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Abstract

Background: In-hospital cardiac arrest (IHCA) is associated with high mortality and health care costs in the recovery phase.
Predicting adverse outcome events, including readmission, improves the chance for appropriate interventions and reduces health
care costs. However, studies related to the early prediction of adverse events of IHCA survivors are rare. Therefore, we used a
deep learning model for prediction in this study.

Objective: This study aimed to demonstrate that with the proper data set and learning strategies, we can predict the 30-day
mortality and readmission of IHCA survivors based on their historical claims.

Methods: National Health Insurance Research Database claims data, including 168,693 patients who had experienced IHCA
at least once and 1,569,478 clinical records, were obtained to generate a data set for outcome prediction. We predicted the 30-day
mortality/readmission after each current record (ALL-mortality/ALL-readmission) and 30-day mortality/readmission after IHCA
(cardiac arrest [CA]-mortality/CA-readmission). We developed a hierarchical vectorizer (HVec) deep learning model to extract
patients’ information and predict mortality and readmission. To embed the textual medical concepts of the clinical records into
our deep learning model, we used Text2Node to compute the distributed representations of all medical concept codes as a
128-dimensional vector. Along with the patient’s demographic information, our novel HVec model generated embedding vectors
to hierarchically describe the health status at the record-level and patient-level. Multitask learning involving two main tasks and
auxiliary tasks was proposed. As CA-mortality and CA-readmission were rare, person upsampling of patients with CA and
weighting of CA records were used to improve prediction performance.

Results: With the multitask learning setting in the model learning process, we achieved an area under the receiver operating
characteristic of 0.752 for CA-mortality, 0.711 for ALL-mortality, 0.852 for CA-readmission, and 0.889 for ALL-readmission.
The area under the receiver operating characteristic was improved to 0.808 for CA-mortality and 0.862 for CA-readmission after
solving the extremely imbalanced issue for CA-mortality/CA-readmission by upsampling and weighting.

Conclusions: This study demonstrated the potential of predicting future outcomes for IHCA survivors by machine learning.
The results showed that our proposed approach could effectively alleviate data imbalance problems and train a better model for
outcome prediction.

(J Med Internet Res 2021;23(9):e27798) doi: 10.2196/27798
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Introduction

Background
In the United States, approximately 209,000 patients experience
in-hospital cardiac arrest (IHCA) each year [1]. The rate of
survival to hospital discharge is around 14%, and only 7% of
IHCA patients could regain an independent life or a partially
independent life [2]. In order to reduce the severe effect of IHCA
on personal life or society, identifying measures to improve
IHCA outcomes is crucial.

Prior Work
Prognostic factors and prediction tools for survivors of IHCA
and their neurologic outcomes have been identified in previous
studies [3-8]. However, the evidence of an early warning system
for predicting the mortality of IHCA survivors is limited.
Current early warning scoring systems using physiologic
track-and-trigger systems (TTSs) have been developed for
identifying patients at risk for IHCA or other serious outcomes
including mortality [9-11]. Most of TTSs rely on the routine
observations of vital signs carried out by ward staff. Although
many patients could be monitored with this approach, the quality
of evidence underpinning the use of TTSs is poor. Specifically,
most TTSs have low sensitivity, low positive predictive values,
and high specificity [12,13]. In addition to the high mortality
after IHCA, readmission after IHCA has a significant cost
burden and is associated with comorbidities. Predicting
readmission events provides the chance for appropriate
interventions and reducing health care costs, including further
readmission [14,15].

Our Study
Here, we first extracted the IHCA cohort from the National
Health Insurance Research Database (NHIRD). We assessed
their risk based on historical electronic health records (EHRs)
in the NHIRD. To provide a long enough window for clinical
intervention, we used the 30-day mortality and readmission
after IHCA as our prediction targets. In contrast to TTSs, EHRs
are prepared by physicians, and they contain several important
medical information, including the diagnosis and management

of patients. To achieve a better performance, we developed a
novel deep learning model, hierarchical vectorizer (HVec), to
analyze the patients’ historical EHRs and predict mortality and
readmission. This study aimed to demonstrate that with the
proper data set and learning strategies, we can predict the
outcome of IHCA patients based on their historical claims and
help clinicians design more effective intervention programs.

Methods

Data Collection
This study was approved by the Institutional Review Board of
National Taiwan University Medical College. The IHCA cohort
extracted from the NHIRD consisted of 168,693 patients who
had at least one IHCA event over 9 years (between January 1,
2002, and December 31, 2010). The Taiwan National Health
Insurance program is the only health insurance scheme in
Taiwan and covers up to 99.99% of Taiwan’s population [16].
The NHIRD contains all health records in inpatient and
outpatient settings (clinic or emergency department); however,
the records cannot be specifically linked to each patient.
International Classification of Disease, 9th Revision (ICD-9)
was used during the study period for diagnosis and medical
procedures. The NHIRD contains medical information, including
gender, age, diagnosis, medical procedure, operation,
medication, laboratory test, care site, discharge status, and cost
of each hospital visit. Laboratory test results and bedside
information, including vital signs, blood pressure, and physical
examination, are not included in the NHIRD.

The IHCA population was defined by inpatient records with
the ICD-9 procedure codes 99.60 (cardiopulmonary
resuscitation, not otherwise specified) and 99.63 (closed-chest
cardiac massage) [17]. We used the extract, transform, and load
(ETL, see Figure 1) procedure to process raw data into a clean
database by eliminating records with missing or invalid
information. Raw data in the cleaned database were re-grouped
into three major categories (insurer, person, and caregiver) to
improve data organization. In addition, vocabulary tables were
constructed based on extracted concepts that were used in the
raw data.
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Figure 1. ETL process for converting raw NHIRD data into the data set. The raw data are extracted, transformed, and loaded into the cleaned database
after cohort selection and eliminating the invalid data. ETL: extract, transform, load; ICD: International Classification of Disease; NHIRD: National
Health Insurance Research Database.

Experimental Data Set
The 168,693 patients in the data set were split into three data
sets: train, validation, and test. The training data set (70% of
the data set) was used to train each model. The remaining 30%
of patients were split between the validation and test data set
evenly to tune the hyperparameters (Table 1) and evaluate model
performance, respectively.

For comparison, we trained two single-task models for both
mortality and readmission. Person upsampling and event
weighting were only performed on the training data set so as
not to affect the distribution of the validation and test data set.
The F1 score and area under the receiver operating characteristic
(AUROC) were our main evaluation metrics.

Table 1. Hyperparameter settings.

ValueHyperparameter

200Visit embed size

128RNNa output size

1e-3Learning rate

0.5Dropout rate

0.01l2_weights

128Code embed size

aRNN: recurrent neural network.

Input Features
In the retrospective review of the data set, each person may
have multiple clinical records (inpatient/outpatient visit) to the
hospital within a 9-year period. Each clinical record was set as
a unit of analysis. For each clinical record, information was
extracted and grouped into input and target features (see Tables

2 and 3). The input features consisted of five major groups
described as follows:

1. Medical records consisted of five types of codes, and all
codes in the clinical records were mapped to over 400,000
clinical concepts. The health status of the patient in the
current record can be determined from this group.
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2. Demographics included the age, gender, and information
of the targeted patients.

3. Care site information included information of the clinical
institution where the patient received treatment.

4. Record statistics provided information on the length (by
day) of the record, the number of codes in each International

Classification of Disease (ICD) code category, and the total
monetary cost involved. This could help the model estimate
the severity of the patient’s disease at the record level.

5. Historical information described previous hospital stays
and admissions. It was used to estimate the overall health
status of the patient in our model.

Table 2. Summary of the input features of the model.

DimensionFeature descriptionGroup and feature name

Medical records

128Diagnosis codes from the health recordDiagnosis

128Procedure codes from the health recordProcedures

128Medication codes from the health recordMeds

128Lab test codes from the health recordTests

128Other codes from the health recordOther

Demographics

2Inpatient or outpatientClaim type

1Age at the eventAge

2Male or femaleGender

Care site information

21Type of site (public, corporate, or private)Care site type

5Medical center, community hospital, district hospital, regional hospital, or clinicCare site specialization

17Rank of the care siteCare site rank

Record statistics

1Duration of current hospital stayHospital stay

5Monetary cost of each of the five ICDa codesTotal cost

5Counts of each of the five ICD codesTotal count

Historical information

4The number of days a person spends in the hospital within 3, 6, 12, and 24 monthsPast hospitalization duration

4The number of times a person is admitted to the hospital within 3, 6, 12, and 24 monthsPast admission count

aICD: International Classification of Disease.

Table 3. Summary of the prediction targets.

DimensionFeature descriptionGroup and feature name

Main target

1Whether this event would lead to another mortality event in (within 1 to 30) daysMortality

1Whether this event would lead to another readmission event in (within 1 to 30) daysReadmission

Targets
A threshold of 30 days was set to predict whether a person
would die or readmit within 30 days. Mortality was defined
when the patient had an inpatient or outpatient record of
mortality or was discharged under critical condition following
IHCA. For readmission, whether the patient is readmitted within
1 to 30 days from hospital discharge was predicted. In contrast
to other mortality studies, records with mortality (0-day
mortality record) were excluded in our study. The main purpose
of this strategy was to reduce the “leakage” of features in these

records. Our initial results showed that the features of mortality
records usually contain information (eg, respiratory failure)
explicitly indicating patient mortality. Indeed, these features
are significant factors for predicting mortality. However, such
cases are not beneficial to our model as the severe condition of
these patients makes it hard to treat them with any intervention.
Moreover, the high degree of correlation of these features and
mortality would cause the model to rely on them and
underestimate other potential predictive factors. In order to
avoid leakage and let the model focus on other predictive factors,
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mortality records were set as the negative class, and previous
records of mortality (within 30 days) were the positive class.

In clinical practice, the 30-day outcomes of patients after IHCA
and discharge from hospitalization are of great interest. The
30-day mortality or readmission after cardiac arrest (CA;

CA-mortality/CA-readmission) is a subset of 30-day mortality
or readmission. In the rest of the paper, ALL-mortality/
ALL-readmission will be used to represent the 30-day mortality
or readmission for all records. CA-mortality/CA-readmission
refers to the 30-day mortality or readmission following CA
(Figure 2).

Figure 2. ALL/CA-mortality and ALL/CA-readmission. 3 scenarios of 30-days mortality & readmission after cardiac arrest. Events in red are the
outcomes we want to predict. ALL-mortality: 30-day mortality after all records; ALL-readmission: 30-day readmission after all records; CA: cardiac
arrest; CA-mortality: 30-day mortality after cardiac arrest records; CA-readmission: 30-day readmission after cardiac arrest records.

ALL-mortality/ALL-readmission is more common than
CA-mortality/CA-readmission as most people would not survive
after the first CA event. This means that when we want to predict
the future outcome of a recovered CA patient, we do not have
enough positive cases for analysis.

Hierarchical Vectorizer (HVec)
Each record was constructed into a 707-dimension vector for
further training. Based on Table 1, all features except for ICD
code features (textual features) can be vectorized with one-hot

encoding. The features of ICD codes were extracted directly
from the health record. A medical knowledge embedding system
called Text2Node was used to embed the textual features into
vectors [18]. Each of the five categories of ICD codes could
contain many ICD codes from a single record, and all codes
were added together as a single code for a given category (see
Figure 3 as an example). Trained from a substantial medical
knowledge database, Text2Node can effectively transform the
textual medical concepts into a latent space while preserving
the relationship of similar concepts.
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Figure 3. Example of Text2Node embedding [18] and code embedding for diagnosis codes in a clinical record. Dim: dimension; ICD: International
Classification of Disease.

For each clinical record, by concatenating all feature vectors
into group vectors hierarchically (see Figure 4), the clinical
record vector was obtained. After sorting each clinical record

vector according to the date, time series techniques were used
to train a model to predict the outcomes of each record.

Figure 4. Feature concatenation to generate clinical record vectors for time series analysis. ICD: International Classification of Disease; Vec: vector.

Model Architecture
Deep recurrent neural networks (RNNs) have been proven to
be a powerful tool for predicting time series data. In clinical
research, the use of RNNs, especially long short-term memory
(LSTM), for clinical prediction has been widely investigated
[19-21]. Inspired by Choi’s work [19], we proposed an HVec
model using LSTM networks (Figure 5). In this framework, the

record encoder was a fully-connected layer that generated the
record embedding for each clinical record independently. The
record embedding was a latent vector that contained all the
information representing the current clinical record. This latent
vector was used as the input of the LSTM to update the person
vector (ie, patient status). This person vector was then used to
predict our targets.
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Figure 5. HVec model using LSTM networks. HVec: hierarchical vectorizer; LSTM: long short-term memory; Vec: vector.

However, most previous studies were based on a relatively
balanced data set. As we pointed out earlier, the distribution of
CA-mortality/CA-readmission is extremely imbalanced.
Training LSTM networks with an extremely imbalanced data
set is always challenging because, without a carefully designed
training strategy, the model could be biased (ie, predicting the
negative class for all records). In order to address this problem,
two different training strategies have been proposed to alleviate
model bias during the training step:

1. The multitask learning framework was introduced to
combine several related learning tasks to regularize the
gradient and alleviate data imbalance problems during
training.

2. At the person level, CA-mortality/CA-readmission records
were upsampled, and at the record level, higher weights
were assigned to CA records.

Multitask Learning
The multitask learning framework was proposed, and several
auxiliary related tasks were added to the HVec outputs (Figure
6). In this framework, the main functions were mortality and
readmission. Here, instead of dividing each main task output
into ALL-mortality/ALL-readmission and CA-mortality/
CA-readmission independently, an output was considered to
cover both because the latter is a subset of the former. Although

the distribution was different, they still can be achieved
simultaneously with the proposed person upsampling and CA
record weighting (described in the next section). Inspired by a
previous study [22], three auxiliary autoencoder tasks were
introduced to help the model learn the embeddings (Figure 6).
Two self-supervised regression tasks were also introduced to
allow the embedding to “memorize” the current cost and predict
the future cost. Furthermore, another classification task was
implemented to predict whether a record is an IHCA record
considering that we observed the correlation of IHCA to
mortality in the previous analysis.

To monitor the gradients of different tasks and regularize the
learning process with auxiliary tasks, Theorem 1 was adopted
from Du et al [23].

Theorem 1 given any gradient vector field G(θ(t)) = ∇θ   (θ) (1)

to denote the main task and an arbitrary vector field V(θ(t)) to
denote the gradient from another auxiliary task, the update
strategy using:

θ(t+1) := θ(t) - α(t) (G(θ(t)) + V(θ(t)) + max (0,

cos(G(θ(t)), V(θ(t)))) (2)

with a proper can coverage to a local minimum.

Following this theorem, HVec can learn and converge with a
large data set.
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Figure 6. Multiple outputs for multitask learning. Cum: cumulative; Emb: embedding; ER: emergency room; Hstay: hospital staying; ICD: International
Classification of Disease; IHCA: in-hospital cardiac arrest; Infor: information; LSTM: long short-term memory; Stats: statistics; Vec: vector.

Person Upsampling and CA Record Weighting
Although the gradients from different tasks can be monitored
in multitask learning, with a heavily imbalanced data set (eg,
CA-mortality), the auxiliary tasks may fail to regularize the
main task. When we trained the HVec model, all records of a
person were treated as a single sequential record and fed together
into the model. Therefore, in each batch, the batch size was
equal to the number of people in the batch. Compared with the
number of all records, the number of CA records for each person
was relatively rare. CA-mortality and CA-readmission were
rare compared with ALL-mortality and ALL-readmission.

The weighting strategy [24] was proposed to solve this problem
from two perspectives: at the person level, patients with
CA-mortality/CA-readmission records were upsampled per
batch (see Figure 7); at the record level, a higher weight was

assigned to CA records to make the objective function more
sensitive to CA-mortality/CA-readmission records. The
upsampling of patients with CA-mortality/CA-readmission
records can guarantee that at the person level, there are more
CA-mortality/CA-readmission records [25].

Assigning a higher weight to CA records could also emphasize
the CA records during training by modifying the loss functions
accordingly. Considering N-loss functions {L1,…,LN}
corresponding to auxiliary tasks, the loss function can be written

as (3).

Where (4) is a function that equals 1 if the statement in the
bracket is true and otherwise 0; wpos and wneg are the positive
and negative class weight, respectively. Combined with the
gradient update strategy in equation 1, the HVec can learn from
the extremely imbalanced data set effectively.
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Figure 7. Person upsampling.

Results

Overview
A total of 168,693 patients and 4,622,079 clinical records were
extracted from the NHIRD over 9 years, and 3,052,601 records

(dentist records, traditional medicine records, or local clinic
records) were excluded because these records were concentrated
with repetitive conditions and mainly added noise to the machine
learning models (Figure 8).
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Figure 8. CONSORT diagram of the study cohort. ALL-mortality: 30-day mortality after all records; ALL-readmission: 30-day readmission after all
records; CA: cardiac arrest; CA-mortality: 30-day mortality after CA records; CA-readmission: 30-day readmission after CA records; IHCA: in-hospital
cardiac arrest.

There were 1,569,478 clinical records in the cleaned database,
including both inpatient and outpatient records, from 168,693
patients (mean number of records per person: 9.30, SD 10.90)
who have experienced at least one IHCA event. The results
indicate an imbalanced data set, where the most imbalanced
task was CA-mortality with a ratio of 0.53%. The characteristics
of the study population are summarized in Table 4. There were
173,345 IHCA records (11.04% of the total clinical records),
and on average, there were 1.02 IHCA records for each person.

The age of the patients in the data set ranged from 0 (newborn)
to 118 years (mean age 68.66, SD 18.96 years), including
104,691 females and 64,002 males. Overall, 164,322 patients
(97.4%) had CA only once, 4,174 patients (2.4%) had CA twice,
and only 197 patients (0.2%) had CA more than twice. Death
was recorded for 87,311 patients (51.75% mortality rate). Of
these 87,311 patients, 82,225 patients died during their first
hospitalization for CA (94.17%; Figure 9).

Table 4. Characteristics of the study population.a

Study population (N=168,693)Characteristics

68.66 (18.96)Age (years), mean (SD)

64,002 (37.9)Gender (male), n (%)

9.30 (10.90)Record number per person, mean (SD)

Cardiac arrest frequency, n (%)

164,322 (97.4)1

4174 (2.4)2

197 (0.2)≥3

87,311 (51.75)Mortality, n (%)

aContinuous variables are presented as the mean (SD), and categorical variables are presented as the number (percentage of the study population).

J Med Internet Res 2021 | vol. 23 | iss. 9 | e27798 | p. 10https://www.jmir.org/2021/9/e27798
(page number not for citation purposes)

Chi et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 9. Age and mortality statistics of the data set. CA: cardiac arrest.

Experiment 1: Single-Task Learning Versus Multitask
Learning
In this experiment, person upsampling and event weighting
were not applied. The model performance is summarized in
Tables 5 and 6.

As shown in Table 5, multitask learning could improve the
model performance for ALL-mortality and CA-mortality in

terms of the AUROC and F1 scores. Based on single-task and
multitask results, there was a relatively high improvement in
performance for the extremely imbalanced CA-mortality task
compared with the ALL-mortality task. However, the precision
was relatively low due to the imbalance ratio, which also
affected the F1 score. Moreover, the F1 score of CA-mortality
was too low for real-life applications.

Table 5. Single-task and multitask learning performance for CA-mortality and ALL-mortality.a

ALL-mortalityCA-mortalityMortality

RecallPrecisionF1AUROCRecallPrecisionF1AUROCb

0.1800.1010.1300.6630.0240.0100.0140.658Single-task learning

0.3490.0930.1470.7110.0600.0410.0490.752Multitask learning

aCA-mortality: cardiac arrest mortality (30-day mortality after CA records); ALL-mortality: 30-day mortality after all records.
bAUROC: area under the receiver operating characteristic.

As shown in Table 6, the improvement in multitask learning
for readmission prediction was not as significant as that for

mortality prediction. Furthermore, in CA-readmission prediction,
the F1 score and precision were decreased.

Table 6. Single-task and multitask learning performance for CA-readmission and ALL-readmission.a

ALL-readmissionCA-readmissionReadmission

RecallPrecisionF1AUROCRecallPrecisionF1AUROCb

0.8010.4240.5540.8720.3150.1620.2140.847Single-task learning

0.8110.4300.5620.8890.3350.1520.2090.852Multitask learning

aCA-readmission: cardiac arrest readmission (30-day readmission after CA records); ALL-readmission: 30-day readmission after all records.
bAUROC: area under the receiver operating characteristic.

In this experiment, compared with single-task learning, multitask
learning could achieve a better performance for ALL-mortality
and ALL-readmission. However, multitask learning could not
solve the extremely imbalanced data set.

Experiment 2: Improving CA Prediction Performance
Experiment 1 showed that models had difficulties making good
predictions based on the CA-mortality and CA-readmission
data due to the extremely imbalanced data set. In this

experiment, we demonstrated that by applying person
upsampling and event weighting, we could further improve the
performance for CA-mortality and CA-readmission without
considerably affecting ALL-mortality and ALL-readmission.
In our experiment, the upsampling rate indicates how many
times upsampling was performed for the positive class (patients
with CA-mortality or CA-readmission) in a batch, and an
upsampling rate of 1 means we did not perform upsampling.
The CA event weight indicates the loss weight wpos in equation
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3, and we always set wneg=1. We used different upsampling
rates and event weights in our experiments. Our results are
summarized in Tables 7 and 8, including the previous results
on single-task model performance (first row of each table).

Overall, compared with the 30-day mortality task, the
imbalanced 30-day mortality task showed a larger increase in

performance when applying balancing techniques. As shown
in Table 7, after upsampling and event weighting, the models
demonstrated improved performance for both ALL-mortality
and CA-mortality. For CA-mortality, the F1 score was increased
by 36.7% (from 0.049 to 0.067).

Table 7. Mortality models with their respective hyperparameter configuration and their performance in predicting both CA-mortality and ALL-mortality.a

ALL-mortalityCA-mortalityMortality

F1AUROCF1AUROCbMultitaskEvent weightUpsampling rate

0.1300.6630.0140.658No11

0.1470.7110.0490.752Yes11

0.1550.7280.0640.808Yes110

0.1580.7260.0670.802Yes510

aCA-mortality: cardiac arrest mortality (30-day mortality after CA records); ALL-mortality: 30-day mortality after all records.
bAUROC: area under the receiver operating characteristic.

Similar to ALL-mortality and CA-mortality, the AUROC and
F1 score were increased for both ALL-readmission and
CA-readmission by applying the two techniques. Based on the
results in Table 8, a minor but consistent increase was achieved

in CA-readmission prediction. However, there was no significant
improvement in ALL-readmission prediction. This is because
upsampling and event weighting would not greatly affect the
learning process for a more balanced data set.

Table 8. Readmission models with their respective hyperparameter configuration and their performance in predicting CA-readmission and

ALL-readmission.a

ALL-readmissionCA-readmissionReadmission

F1AUROCF1AUROCbMultitaskEvent weightUpsampling rate

0.5540.8720.2140.847No11

0.5620.8890.2090.852Yes11

0.5550.8840.2300.861Yes15

0.5550.8840.2370.862Yes55

aCA-readmission: cardiac arrest readmission (30-day readmission after CA records); ALL-readmission: 30-day readmission after all records.
bAUROC: area under the receiver operating characteristic.

In summary, the results indicated that multitask learning,
upsampling, and event weighting could effectively improve the
model prediction performance for an imbalanced data set. We
also showed that these techniques could be collectively used to
achieve better results for an extremely imbalanced data set.

Discussion

In this study, we constructed a large patient database that
includes 9 years of EHRs for over 168,000 IHCA patients, which
can be used for future IHCA-related research. In addition, we
developed an HVec model (LSTM model) that uses a multitask
learning strategy to predict the 30-day mortality and
readmission.

The results showed that our model could successfully predict
future mortality and readmission using EHR data for IHCA
patients. We proposed the person upsampling and record
weighting strategies to handle the extremely imbalanced data
problem in this study. After applying these techniques, some

improvements were achieved in CA-mortality and CA-admission
prediction.

In contrast to other studies using deep learning models to predict
another IHCA event after CA [26], our study focused on
predicting the future outcomes of IHCA patients after discharge.
To the best of our knowledge, this is the first study to predict
mortality and readmission after IHCA events by machine
learning. The model may serve as a surveillance system for
those who experienced IHCA. Patients with a high risk of
mortality or readmission in the near future could be identified
and re-evaluated before discharge. This study also demonstrated
the potential of another model for predicting future mortality
and readmission after each record using previous EHRs
(ALL-mortality/ALL-readmission). The model might help
identify those with a high risk in inpatient and outpatient
situations. However, mortality and readmission rates are
different in the general population compared with the patients
selected in this study. Using hospital EHRs with patients’
information in the NHIRD, we can construct a real-time alert
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system based on machine learning methods to predict the
adverse events of IHCA survivors and improve their outcomes.
Further prospective studies are needed to verify the utility of
this system in the general population.

Several studies have reported models for predicting the
outcomes of CA patients [8]. In a systematic review of current
prediction models, the median AUROC value was 0.84 with an
IQR of 0.80 to 0.89 [8]. For IHCA survivors, Chan et al.
reported that the cardiac arrest survival post-resuscitation
in-hospital (CASPRI) score could be used to predict favorable
neurologic outcomes after discharge [3]. The AUROC of the
CASPRI score was 0.80. Nanayakkara et al used deep learning
models to predict the IHCA events of CA survivors, and the
AUROC was 0.87 [26]. In our study, we encountered the
difficulty of imbalanced data. Using proper learning strategies,
we achieved comparable AUROC values (0.808 for
CA-mortality and 0.862 for CA-readmission). However, the
recall and precision rates were low in our study due to
imbalanced data. This is a challenge we aim to resolve. When
using historical medical records to predict outcomes, in many
cases, the records contain information that may indicate the
outcomes. For example, critical diagnosis and rescue medication
are often associated with mortality. Including these types of
information can facilitate training and give a high AUROC and
F1; however, the model itself is of limited use. Mortality records
were set as the negative class in our study to avoid overfitting.
In further studies, the model may be improved by adjusting the
threshold to optimize the trade-off between specificity and
sensitivity.

In our HVec framework, we encoded each person’s EHRs in
two levels of latent vectors (record-level and person-level) and
ensured that the model learns both simultaneously using the
unsupervised autoencoder strategy. The predictive results were
promising with these latent vectors. The latent vectors in these
two levels may be further explored to facilitate clinicians’
decision-making and provide better clinical interventions. In
addition, the person vector may be used as a biomarker to
evaluate the overall health status of a person beyond the health
care setting. Along with some recently developed models such

as Deep Patient [22] and MixEHR [27], we showed that the use
of deep neural networks to extract information from EHRs might
solve complex clinical research problems.

An imbalanced data distribution is common in clinical research,
especially for disease-related predictions. In comparison with
common diseases, many important diseases lack positive cases,
making it difficult to train a good model. In a previous study
[19], the authors attempted to address this problem by using a
balanced, distributed data set and train a deep learning model
with the balanced data set. Similarly, in this study involving
CA-mortality and CA-readmission, we demonstrated that by
carefully designing model learning strategies (eg, multitask
learning and upsampling), some common problems in clinical
research could be solved effectively with machine learning
models.

This study has some limitations. First, the IHCA cohort was
retrospectively extracted from the NHIRD. Further studies are
needed to evaluate the efficacy of this model as an early warning
system and determine how this system affects patients’
outcomes. Second, as our model was developed based on the
NHIRD, the generalization of this model to other health
insurance data sets is not proven. Third, each patient’s vital
signs and laboratory data were not included in the analysis due
to the study design. A combination of EHRs and patients’
clinical data may further improve model performance. Fourth,
traditional machine learning methods have the limitation of
interpretability. Specific risk factors for 30-day
mortality/readmission were unknown in this study. In future
studies, we plan to develop an explainable model and investigate
specific predictive factors in the model.

In summary, our model showed good performance in predicting
30-day mortality and readmission after IHCA, which can help
clinicians monitor CA patients' status better. We aim to provide
more insights to clinicians with proactive intervention
recommendations. Nevertheless, a challenge remains in the
interpretative ability of the deep learning model. Our future
work will mainly focus on the interpretative power of the model
trained using EHRs.
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