytical validation studies are also the most likely to
be unfunded (n=30, 17%), suggesting that academic researchers
are pursuing analytical validation studies even when funding
may not exist. This work is to be applauded but is not
sustainable. Additional funding for analytical validation must
be made available to ensure that digital clinical measures are
developed equitably.

Although movement and activity sensors are the most used
sensors in academic research, these sensors are still the second
most likely to be unfunded (n=19, 15%), suggesting that
academic researchers are pursuing research into movement and
activity sensors even when funding may not exist. This is again
praiseworthy but not sustainable, considering the rapid adoption
of these sensors in our daily life [10,11] and clinical studies
[43]. Sufficient funding is required to ensure the development

and deployment of these movement and activity sensors reliably
and equitably.

Our review has several limitations. First, we have focused only
on academic research led by US-based academic researchers.
Future research should expand beyond the United States to
examine trends in academic research into digital clinical
measures globally. Second, we searched only one database
(PubMed) to retrieve articles for this review. PubMed only
indexes research related to life sciences and biomedicine [46].
As digital medicine is a highly interdisciplinary field, many
relevant studies may not have been captured in our review. For
example, sensor verification studies may be published in
traditional engineering journals that are not indexed by PubMed.
Future studies will be enhanced by the use of multiple databases
across disciplines. In addition, as an emerging interdisciplinary
field, we must strive to reference the complete corpus of relevant
literature, not only those publications familiar to us in our
individual disciplines. Finally, the subjective nature of the
review and data extraction process may hinder repeatability,
and we attempted to mitigate this risk using innovative methods
such as using a majority voting system and using natural
language processing to automate the initial screening phase.

This review reports the current state of academic research on
the rapidly expanding and highly promising field of digital
clinical measures. Substantial work is being done in areas such
as validation and operations, with a paucity of research in other
areas like security and ethics. Future studies should investigate
why critical research into the safe, effective, ethical, and
equitable advancement of digital clinical measures is largely
absent from the published literature. Both academic researchers
and funding agencies should focus on the subareas of academic
research on digital clinical measures that are underrepresented
and relatively underfunded to ensure that funding priorities
adequately reflect the evidentiary needs of the field.

Conclusion
Academic research related to digital clinical measures is not
keeping pace with the rapid expansion and adoption of digital
sensing products. Although substantial foundational research
validating the performance of digital clinical measures is being
conducted, academic studies of security, data rights and
governance, economic feasibility, ethics, and standards
necessary to advance the field are lagging. These areas must be
bolstered to minimize the growing chasm between the promised
benefits of digital clinical measures and their potential risks.
As expected, research funding appears to be associated with
increased research publications. An integrated and coordinated
effort is required across academia, academic partners, and
academic funders to establish the field of digital clinical
measures as an evidence-based field worthy of our trust.
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