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Abstract

Background: Recently, the analysis of endolymphatic hydropses (EHs) via inner ear magnetic resonance imaging (MRI) for
patients with Ménière disease has been attempted in various studies. In addition, artificial intelligence has rapidly been incorporated
into the medical field. In our previous studies, an automated algorithm for EH analysis was developed by using a convolutional
neural network. However, several limitations existed, and further studies were conducted to compensate for these limitations.

Objective: The aim of this study is to develop a fully automated analytic system for measuring EH ratios that enhances EH
analysis accuracy and clinical usability when studying Ménière disease via MRI.

Methods: We proposed the 3into3Inception and 3intoUNet networks. Their network architectures were based on those of the
Inception-v3 and U-Net networks, respectively. The developed networks were trained for inner ear segmentation by using the
magnetic resonance images of 124 people and were embedded in a new, automated EH analysis system—inner-ear hydrops
estimation via artificial intelligence (INHEARIT)-version 2 (INHEARIT-v2). After fivefold cross-validation, an additional test
was performed by using 60 new, unseen magnetic resonance images to evaluate the performance of our system. The INHEARIT-v2
system has a new function that automatically selects representative images from a full MRI stack.

Results: The average segmentation performance of the fivefold cross-validation was measured via the intersection of union
method, resulting in performance values of 0.743 (SD 0.030) for the 3into3Inception network and 0.811 (SD 0.032) for the
3intoUNet network. The representative magnetic resonance slices (ie, from a data set of unseen magnetic resonance images) that
were automatically selected by the INHEARIT-v2 system only differed from a maximum of 2 expert-selected slices. After
comparing the ratios calculated by experienced physicians and those calculated by the INHEARIT-v2 system, we found that the
average intraclass correlation coefficient for all cases was 0.941; the average intraclass correlation coefficient of the vestibules
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was 0.968, and that of the cochleae was 0.914. The time required for the fully automated system to accurately analyze EH ratios
based on a patient's MRI stack was approximately 3.5 seconds.

Conclusions: In this study, a fully automated full-stack magnetic resonance analysis system for measuring EH ratios was
developed (named INHEARIT-v2), and the results showed that there was a high correlation between the expert-calculated EH
ratio values and those calculated by the INHEARIT-v2 system. The system is an upgraded version of the INHEARIT system; it
has higher segmentation performance and automatically selects representative images from an MRI stack. The new model can
help clinicians by providing objective analysis results and reducing the workload for interpreting magnetic resonance images.

(J Med Internet Res 2021;23(9):e29678) doi: 10.2196/29678
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Introduction

Although many medical fields have been developed over the
past few decades, medical imaging techniques, such as computed
tomography and magnetic resonance imaging (MRI), have
advanced greatly [1]. Experienced radiologists and physicians
typically interpret such images in the clinical field. However,
in recent years, due to the remarkable development of machine
learning, the situation is changing [2]. Artificial intelligence,
including machine learning, is widely used in various fields of
medical science, and image analysis via a convolutional neural
network is developing rapidly [3].

Ménière disease is a multifactorial disorder with typical
symptoms, such as recurrent vertigo attacks, fluctuating hearing
loss, tinnitus, and sensations of ear fullness. The prevalence of
Ménière disease varies by region and study, but the estimated
prevalence ranges from 30 to 150 patients per 100,000 people
[4]. In particular, it is known that this prevalence is higher within
White and female populations and increases with age [5].
Endolymphatic hydrops (EH) is a histologic hallmark of Ménière
disease in which the endolymphatic spaces in the cochlea and
the inner ear vestibule are distended [6]. According to current
diagnostic criteria, pure tone audiometry is the only objective
test for the diagnosis of definite or probable Ménière disease.
Further, electrocochleography is a common test for estimating
EH ratios [7]. However, electrocochleography is used only as
a reference examination for diagnosing Ménière disease because
it does not directly show the endolymphatic space. Similarly,
Ménière disease is challenging to diagnose objectively, and
efforts have been made in recent years to directly measure EH
ratios by using MRI [8-10].

A protocol for image-based EH analysis was suggested in a
previous study [11]; it required specific image viewer software

to generate a hybrid image of signals (ie, a hybrid of the reversed
image of the positive endolymph signal and native image of the
positive perilymph signal [HYDROPS] or a HYDROPS image
multiplied by T2-weighted magnetic resonance cisternography
[HYDROPS-Mi2]). This process involves the manual contouring
of inner ear organs for boundary segmentation, which is mostly
performed by medical experts.

The need for automated analyses has emerged because
conventional quantitative analyses require more time and effort
than typical image interpretation processes. The automatic
measurement of EH ratios via MRI was proposed based on the
deep learning approach in our previous study [12]. Our research
showed that the convolutional neural network–based deep
learning model—the inner-ear hydrops estimation via artificial
intelligence (INHEARIT) system—could efficiently segment
cochleae and vestibules in magnetic resonance images and
calculate the EH ratios of the segmented regions [12]. However,
our study had a few limitations. First, full-stack image validation
was not conducted in our previous study. Thus, medical experts
were needed to manually select representative image slices of
cochleae and vestibules from the full magnetic resonance image
stack and load them into the system, and this human user process
was time consuming. Second, validation with an isolated data
set was not performed, which made it difficult to verify the
robustness of the system. Lastly, various deep learning models
were not used, except for the Visual Geometry Group (VGG)
network architecture—a VGG-19–based network [13]. To
compensate for these limitations, we developed a fully
automated analytic system for calculating EH ratios by using
deep learning and MRI—the INHEARIT-version 2
(INHEARIT-v2) system. The entire framework for this analytic
system is depicted in Figure 1.
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Figure 1. The proposed inner-ear hydrops estimation via artificial intelligence-version 2 (INHEARIT-v2) framework. EH: endolymphatic hydrops;
HYDROPS-Mi2: hybrid of the reversed image of the positive endolymph signal and native image of the positive perilymph signal image multiplied by
T2-weighted magnetic resonance cisternography; MRC: magnetic resonance cisternography.

Methods

Study Participants
Two data sets were used in this study—one for the deep
learning–based training models and another for validation. For
the training models, the magnetic resonance images of 124
patients (males: n=57; females: n=67; age: mean 49.3 years,
SD 16.02 years; range 17-76 years) who participated in our
previous INHEARIT study were used [12]. For the additional
test, 60 new participants were recruited from Samsung Medical
Center from February 2018 to September 2019. Written
informed consent was obtained from all participants. This study
was approved by the Institutional Review Board of Samsung
Medical Center (approval number: 2020-06-046).

Data Set for Analysis
We scanned all patients’ inner ears with a 3.0-T MRI device
(MAGNETOM Skyra; Siemens Medical Solutions). Gadobutrol
(gadolinium-DO3A-butriol; Gadovist 1.0), which was used as
the contrast agent, was intravenously administered to patients
before MRI. Different magnetic resonance scans were made by
using heavily T2-weighted magnetic resonance cisternography
(MRC) to distinguish the outlines of organs. Positive perilymph
images (PPIs) and positive endolymph images (PEIs) were used
to evaluate EHs. The HYDROPS images were obtained by
subtracting the number of PEIs from the number of PPIs. MRC
images, PPIs, and PEIs had identical fields of view, matrix sizes,
and slice thicknesses [8,14].

Data Annotation by Physicians
One neuroradiologist and one neuro-otologist independently
evaluated the MRC images. Representative slices of 4
classes—the left cochlea and vestibule and the right cochlea
and vestibule—were selected, and their contours were annotated
manually. The main slices of a cochlea or vestibule and their
regions of interest (ROIs) were chosen based on the following
criteria. For the cochlear ROI, among all MRI slices in which
the basal, middle, and apical views of organs were visible, the
slice with the largest modiolus height was chosen. For the
vestibular ROI, the lowest slice, in which the lateral semicircular
canal ring was obvious in images that were rotated by more
than 240°, was chosen, and images of the ampulla were excluded

[12]. Each physician drew contours of the ROIs on MRC
images, and the contours were compared to determine a point
of agreement.

Deep Learning Training Models for Inner Ear
Segmentation
To segment the ROIs, 2 deep learning models were developed
based on the architectures of the Inception-v3 [15] and U-Net
[16] networks. The models were named 3into3Inception and
3intoUNet. For segmentation via the Inception-v3 network,
deconvolutional layers were added after the conventional feature
extraction of convolutional layers, and skip connections were
included between convolutional and corresponding
deconvolutional layers, as we did in our previous study [12].
The purpose of the U-Net network is to conduct segmentation;
this network consists of feature contraction and feature
expansion parts that function as encoders and decoders,
respectively. In this network, a portion of contracted information
is copied and concatenated to the corresponding expansion part,
thereby reducing the amount of information that is lost during
the segmentation process.

The physician-selected main slice image and the previous and
next images were loaded simultaneously from full-stack MRC
images for model training. The cross-sectional area of target
inner ear structures is relatively small in a whole-brain image.
Since this can cause a class imbalance problem, image patches
of 100×100 pixels were acquired from each left and right
reference point. This process is shown with the 3intoUNet
network in Multimedia Appendix 1; 3 sequential MRC image
patches were independently fed into each of the networks, and
features were summated before the addition of deconvolutional
layers. The green dotted boxes represent parts of the network
that perform the same function (ie, the contraction of features
in each input image). This sequential 3-input approach has been
shown to yield high performance in terms of medical image
segmentation [12]. The implementation and analyses of these
models were performed via the Python 3.5 (Python Software
Foundation) environment. The NumPy library was used for
arithmetic calculation, the sklearn and ImageIO libraries were
used for image preprocessing, and the TensorFlow library was
used for model training.
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The developed models were trained with a selectively annotated
data set of 124 subjects. Afterward, the models were fine-tuned
with both the selectively annotated and fully annotated data
sets, per the optimum curriculum learning strategy for the
segmentation of weakly annotated data [12]. Although we
analyzed 4 target organs (the left cochlea, left vestibule, right
cochlea, and right vestibule), the number of representative image
slices per subject varied between 2 and 4 because a cochlea and
a vestibule from each side could have been in the same image
slice depending on the anatomical structure of the person. First,
we trained a model with the selectively annotated data set and
conducted moderate augmentation (1584 times). Afterward, we
fine-tuned the model with both the fully annotated and
selectively annotated data sets and conducted high augmentation
(14,544 times). Therefore, the original 262 slices from the
selectively annotated data set were augmented to 412,008 slices,
and the initial 372 slices from the fully annotated and selectively
annotated data sets were augmented to 5,410,368 slices for
training. For augmentation, image patches were randomly
flipped along the horizontal direction, cropped via random
shifting (ie, from a reference point), and had their pixel intensity
changed. There was a wide range of variation between the
augmented images and the original image (eg, differences in
intensity, shifted cropping areas, etc), and the physicians agreed
to use the augmented images as training inputs.

Fivefold cross-validation was conducted, and segmentation
performance was evaluated by measuring the intersection over
union (IoU) between the ground truth areas (clinician-annotated
region) and prediction areas (model-based, automatically
determined region). The IoU was calculated as follows:

IoU = area of overlap/area of union = Aoverlap/(AGT +
Apred − Aoverlap) (1)

In equation 1, AGT is the ground truth area, Apred is the prediction
area, and Aoverlap is the intersection between AGT and Apred. The
model was trained on graphical processing units (NVIDIA GTX
1080Ti; Nvidia Corporation). The parameters were determined

via grid searching and optimized to a learning rate of 1e−5 with
the Adam optimizer [17]; a dropout rate [18] of 0.4 and batch
size of 4 were used. Batch normalization and mean subtractions
were performed to prevent internal covariate shifts.

Full-Stack Image Segmentation of an Additional Test
Data Set
Once model training was completed, the model was tested with
an additional data set of unseen magnetic resonance images. As
shown in Figure 1, the full-stack MRC images of a patient were
fed into a deep learning network. Slice indices that represented

cochleae and vestibules were selected from a stack of
segmentation results. The selected results were applied to
HYDROPS-Mi2 patches as masks, and EH ratios were
calculated for segmented regions.

Figure 2 shows the process of conducting a full-stack magnetic
resonance image segmentation analysis by using the test data
set. A subject's full-stack images were given an index number
that ranged from 1 to the total number of slices (N). Figure 2
shows a subject's full-stack MRC image patches for the left and
right ears and their corresponding segmentation results. The
INHEARIT-v2 platform–selected representative slice for each
class was indicated by a cyan-colored slice boundary. Figure 2
also shows the segmentation results and the MRC patches for
a selected index number and the ground truths of each class. In
this example, the selected index number was identical to the
ground truths of all classes. The system chose the representative
slices for each class—the left cochlea, left vestibule, right
cochlea, and right vestibule—based on the size of the segmented
area in each class. The representative key slice selection process
was formulated as follows:

In equation 2, i is a slice index, N is the total number of

segmented images of a subject, si
c represents a segmented area

in the ith slice in class C, IC is the key slice index of class C,
and Sc is the segmented region in the key slice in class C. Thus,
the key slices with the largest segmented areas for each class
were selected. The slices chosen by the INHEARIT-v2 system
and human experts were compared, and the index distance
between the slices was calculated. The chosen segmentation
results were used as masks for EH ratio calculation in the next
step.

The EH ratio was estimated by using a HYDROPS-Mi2 image,
which is an image that is generated via the pixel-wise
multiplication of HYDROPS and MRC image signals [11] for
a given index slice. The EH ratio is defined as follows [12]:

EH ratio = Total number of pixels with a negative
value in the segmentation area/total number of pixels
in the segmentation area (3)

The above equation (equation 3) can be restated as follows:

EH ratio = (PC
Seg ∩ PC

Neg)/PC
Seg (4)

In equation 4, PC
Seg denotes the total number of pixels in the

segmented area in class C, and PC
Neg denotes the total number

of pixels with negative values in class C.
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Figure 2. The full-stack magnetic resonance image segmentation analysis process for the test data set. A: A full stack of MRC images and their
segmentation results. B: Representative slices and the segmentation results of each class. AI: artificial intelligence; MRC: magnetic resonance
cisternography.

Statistical Analysis
The agreement between the values calculated by experts (the
neuroradiologist and the neuro-otologist) and the
INHEARIT-v2–predicted values was measured by using a
single-score intraclass correlation coefficient (ICC), which was
based on a two-way model and Pearson correlation coefficient.
The analyses were performed by using R software (The R
Foundation) [19].

Results

Model Experiments
Table 1 shows the segmentation performance of the developed
artificial intelligence–based models—the 3into3VGG,
3into3Inception, and 3intoUNet networks. Average performance
values were represented as the average IoU values from the
fivefold cross-validation with SDs, which were 0.761 (SD 0.036)
for 3into3VGG, 0.784 (0.025) for 3into3Inception, and 0.811
(0.032) for 3intoUNet. The U-Net–based model, 3intoUNet,
had the highest mean area under the receiver operating
characteristic curve. Therefore, the 3intoUNet model was used
for the additional test.

Table 1. The segmentation performance of the proposed networks—3into3VGG, 3into3Inception, and 3intoUNet. These networks were based on the
Visual Geometry Group-19, Inception-v3, and U-Net networks, respectively. The results are represented as the average intersection over union values
from the fivefold cross-validation with SDs.

IoU,a mean (SD)Networks

0.761 (0.036)3into3VGG

0.784 (0.025)3into3Inception

0.811 (0.032)3intoUNet

aIoU: intersection over union.

Additional Test With the Full-Stack Image Data Set
The data set of magnetic resonance images that were collected
from 60 new participants (males: n=19; females: n=41; age:
mean, 47.1 years, SD 15.27 years; range 21-68 years) for an
additional test consisted of 33 subjects with definite Ménière
disease (unilateral or bilateral), 17 subjects with sensorineural
hearing loss and vertigo, and 10 normal subjects without any
symptoms.

System validation was performed on the full-stack images of
the subjects. Each image consisted of 104 MRC axial-view
image slices, and 3 sequential slices—the main axial-view image
slices and the previous and next slices—were fed into the trained
model as an input. The model automatically segmented the

organs by simultaneously analyzing the three input images and
generated a segmentation result as an output. A total of 102
segmented output images were acquired from a subject's stack,
and 1 image from each class was selected as a representative
result.

With regard to the total 240 image slices of the target organs
of 60 subjects, the distance (ie, the number of slice indices)
between the manually selected image slices and system-selected
image slices was 0 for 105 cases (43.8%), 1 in 233 cases
(97.1%), and 2 in 240 cases (100%), as shown by the graph in
Figure 3. This means that the representative magnetic resonance
slices (ie, from a data set of unseen magnetic resonance images)
that were automatically selected by the INHEARIT-v2 system
only differed from a maximum of 2 expert-selected slices.
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Figure 3. Performance of the inner-ear hydrops estimation via artificial intelligence-version 2 (INHEARIT-v2) system in finding the representative
slice index in the magnetic resonance image stacks of 240 target organs of 60 subjects.

Agreement Analysis of EH Ratios That Were
Calculated by Using the Test Data Set
HYDROPS-Mi2 images were generated at the selected slice
index, and EH ratios were calculated for all additional test cases.
A case example of segmentation and EH visualization is

represented in Figure 4; an MRC patch for a left ear was
segmented, and the EH of the left cochlea (as seen in the
HYDROPS-Mi2 patch) is shown in orange. The segmented
result was used as a mask. A hydrops was overlaid on the
segmented result, and the calculated EH ratio was 0.633.

Figure 4. Visualization of an endolymphatic hydrops in a left cochlea. A: Magnetic resonance cisternography patch (left ear). B: Left cochlea segmentation
result. C: HYDROPS-Mi2 patch (left ear). D: Endolymphatic hydrops. E: Endolymphatic hydrops in the left cochlea. HYDROPS-Mi2: hybrid of the
reversed image of the positive endolymph signal and native image of the positive perilymph signal image multiplied by T2-weighted magnetic resonance
cisternography.
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The agreement between the physician-calculated and
INHEARIT-v2–estimated EH ratios was calculated. The average
ICC value for all cases was 0.941; the average ICC of the

vestibules was 0.968, and that of cochleae was 0.914 (Figure
5). The average INHEARIT-v2–based calculation time was
3.585 seconds (SD 0.642 seconds) per subject.

Figure 5. The correlation between physician-calculated (ground truth) EH ratios and those predicted by the proposed platform (based on the segmentation
area). EH: endolymphatic hydrops.

Discussion

Principal Findings
Due to the development of MRI machines, data and image
processing technology, big data, and cloud systems, the role of
artificial intelligence in the medical field will likely increase
with time. Recently, algorithms have begun to help clinicians
in real-world clinics and have been used to predict clinical
outcomes that are useful for health care systems [3]. We
developed a fully automated analytic system—the
INHEARIT-v2 system—for calculating EH ratios by using deep
learning and MRI. The INHEARIT-v2 system automatically
segmented cochleae and vestibules in brain MRC images and
detected representative slices for these organs. The system
estimated the EH ratios of segmented regions in key image
slices, and the results had a high correlation with those that were
manually calculated by experts during an additional test.

Since the mid-2000s, the analysis of EHs by using 3T MRI has
been widely accepted as a useful method for the diagnosis of
Ménière disease among various groups [10,20]. In particular,
injecting contrast media through an intravenous route is a widely
used MRI method for patients with Ménière disease because it
is less invasive, results in shorter waiting times for patients, and
allows physicians to observe both ears simultaneously [11].
Recently, hydropses have been evaluated in several studies
either by precisely dividing each area of the cochlea and
vestibule or by using a 3D model to measure the whole volume
of the endolymphatic space based on magnetic resonance images
[21,22].

Recent medical image studies have reported the development
of fully automated analytic systems. The implemented tools

were designed to provide end-to-end workflows to minimize
the amount of human intervention during analysis [23,24].
Several recent studies used deep learning techniques to segment
inner ears and related organs in medical images. Some studies
were conducted on computed tomography images to segment
other organs, such as the sigmoid sinus, facial nerves, or
temporal bones [25,26]. Another study analyzed magnetic
resonance images for labyrinth segmentation [27]. These studies
analyzed various ear-related organs in 3D space, but the main
purpose of segmentation was primarily anatomical visualization
for surgical planning. However, our study is different because
the objective of segmentation was to calculate EH ratios in
patients with Ménière disease by conjoining different magnetic
resonance image modalities.

The results of our study substantially complemented the
limitations of our previous study [12]. Although our former
results laid the foundation for conducting EH analyses with
deep learning technology, in this study, the improvements
allowed for immediate clinical diagnosis and follow-up.
Consequently, the accuracy of the EH analysis increased, and
even if a human expert did not choose a representative image
slice, the representative section was automatically extracted
from the magnetic resonance image stack and analyzed
successfully.

Another technical improvement over our previous study is that
in this study, various deep learning models, such as the U-Net
and Inception-v3 networks, were used as a base architecture.
We developed a better performing model that effectively
segmented inner ears. Furthermore, an additional test was
performed to prove the robustness of the system. By developing
the INHEARIT-v2 system, expert interpretation became much
easier and faster, and more objective analyses were possible.
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The best performance, which was based on the mean area under
the receiver operating characteristic curve from the fivefold
cross-validation, was achieved by the 3intoUNet network, which
was based on the U-Net architecture. The U-Net network is
designed for medical image segmentation [16]. As such, it is
distinguishable from other deep learning models, such as
VGG-19 and Inception-v3. Further, it was initially developed
for the classification of raw images, such as those of a car,
building, or human [13,15]. The 3intoUNet network allows for
the analysis of consecutive images, similar to how medical
experts browse an MRI stack to identify the location of a target
organ. This serial-image training approach was suggested in
our previous study on using a VGG-19–based model, which
proved to be effective in a medical image segmentation task
[12]. The same approach was successful for both the
U-Net–based and Inception-v3–based networks. Since inner
ears occupy only a small portion of the area (<60 pixels) in
whole-brain images (384×324 pixels), the 3intoUNet network
has a generalizable architecture for analyzing full-stack magnetic
resonance images.

With regard to the performance of the system in automatic
representative slice selection, when compared to physicians’
choices, the system’s choices had a gap distance of ≤2 for 100%
(240/240) of the test data set. The physicians' goal was to select
a key slice of an organ based on the organ's anatomical
relationship with other organs [12], whereas the system's goal
was to locate the slice with the largest segmented area for each
organ. Despite the possible minimal misalignment between the
automatically selected and manually selected key slices, the
correlation between the INHEARIT-v2–calculated and
physician-calculated EH ratio values was high, indicating that
the amount of misalignment did not substantially affect the EH
ratio calculation. Based on our results, measuring the entire
hydrops volume of the cochlea and vestibule for diagnosis is
unnecessary.

Several concerns might arise when artificial intelligence systems
are used in real clinical settings. In this study, we found that
using such artificial intelligence systems could be an alternative
to manually measuring hydrops ratios in real settings. However,
this does not mean that Ménière disease can only be diagnosed
by this system. The cutoff value for the EH ratio was not clearly
defined during the diagnosis of definite Ménière disease. Future
studies for estimating the EH ratio cutoff value in the diagnosis

of definite Ménière disease are still needed. In addition,
HYDROPS-Mi2 images were used to analyze EH ratios.
However, these images were acquired via software modification,
and hydropses in modified images can be more exaggerated
compared to those in original images. The final concern is that
Ménière disease is a multifactorial disease, which means that
making an accurate diagnosis is typically a very complex
process. Other diseases that mimic the symptoms of Ménière
disease should be ruled out in clinical settings. The main purpose
of hydrops measurement via artificial intelligence is to provide
clinical support, which can be helpful for medical professionals
when making a final clinical diagnosis.

Future studies can include additional normal control subjects
to determine the optimal EH ratio threshold by comparing
individuals with Ménière disease and healthy individuals without
the disease. However, the association between clinical symptoms
and EHs is not uniform from patient to patient; thus, such
analyses require a clinician's comprehensive judgment [28]. To
improve these analyses, in addition to magnetic resonance
images, a model for analyzing heterogeneous data, such as the
clinical variables used for diagnosis, can be applied to the deep
learning algorithm. In addition, because the cause and
mechanism of Ménière disease have not been fully elucidated,
such technology can be widely used for the differential diagnosis
of other conditions that are thought to be associated with EHs
[29].

Notably, we fully automated the calculation of EH ratios by
developing an analytic system—the INHEARIT-v2 system—by
using MRI and deep learning, which have important clinical
implications. Although several aspects should be further
investigated, this framework will be a helpful tool for clinicians
who adopt an MRI analysis approach for diagnosing patients
with Ménière disease.

Conclusion
We developed a fully automated system—the INHEARIT-v2
system—for calculating EH ratios by using deep learning and
MRI. The proposed system can quickly and accurately analyze
EHs without the intervention of an expert of various inner ear
diseases, including Ménière disease experts. This automatic
system can perform objective and time-saving analyses for
assessing the EH ratios in the inner ear magnetic resonance
images of patients with Ménière disease.
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