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Abstract

Background: Recently, the analysis of endolymphatic hydropses (EHS) viainner ear magnetic resonance imaging (MRI) for
patientswith Méniére disease has been attempted in various studies. In addition, artificia intelligence has rapidly been incorporated
into the medical field. In our previous studies, an automated algorithm for EH analysis was devel oped by using a convolutional
neural network. However, several limitations existed, and further studies were conducted to compensate for these limitations.

Objective: The aim of this study is to develop a fully automated analytic system for measuring EH ratios that enhances EH
analysis accuracy and clinical usability when studying Méniére disease viaMRI.

Methods: We proposed the 3into3Inception and 3intoUNet networks. Their network architectures were based on those of the
Inception-v3 and U-Net networks, respectively. The devel oped networks were trained for inner ear segmentation by using the
magnetic resonance images of 124 people and were embedded in a new, automated EH analysis system—inner-ear hydrops
estimation via artificia intelligence (INHEARIT)-version 2 (INHEARIT-v2). After fivefold cross-validation, an additional test
was performed by using 60 new, unseen magnetic resonance images to eval uate the performance of our system. The INHEARIT-v2
system has a new function that automatically selects representative images from afull MRI stack.

Results: The average segmentation performance of the fivefold cross-validation was measured via the intersection of union
method, resulting in performance values of 0.743 (SD 0.030) for the 3into3Inception network and 0.811 (SD 0.032) for the
3intoUNet network. The representative magnetic resonance slices (ie, from adata set of unseen magnetic resonance images) that
were automatically selected by the INHEARIT-v2 system only differed from a maximum of 2 expert-selected slices. After
comparing the ratios cal culated by experienced physicians and those calculated by the INHEARIT-v2 system, we found that the
average intraclass correlation coefficient for all cases was 0.941; the average intraclass correlation coefficient of the vestibules
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was 0.968, and that of the cochleae was 0.914. The time required for the fully automated system to accurately analyze EH ratios
based on a patient's MRI stack was approximately 3.5 seconds.

Conclusions: In this study, a fully automated full-stack magnetic resonance analysis system for measuring EH ratios was
developed (named INHEARIT-v2), and the results showed that there was a high correlation between the expert-calculated EH
ratio values and those cal culated by the INHEARIT-v2 system. The system is an upgraded version of the INHEARIT system; it
has higher segmentation performance and automatically selects representative images from an MRI stack. The new model can

help clinicians by providing objective analysis results and reducing the workload for interpreting magnetic resonance images.

(J Med Internet Res 2021;23(9):€29678) doi: 10.2196/29678
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Introduction

Although many medical fields have been developed over the
past few decades, medica imaging techniques, such ascomputed
tomography and magnetic resonance imaging (MRI), have
advanced greatly [1]. Experienced radiologists and physicians
typically interpret such images in the clinical field. However,
in recent years, due to the remarkabl e devel opment of machine
learning, the situation is changing [2]. Artificial intelligence,
including machine learning, iswidely used in various fields of
medical science, and image analysis viaa convolutional neural
network is developing rapidly [3].

Méniére disease is a multifactorial disorder with typical
symptoms, such asrecurrent vertigo attacks, fluctuating hearing
loss, tinnitus, and sensations of ear fullness. The prevalence of
Méniére disease varies by region and study, but the estimated
preval ence ranges from 30 to 150 patients per 100,000 people
[4]. Inparticular, it isknown that this prevalenceishigher within
White and female populations and increases with age [5].
Endolymphatic hydrops (EH) isahistologic hallmark of Méniere
disease in which the endolymphatic spaces in the cochlea and
the inner ear vestibule are distended [6]. According to current
diagnostic criteria, pure tone audiometry is the only objective
test for the diagnosis of definite or probable Méniéere disease.
Further, electrocochleography is a common test for estimating
EH ratios [7]. However, electrocochleography is used only as
areference examination for diagnosing Méniére disease because
it does not directly show the endolymphatic space. Similarly,
Méniére disease is challenging to diagnose objectively, and
efforts have been made in recent years to directly measure EH
ratios by using MRI [8-10].

A protocol for image-based EH analysis was suggested in a
previous study [11]; it required specific image viewer software
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to generate ahybrid image of signals(ie, ahybrid of thereversed
image of the positive endolymph signal and native image of the
positive perilymph signal [HY DROPS] or aHY DROPS image
multiplied by T,-weighted magnetic resonance cisternography
[HY DROPS-Mi2]). Thisprocessinvolvesthe manual contouring
of inner ear organsfor boundary segmentation, which ismostly
performed by medical experts.

The need for automated analyses has emerged because
conventional quantitative analysesrequire moretime and effort
than typical image interpretation processes. The automatic
measurement of EH ratios viaMRI was proposed based on the
deep learning approach in our previous study [12]. Our research
showed that the convolutional neural network—based deep
learning model—the inner-ear hydrops estimation via artificial
intelligence (INHEARIT) system—could efficiently segment
cochleae and vestibules in magnetic resonance images and
calculatethe EH ratios of the segmented regions[12]. However,
our study had afew limitations. First, full-stack image validation
was not conducted in our previous study. Thus, medical experts
were needed to manually select representative image slices of
cochleae and vestibulesfrom the full magnetic resonance image
stack and | oad them into the system, and this human user process
was time consuming. Second, validation with an isolated data
set was not performed, which made it difficult to verify the
robustness of the system. Lastly, various deep learning models
were not used, except for the Visual Geometry Group (VGG)
network architecture—a VGG-19-based network [13]. To
compensate for these limitations, we developed a fully
automated analytic system for calculating EH ratios by using
deep learning and MRI—the INHEARIT-version 2
(INHEARIT-v2) system. The entireframework for thisanalytic
systemis depicted in Figure 1.
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Figure 1. The proposed inner-ear hydrops estimation via artificia intelligence-version 2 (INHEARIT-v2) framework. EH: endolymphatic hydrops;
HYDROPS-Mi2: hybrid of the reversed image of the positive endolymph signal and native image of the positive perilymph signal image multiplied by

To-weighted magnetic resonance cisternography; MRC: magnetic resonance cisternography.
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Methods

Study Participants

Two data sets were used in this study—one for the deep
learning—based training models and another for validation. For
the training models, the magnetic resonance images of 124
patients (males. n=57; females. n=67; age: mean 49.3 years,
SD 16.02 years; range 17-76 years) who participated in our
previous INHEARIT study were used [12]. For the additional
test, 60 new participants were recruited from Samsung Medical
Center from February 2018 to September 2019. Written
informed consent was obtained from all participants. This study
was approved by the Institutional Review Board of Samsung
Medical Center (approval number: 2020-06-046).

Data Set for Analysis

We scanned all patients' inner ears with a 3.0-T MRI device
(MAGNETOM Skyra; SiemensMedical Solutions). Gadobutrol
(gadolinium-DO3A-butriol; Gadovist 1.0), which was used as
the contrast agent, was intravenously administered to patients
before MRI. Different magnetic resonance scans were made by
using heavily T,-weighted magnetic resonance cisternography
(MRC) to distinguish the outlines of organs. Positive perilymph
images (PPIs) and positive endolymph images (PEls) were used
to evaluate EHs. The HYDROPS images were obtained by
subtracting the number of PEIsfrom the number of PPIs. MRC
images, PPIs, and PEIshad identical fields of view, matrix sizes,
and dlice thicknesses [8,14].

Data Annotation by Physicians

One neuroradiologist and one neuro-otologist independently
evaluated the MRC images. Representative slices of 4
classes—the left cochlea and vestibule and the right cochlea
and vestibule—were selected, and their contours were annotated
manually. The main dlices of a cochlea or vestibule and their
regions of interest (ROIs) were chosen based on the following
criteria. For the cochlear ROI, among all MRI slices in which
the basal, middle, and apical views of organs were visible, the
dlice with the largest modiolus height was chosen. For the
vestibular ROI, the lowest dlice, inwhich thelateral semicircular
canal ring was obvious in images that were rotated by more
than 240°, was chosen, and images of the ampullawere excluded
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Segmented Results

[12]. Each physician drew contours of the ROIs on MRC
images, and the contours were compared to determine a point
of agreement.

Deep Learning Training Modelsfor Inner Ear
Segmentation

To segment the ROIs, 2 deep learning models were devel oped
based on the architectures of the Inception-v3 [15] and U-Net
[16] networks. The models were named 3into3lnception and
3intoUNet. For segmentation via the Inception-v3 network,
deconvolutional layerswere added after the conventional feature
extraction of convolutional layers, and skip connections were
included between convolutional and  corresponding
deconvolutional layers, as we did in our previous study [12].
The purpose of the U-Net network isto conduct segmentation;
this network consists of feature contraction and feature
expansion parts that function as encoders and decoders,
respectively. In thisnetwork, aportion of contracted information
iscopied and concatenated to the corresponding expansion part,
thereby reducing the amount of information that is lost during
the segmentation process.

The physician-selected main slice image and the previous and
next images were loaded simultaneously from full-stack MRC
images for model training. The cross-sectional area of target
inner ear structuresis relatively small in a whole-brain image.
Since this can cause a class imbalance problem, image patches
of 100x100 pixels were acquired from each left and right
reference point. This process is shown with the 3intoUNet
network in Multimedia Appendix 1; 3 sequential MRC image
patches were independently fed into each of the networks, and
featureswere summated before the addition of deconvolutional
layers. The green dotted boxes represent parts of the network
that perform the same function (ie, the contraction of features
ineach input image). Thissequential 3-input approach has been
shown to yield high performance in terms of medical image
segmentation [12]. The implementation and analyses of these
models were performed via the Python 3.5 (Python Software
Foundation) environment. The NumPy library was used for
arithmetic calculation, the sklearn and Imagel O libraries were
used for image preprocessing, and the TensorFlow library was
used for model training.
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The devel oped model sweretrained with asel ectively annotated
data set of 124 subjects. Afterward, the models were fine-tuned
with both the selectively annotated and fully annotated data
sets, per the optimum curriculum learning strategy for the
segmentation of weakly annotated data [12]. Although we
analyzed 4 target organs (the left cochlea, left vestibule, right
cochlea, and right vestibule), the number of representativeimage
slices per subject varied between 2 and 4 because a cochleaand
a vestibule from each side could have been in the same image
dlice depending on the anatomical structure of the person. First,
we trained a model with the selectively annotated data set and
conducted moderate augmentation (1584 times). Afterward, we
fine-tuned the model with both the fully annotated and
selectively annotated data sets and conducted high augmentation
(14,544 times). Therefore, the original 262 dices from the
selectively annotated data set were augmented to 412,008 dlices,
andtheinitial 372 dicesfrom thefully annotated and sel ectively
annotated data sets were augmented to 5,410,368 dlices for
training. For augmentation, image patches were randomly
flipped along the horizontal direction, cropped via random
shifting (ie, from areference point), and had their pixel intensity
changed. There was a wide range of variation between the
augmented images and the original image (eg, differencesin
intensity, shifted cropping areas, etc), and the physicians agreed
to use the augmented images as training inputs.

Fivefold cross-validation was conducted, and segmentation
performance was evaluated by measuring the intersection over
union (loU) between the ground truth areas (clinician-annotated
region) and prediction areas (model-based, automatically
determined region). The loU was calculated as follows:

loU = area of overlap/area of union = Ay e5/ (At +

Apred - ona’lap) )
Inequation 1, Ay istheground truth area, A, isthe prediction
area, and Agye14p 1S the intersection between Agr and Ay q. The
model wastrained on graphical processing units(NVIDIA GTX
1080Ti; Nvidia Corporation). The parameters were determined
viagrid searching and optimized to alearning rate of 1 ° with
the Adam optimizer [17]; a dropout rate [18] of 0.4 and batch
size of 4 were used. Batch normalization and mean subtractions
were performed to prevent internal covariate shifts.

Full-Stack I mage Segmentation of an Additional Test
Data Set

Once model training was completed, the model wastested with
an additional data set of unseen magnetic resonanceimages. As
shownin Figure 1, thefull-stack MRC images of apatient were
fed into a deep learning network. Slice indices that represented
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cochleae and vestibules were selected from a stack of
segmentation results. The selected results were applied to
HYDROPS-Mi2 patches as masks, and EH ratios were
calculated for segmented regions.

Figure 2 shows the process of conducting afull-stack magnetic
resonance image segmentation analysis by using the test data
set. A subject’s full-stack images were given an index number
that ranged from 1 to the total number of dlices (N). Figure 2
shows asubject'sfull-stack MRC image patchesfor theleft and
right ears and their corresponding segmentation results. The
INHEARIT-v2 platform—selected representative slice for each
classwasindicated by a cyan-colored slice boundary. Figure 2
also shows the segmentation results and the MRC patches for
a selected index number and the ground truths of each class. In
this example, the selected index number was identical to the
ground truths of all classes. The system chose the representative
dlices for each class—the left cochlea, left vestibule, right
cochlea, and right vestibule—based on the size of the segmented
areain each class. The representative key dlice selection process
was formulated as follows:

[Sc.fc] = ArgMax T, st (2)
In equation 2, i is a dlice index, N is the total number of
segmented images of a subject, §C represents a segmented area
in theith slicein class C, I is the key slice index of class C,
and S isthe segmented regioninthekey slicein classC. Thus,
the key slices with the largest segmented areas for each class
were selected. The dlices chosen by the INHEARIT-v2 system
and human experts were compared, and the index distance

between the slices was calculated. The chosen segmentation
results were used as masks for EH ratio calculation in the next
step.

The EH ratio was estimated by using aHY DROPS-Mi 2 image,
which is an image that is generated via the pixel-wise
multiplication of HY DROPS and MRC image signals [11] for
agivenindex slice. The EH ratio is defined as follows [12]:

EH ratio = Total number of pixels with a negative
valuein the segmentation area/total number of pixels
in the segmentation area (3)

The above equation (equation 3) can be restated as follows:
EH ratio = (P> n PN®)/P> (4)
In equation 4, P> denotes the total number of pixels in the

segmented areain class C, and PN denotes the total number
of pixelswith negative valuesin class C.
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Figure 2. The full-stack magnetic resonance image segmentation analysis process for the test data set. A: A full stack of MRC images and their
segmentation results. B: Representative slices and the segmentation results of each class. Al: artificia intelligence; MRC: magnetic resonance

cisternography.
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Statistical Analysis

The agreement between the values calculated by experts (the
neuroradiologist and the neuro-otologist) and the
INHEARIT-v2—predicted values was measured by using a
single-scoreintraclass correlation coefficient (ICC), which was
based on atwo-way model and Pearson correlation coefficient.
The analyses were performed by using R software (The R
Foundation) [19].
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RC 48

RV s1

Results

Model Experiments

Table 1 shows the segmentation performance of the devel oped
artificial  intelligence-based models—the  3into3VGG,
3into3Inception, and 3intoUNet networks. Average performance
values were represented as the average loU values from the
fivefold cross-validation with SDs, which were 0.761 (SD 0.036)
for 3into3VGG, 0.784 (0.025) for 3into3Inception, and 0.811
(0.032) for 3intoUNet. The U-Net—based model, 3intoUNet,
had the highest mean area under the receiver operating
characteristic curve. Therefore, the 3intoUNet model was used
for the additional test.

Table 1. The segmentation performance of the proposed networks—3into3V GG, 3into3Inception, and 3intoUNet. These networks were based on the
Visua Geometry Group-19, Inception-v3, and U-Net networks, respectively. The results are represented as the average intersection over union values

from the fivefold cross-validation with SDs.

Networks IoU,2 mean (SD)
3into3VGG 0.761 (0.036)
3into3Inception 0.784 (0.025)
3intoUNet 0.811 (0.032)

4 0U: intersection over union.

Additional Test With the Full-Stack Image Data Set

The data set of magnetic resonance images that were collected
from 60 new participants (males: n=19; females. n=41; age:
mean, 47.1 years, SD 15.27 years,; range 21-68 years) for an
additional test consisted of 33 subjects with definite Méniéere
disease (unilateral or bilateral), 17 subjects with sensorineural
hearing loss and vertigo, and 10 normal subjects without any
symptoms.

System validation was performed on the full-stack images of
the subjects. Each image consisted of 104 MRC axial-view
image dices, and 3 sequential dices—themain axial-view image
dicesand the previousand next dices—werefed into thetrained
model as an input. The model automatically segmented the
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organs by simultaneously analyzing the three input images and
generated a segmentation result as an output. A total of 102
segmented output images were acquired from a subject's stack,
and 1 image from each class was selected as a representative
result.

With regard to the total 240 image slices of the target organs
of 60 subjects, the distance (ie, the number of dlice indices)
between the manually sel ected image slices and system-sel ected
image dices was 0 for 105 cases (43.8%), 1 in 233 cases
(97.1%), and 2 in 240 cases (100%), as shown by the graph in
Figure 3. Thismeansthat the representative magnetic resonance
dices(ie, from adataset of unseen magnetic resonance images)
that were automatically selected by the INHEARIT-v2 system
only differed from a maximum of 2 expert-selected dlices.
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Figure 3. Performance of the inner-ear hydrops estimation via artificial intelligence-version 2 (INHEARIT-v2) system in finding the representative
slice index in the magnetic resonance image stacks of 240 target organs of 60 subjects.
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A case example of segmentation and EH visualization is

Figure4. Visualization of an endolymphatic hydropsin aleft cochlea. A: Magnetic resonance cisternography patch (left ear). B: Left cochleasegmentation
result. C: HY DROPS-Mi2 patch (left ear). D: Endolymphatic hydrops. E: Endolymphatic hydrops in the left cochlea. HY DROPS-Mi2: hybrid of the
reversed image of the positive endolymph signal and native image of the positive perilymph signal image multiplied by T,-weighted magnetic resonance
cisternography.
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The agreement between the physician-calculated and
INHEARIT-v2—estimated EH ratioswas calculated. The average
ICC value for al cases was 0.941; the average ICC of the

Park et a

vestibules was 0.968, and that of cochleae was 0.914 (Figure
5). The average INHEARIT-v2-based calculation time was
3.585 seconds (SD 0.642 seconds) per subject.

Figure5. The correlation between physician-cal cul ated (ground truth) EH ratios and those predicted by the proposed platform (based on the segmentation

ared). EH: endolymphatic hydrops.
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Discussion

Principal Findings

Due to the development of MRI machines, data and image
processing technology, big data, and cloud systems, the role of
artificial intelligence in the medical field will likely increase
with time. Recently, algorithms have begun to help clinicians
in real-world clinics and have been used to predict clinical
outcomes that are useful for health care systems [3]. We
developed a fully automated analytic system—the
INHEARIT-v2 system—for calculating EH ratios by using deep
learning and MRI. The INHEARIT-v2 system automatically
segmented cochleae and vestibules in brain MRC images and
detected representative dlices for these organs. The system
estimated the EH ratios of segmented regions in key image
dices, and the results had a high correl ation with those that were
manually calculated by experts during an additional test.

Since the mid-2000s, the analysis of EHs by using 3T MRI has
been widely accepted as a useful method for the diagnosis of
Méniere disease among various groups [10,20]. In particular,
injecting contrast mediathrough an intravenous routeisawidely
used MRI method for patients with Méniére disease because it
islessinvasive, resultsin shorter waiting timesfor patients, and
allows physicians to observe both ears simultaneously [11].
Recently, hydropses have been evaluated in several studies
either by precisely dividing each area of the cochlea and
vestibule or by using a 3D model to measure the whole volume
of the endolymphatic space based on magnetic resonanceimages
[21,22].

Recent medical image studies have reported the development
of fully automated analytic systems. The implemented tools

https://www.jmir.org/2021/9/e29678

were designed to provide end-to-end workflows to minimize
the amount of human intervention during analysis [23,24].
Several recent studies used deep learning techniquesto segment
inner ears and related organs in medical images. Some studies
were conducted on computed tomography images to segment
other organs, such as the sigmoid sinus, facial nerves, or
temporal bones [25,26]. Another study analyzed magnetic
resonanceimagesfor labyrinth sesgmentation [27]. These studies
analyzed various ear-related organs in 3D space, but the main
purpose of segmentation was primarily anatomical visualization
for surgical planning. However, our study is different because
the objective of segmentation was to calculate EH ratios in
patientswith Méniére disease by conjoining different magnetic
resonance image modalities.

The results of our study substantially complemented the
limitations of our previous study [12]. Although our former
results laid the foundation for conducting EH analyses with
deep learning technology, in this study, the improvements
allowed for immediate clinical diagnosis and follow-up.
Consequently, the accuracy of the EH analysis increased, and
even if a human expert did not choose a representative image
dice, the representative section was automatically extracted
from the magnetic resonance image stack and analyzed
successfully.

Another technical improvement over our previous study is that
in this study, various deep learning models, such as the U-Net
and Inception-v3 networks, were used as a base architecture.
We developed a better performing model that effectively
segmented inner ears. Furthermore, an additional test was
performed to provethe robustness of the system. By developing
the INHEARIT-v2 system, expert interpretation became much
easier and faster, and more objective analyses were possible.
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The best performance, which was based on the mean areaunder
the receiver operating characteristic curve from the fivefold
cross-validation, was achieved by the 3intoUNet network, which
was based on the U-Net architecture. The U-Net network is
designed for medical image segmentation [16]. As such, it is
distinguishable from other deep learning models, such as
VGG-19 and Inception-v3. Further, it was initialy developed
for the classification of raw images, such as those of a car,
building, or human [13,15]. The 3intoUNet network allowsfor
the analysis of consecutive images, similar to how medical
experts browse an MRI stack to identify the location of atarget
organ. This serial-image training approach was suggested in
our previous study on using a VGG-19-based model, which
proved to be effective in a medical image segmentation task
[12]. The same approach was successful for both the
U-Net—based and Inception-v3-based networks. Since inner
ears occupy only a small portion of the area (<60 pixels) in
whole-brain images (384x%324 pixels), the 3intoUNet network
hasageneralizable architecture for analyzing full-stack magnetic
resonance images.

With regard to the performance of the system in automatic
representative slice selection, when compared to physicians
choices, the system’s choices had agap distance of <2 for 100%
(240/240) of thetest dataset. The physicians goal wasto select
a key dlice of an organ based on the organ's anatomical
relationship with other organs [12], whereas the system's goal
was to locate the slice with the largest segmented area for each
organ. Despite the possible minimal misalignment between the
automatically selected and manually selected key dlices, the
correlation between the INHEARIT-v2—calculated and
physician-calculated EH ratio values was high, indicating that
the amount of misalignment did not substantially affect the EH
ratio calculation. Based on our results, measuring the entire
hydrops volume of the cochlea and vestibule for diagnosis is
unnecessary.

Severa concernsmight arisewhen artificial intelligence systems
are used in real clinical settings. In this study, we found that
using such artificial intelligence systems could be an aternative
to manually measuring hydropsratiosin real settings. However,
this does not mean that Méniére disease can only be diagnosed
by this system. The cutoff valuefor the EH ratio was not clearly
defined during the diagnosis of definite Méniére disease. Future
studiesfor estimating the EH ratio cutoff valuein the diagnosis
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of definite Méniére disease are still needed. In addition,
HYDROPS-Mi2 images were used to analyze EH ratios.
However, theseimages were acquired via software modification,
and hydropses in modified images can be more exaggerated
compared to thosein original images. The final concern is that
Méniére disease is a multifactorial disease, which means that
making an accurate diagnosis is typicaly a very complex
process. Other diseases that mimic the symptoms of Méniere
disease should beruled out in clinical settings. The main purpose
of hydrops measurement via artificial intelligenceisto provide
clinical support, which can be helpful for medical professionals
when making afinal clinical diagnosis.

Future studies can include additional normal control subjects
to determine the optimal EH ratio threshold by comparing
individualswith Méniére disease and healthy individual swithout
the disease. However, the association between clinical symptoms
and EHs is not uniform from patient to patient; thus, such
analysesrequire aclinician's comprehensive judgment [28]. To
improve these analyses, in addition to magnetic resonance
images, amodel for analyzing heterogeneous data, such asthe
clinical variables used for diagnosis, can be applied to the deep
learning algorithm. In addition, because the cause and
mechanism of Méniére disease have not been fully elucidated,
such technology can bewidely used for the differential diagnosis
of other conditions that are thought to be associated with EHs
[29].

Notably, we fully automated the calculation of EH ratios by
devel oping an analytic system—the INHEARI T-v2 system—by
using MRI and deep learning, which have important clinical
implications. Although several aspects should be further
investigated, thisframework will be ahelpful tool for clinicians
who adopt an MRI analysis approach for diagnosing patients
with Méniére disease.

Conclusion

We developed a fully automated system—the INHEARIT-v2
system—for calculating EH ratios by using deep learning and
MRI. The proposed system can quickly and accurately analyze
EHs without the intervention of an expert of various inner ear
diseases, including Méniére disease experts. This automatic
system can perform objective and time-saving analyses for
assessing the EH ratios in the inner ear magnetic resonance
images of patients with Méniére disease.
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