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Abstract

Background: Digital biomarkers (DB), as captured using sensors embedded in modern smart devices, are a promising technology
for home-based sign and symptom monitoring in Parkinson disease (PD).

Objective: Despite extensive application in recent studies, test-retest reliability and longitudinal stability of DB have not been
well addressed in this context. We utilized the large-scale m-Power data set to establish the test-retest reliability and longitudinal
stability of gait, balance, voice, and tapping tasks in an unsupervised and self-administered daily life setting in patients with PD
and healthy controls (HC).

Methods: Intraclass correlation coefficients were computed to estimate the test-retest reliability of features that also differentiate
between patients with PD and healthy volunteers. In addition, we tested for longitudinal stability of DB measures in PD and HC,
as well as for their sensitivity to PD medication effects.

Results: Among the features differing between PD and HC, only a few tapping and voice features had good to excellent test-retest
reliabilities and medium to large effect sizes. All other features performed poorly in this respect. Only a few features were sensitive
to medication effects. The longitudinal analyses revealed significant alterations over time across a variety of features and in
particular for the tapping task.

Conclusions: These results indicate the need for further development of more standardized, sensitive, and reliable DB for
application in self-administered remote studies in patients with PD. Motivational, learning, and other confounders may cause
variations in performance that need to be considered in DB longitudinal applications.

(J Med Internet Res 2021;23(9):e26608) doi: 10.2196/26608
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Introduction

Parkinson disease (PD) is primarily characterized by motor
signs and symptoms, including tremor at rest, rigidity, akinesia,
and postural instability [1]. Although standard in-clinic
assessments such as the Unified Parkinson's Disease Rating

Scale (UPDRS) are popular, they are influenced by interrater
variability by relying on self-reporting by patients and caregivers
or clinicians’ judgement [2]. In addition, they are costly and
limited with respect to observation frequency.

The emergence of new technologies has led to a variety of
sensors (ie, acceleration, gyroscope, GPS, etc) embedded in
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smart devices for daily use (ie, smartphone, smartwatch). Such
sensor data, alongside other digital information recorded
passively or when executing prespecified tasks, may provide
valuable insight into health-related information. Such
applications are now commonly referred to as digital biomarkers
(DB) [3-5]. DB being collected frequently over a long period
of time can provide an objective, ecologically valid, and more
detailed understanding of the inter- and intra-individual
variability in disease manifestation in daily life.

Numerous DB have been proposed for PD diagnosis as well as
for assessing agreement between clinical rating scales such as
UPDRS and sensor-driven data to quantify disease severity or
intervention effects [4,6-9]. Despite these various proof of
concept studies, many technical challenges with respect to DB
deployment remain unaddressed. DB measures are prone to
large variation caused by technical and procedural differences,
including but not limited to placement/orientation, recording
frequency of the devices, and environmental and individual
variation (ie, due to motivation, medication, or other aspects)
[10-12]. Other factors such as the effect of users' familiarity
with technology and the impact of learning on the performance
of measured DB in remote and self-administered PD assessment
are other important sources of variation that have not been
addressed so far. All of these factors may limit the sensitivity
and reliability of DB measurements for any of the above PD
clinical applications. DB longitudinal variation is therefore an
important attribute that should be quantified and addressed. The
reliability of DB assessment has been broadly studied for gait,
balance, voice, and tapping data [13-18]. However, the existing
studies typically focused on a single or a few aspects of PD,
and most of them established the test-retest reliability in a
standardized clinical setting, limiting the translatability of their
findings to at-home applications. Among the studies that
evaluated DB assessments for remote monitoring of PD, only
one reported the test-retest reliability [4]. No PD studies
systematically evaluated the test-retest reliability and
longitudinal sensitivity of DB in a fully unsupervised and
self-administered PD longitudinal setting.

Although various factors such as medication, disease severity,
learning effects, bias from self-reporting, inconsistent disease
severity, motivational impacts, and design protocols in
self-administered studies can affect the long-term stability of
DB, little attention has been paid to evaluating the reliability
and longitudinal stability of DB in loosely controlled
self-administered settings in daily life. Here, we aimed to
address these open questions by assessing the test-retest
reliability and longitudinal stability of gait, balance, speech,
and tapping tasks in patients with PD and a control cohort
consisting of healthy volunteers (HC) in an unsupervised and
self-administered daily life setting using the large-scale m-Power
data set [19].

Methods

Study Cohort
To address the open questions on the performance of DB
measures in PD when collected in a self-administered setting
in daily life, we first performed a comprehensive literature

search identifying 773 DB features reported in previous studies
to cover PD-related alterations in gait characteristics, tremor,
postural instability, voice, and finger dexterity. We evaluated
the longitudinal stability and test-retest reliability of these
features as collected using 4 commonly applied PD tasks (gait,
balance, voice, and tapping) in daily life using smartphone in
a large cohort of self-reported patients with PD and healthy
controls, the m-Power study [19-22]. In addition, we evaluated
their sensitivity to learning and medication effects.

Enrolment in the m-Power study was open to adult participants
who own an iPhone, are living in the United States, and are
comfortable enough with English to read the instructions in the
app. Participants were asked to download the app and complete
a one-time demographic survey during registration.
Demographic data include but are not limited to age, sex, health
history, and previous PD clinical diagnosis. They also were
asked to fill out a survey with selected questions from the
UPDRS Section I (nonmotor experience) and Section II (motor
experience), as well as the Parkinson’s Disease Questionnaire
(PDQ-8). All the participants were suggested to complete each
task (walking, tapping, voice, and memory) up to 3 times a day
for up to 6 months. In addition, self-reported patients with PD
were asked to complete the task before medication, after
medication, and at another time when they were feeling at their
best. 

Ethical oversight of the m-Power study was obtained from the
Western Institutional Review Board. Prior to signing an
electronically rendered traditional informed consent form,
prospective participants had to pass a 5-question quiz evaluating
their understanding of the study aims, participant rights, and
data sharing options. After completing the e-consent process
and electronically signing the informed consent form,
participants were asked for an email address to which their
signed consent form was sent and allowing for verification of
their enrolment in the study. Participants were given the option
to share their data only with the m-Power study team and
partners (“share narrowly”) or to share their data more broadly
with qualified researchers worldwide, and they had to make an
active choice to complete the consent process (no default choice
was presented). The data used in our study consist of all
individuals who chose to have their data shared broadly.

Data Preprocessing
The m-Power data set is assessed outside of a clinical
environment with limited quality control and supervision. All
information, including the health history, disease diagnosis,
duration, treatment, and survey outcomes, are self-reported. To
address these, we excluded participants who did not specify
their age, sex, and information on professional diagnosis (if
they belong to the PD or HC group) and those with empty, null,
or corrupted files. The participants are assigned to the PD or
HC group according to their response to the question “Have
you been diagnosed by a medical professional with Parkinson
disease?” There was a significant difference in the age and sex
distribution between HC and PD groups. Particularly, age
slanted toward younger and male individuals in HC. To reduce
the impact of age, we restricted the age range for our analysis
to between 35 and 75 years. The demographic details are
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provided in Table 1, and the overall overview of preprocessing steps is displayed in Figure 1A.

Figure 1. Overview of statistical analyses and the preprocessing scheme. (A) Flowchart of preprocessing steps. (B) Flowchart of statistical analyses.
(C) Flowchart of number of features at each selection step. HC: healthy controls; ICC: intraclass correlation coefficients; PD: Parkinson disease;
rm-ANOVA: repeated-measures analysis of variance.
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Table 1. Characteristics of study cohorts after data cleaning.

TappingVoiceBalanceGaitCharacteristic

PDHCPDHCPDHCPDbHCa

Sex,c n

63013705711042401668399655Male

340304322249211155211152Female

59.9 (9)46.9 (10.1)60.1 (9)47.7 (10.40)60.3 (8.90)48.9 (10.70)60.3 (8.90)49 (10.60)Age (years),c mean (SD)

12.54 (7.73)N/A12.58 (7.70)N/A12.53 (7.07)N/A12.60 (7.11)N/AeUPDRS,d mean (SD)

4.95 (3.27)N/A4.93 (3.25)N/A4.9 (3.11)N/A4.90 (3.12)N/AUPDRS I, mean (SD)

7.56 (5.70)N/A7.61 (5.70)N/A7.7 (5.40)N/A7.76 (5.41)N/AUPDRS II, mean (SD)

5.3 (4.96)N/A5.28 (5.01)N/A7.07 (4.70)N/A5.13 (4.72)N/APDQ-8,f mean (SD)

aHC: healthy controls.
bPD: Parkinson disease.
cP<.001 (two-sample, two-tailed t test for age and chi-square test for sex with 95% confidence) for all tasks.
dUPDRS: Unified Parkinson's Disease Rating Scale.
eN/A: not applicable.
fPDQ: Parkinson’s Disease Questionnaire.

Feature Extraction 
To identify features that are commonly used for the walking,
voice, and tapping tasks for PD applications, we performed a
comprehensive literature search in PubMed with the following
terms: ((Parkinson's disease) AND (walking OR gait OR balance
OR voice OR tapping) AND (wearables OR smartphones)).
Based on this search, we identified a total of 773 features related
to gait (N=423), balance (N=183), finger dexterity (N=43), and
speech impairment (N=124). All of these features were
computed for the m-Power study [23]. A detailed explanation
of the extracted features, including the respective references, is
provided in Tables S1-S4 in Multimedia Appendix 1. For
features sharing the same variance (high pairwise correlation:
Spearman ρ>0.95), only one of the features was selected
randomly for further analyses to reduce the amount of redundant
information for each task. Figure 1C summarizes the feature
extraction process and the number of features at each selection
step.

Gait and Balance
Impairments in gait speed, stride length, and stride time
variability are common changes that are linked to PD [24-27].
Instability in postural balance is also considered to be one of
the well-reported characteristics associated with PD [15,28-30].
Both were assessed by a walking task. The gait part consisted
of 20 steps walking in a straight line, followed by the balance
part of a 30-second stay still period. Given a heterogeneity of
gait signal lengths across participants, we used a fixed length
signal of 10 seconds and selected data from participants who
met this criterion, which resulted in 28,150 records from 1417
unique participants. In addition to the accelerometer signals (x,
y, and z), their average, the step series, position along the three
axes by double integration, and velocity and acceleration along
the path were used for feature extraction [31,32] (Table S1 in
Multimedia Appendix 1). For balance, we used a 15-second

time window, trimming the first 5 and the last 10 seconds of
the 30-second records to reduce the noise due to the
between-task transition period, resulting in 29,050 records from
1435 unique participants. Feature extraction covered signals
related to tremor acceleration predicted to fall in the 4-7 Hz
band and postural acceleration (nontremor) falling in the 0-3.5
Hz band [33] (Table S2 in Multimedia Appendix 1).

Voice
PD may also affect breathing and results in alterations in speech
and voice. Reduced volume, hoarse quality, and vocal tremor
are commonly reported for PD using voice analysis [16,34,35].
In this task, participants said “aaaah” for about 10 seconds. For
voice, 49,676 records were selected, belonging to 2184 unique
participants. Voice features were computed from fundamental
frequency, amplitude, and period signals, trimming the first and
the last 2 seconds of the 10-second interval (Table S3 in
Multimedia Appendix 1).

Tapping
Impairment in finger dexterity is another sign associated with
PD [36,37]. In the m-Power study, participants were asked to
tap as fast as possible for 20 seconds with the index and middle
fingers on the screen of their phone (positioned on a flat
surface). Screen pixel coordinate (x, y) and timestamp of taped
points plus acceleration sensor data were collected for this task.
Overall, 55,894 recordings were selected, belonging to 2644
unique participants. Features were computed based on the
intertapping distance and interval (Table S4 in Multimedia
Appendix 1).

Statistical Analysis 
For features to be considered usable for biomarker purposes in
longitudinal studies, several criteria are important, including
sensitivity to disease signs and symptoms, good test-retest
reliability, and robustness against the effects of learning and
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other longitudinal confounders. To address these criteria, we
adopted a stepwise statistical procedure (see Figure 1B for a
summary of statistical analyses).

As DB measures are frequently not normally distributed,
Mann-Whitney U tests were used to identify all features that
significantly differ between PD and HC at the first
administration (baseline) (P<.05). Effect sizes (Cohen d) were
computed for these features to provide an estimate of the
magnitude of differentiation between PD and HC.

Next, intraclass correlation coefficients (ICC, type 1-1) were
used to determine the test-retest reliability of features showing
a significant differentiation between PD and HC. We used ICC
type 1-1 in our study because individuals were not tested under
the same conditions (ie, same device), and reliability was
determined from a single measurement. ICC values of 0-0.40
were considered to be poor, 0.40-0.59 to be fair, 0.60-0.74 to
be good, and 0.75-1.00 to be excellent [38]. To assess the
reliability of each feature, ICC values were computed for
different time points versus baseline (one hour [0-6 hours], one
day [calendric day], one week [7 calendric days], or one month
apart [30 calendric days]), as well as for different repeats versus
baseline (baseline vs second, third, fourth, and fifth repeat). We
then focused our analyses on the top 10 features (as they provide
a representative subset of the best performing features) with the
highest median ICC values for each group (PD, HC) and tested
for their longitudinal stability over time. Results for all features
are reported in Multimedia Appendix 1. Features from the PD
group are further referred to as “PD features,” those from the
HC group only as “HC features,” and overlapping features from
both groups as “common features.” We computed
repeated-measures analyses of variance (rm-ANOVA) using a
mixed factorial design with a between-subject factor diagnosis
and a within-subject factor repetition (first, second, third, fourth,
and fifth) including their interaction (Equation S1 in Multimedia
Appendix 1). Participants who had at least 4 repetitions after

baseline (463 for gait, 597 for balance, 1085 for voice, and 1333
for tapping) were included in these analyses. To assess the
effects of age and sex on the longitudinal stability of the most
reliable features, we repeated all analyses while controlling for
age and sex as covariates (Equation S2 in Multimedia Appendix
1). Also, we assessed the impact of elapsed time between
repetitions by computing rm-ANOVA using a mixed factorial
design with a between-subject factor diagnosis and a
within-subject factor elapsed time (calculated as a time
difference of each repetition from the baseline in hours) and
controlling for age and sex (Equation S3 in Multimedia
Appendix 1).

Lastly, we assessed the impact of PD medication by computing
rm-ANOVA in the PD group with the within-subject factor
medication (ie, before, after, and at best) (Equation S4 in
Multimedia Appendix 1). Participants with PD who had at least
one marked task for each of the 3 PD medication conditions (ie,
before, after, and at best) were included in treatment effect
analysis (188 for gait, 189 for balance, 280 for voice, and 338
for tapping).

Results

Differentiation Between PD and HC
First, we aimed to restrict the test-retest reliability analyses of
the initial 773 features to those which significantly differ
between PD (N=610 to 970 depending on the task, Table 1) and
HC (N=807 to 1674). For this, we performed group comparisons
for all computed features for gait, balance, voice, and tapping
tasks. Overall, 66 out of 423 gait, 59 out of 183 balance, 60 out
of 124 voice, and 25 out of 43 tapping features differed
significantly (all Ps<.05) between PD and HC at baseline (Figure
1C) with small (gait and balance) to medium effect sizes for
gait, balance, and voice and small to large effect sizes for the
tapping task (Figure 2 and Tables S5-S8 in Multimedia
Appendix 1).
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Figure 2. Effect size (Cohen d) for the most reliable features in the Parkinson disease and healthy control groups selected from different time points
and repetitions. a: accelerometer average signal; iqr: interquartile range; min: minimum value; PeakEnerg: peak of energy; x: accelerometer mediolateral
signal; y: accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Gait task. cov: coefficient of variation; FB: freezing band; frec_peak:
frequency at the peak of energy; FreezeInd: freeze index; kur: kurtosis; LB: locomotor band; MSI: mean stride interval; RatioPower: sum of the power
in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. (B) Balance task. buttonNoneFreq: frequency of tapping outside the button;
CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF: high frequency
(>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL: ratio between
power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very high frequency
(>7 Hz). (C) Voice task. c_mean: mean of the MFCC; gqc: glottis quotient close; log: energy of the signal and the first and second derivatives of the
MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. (D) Tapping task. corXY: correlation of X and Y positions;
cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; sd: standard deviation; TapInter:
tap interval.

Test-Retest Reliability
Next, we identified the top 10 features with highest median
test-retest reliability (as measured using ICC) separately for PD
and HC across different time points (one hour, one day, one
week, or one month apart) and repetitions (all participants with
5 repetitions of the task) (Tables S5-S8 in Multimedia Appendix
1, Figure 1B). This procedure resulted in 12 to 15 features
(including shared ones) being selected for each task (Figure 3,
Figures S1 and S2 in Multimedia Appendix 1). ICC analyses
revealed poor to good test-retest reliability for these most
reliable features from the gait and balance tasks and good to

excellent reliability for features from voice and tapping tasks
(Figure 3). The average ICC across the best performing features
selected from different repetitions was lower at the fifth
repetition compared to the first; it dropped from 0.11 to 0.09
for gait, from 0.21 to 0.13 for balance, from 0.39 to 0.24 for
voice, and from 0.3 to 0.23 for tapping. The average ICC across
the best performing features selected from different time points
was also lower at one month compared to one hour apart,
decreasing from 0.13 to 0.07 for gait, from 0.2 to 0.12 for
balance, from 0.33 to 0.26 for voice, and from 0.32 to 0.19 for
tapping.
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Figure 3. Median ICC values for the most reliable features in the Parkinson disease and healthy control groups. a: accelerometer average signal; ICC:
intraclass correlation coefficient; iqr: interquartile range; min: minimum value; PeakEnerg: peak of energy; x: accelerometer mediolateral signal; y:
accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Median ICC values across different time points for the best performing
features. (B) Median ICC values across different repetitions for the best performing features. Gait task—cov: coefficient of variation; FB: freezing band;
frec_peak: frequency at the peak of energy; FreezeInd: freeze index; kur: kurtosis; LB: locomotor band; MSI: mean stride interval; RatioPower: sum
of the power in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. Balance task—buttonNoneFreq: frequency of tapping outside
the button; CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF:
high frequency (>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL:
ratio between power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very
high frequency (>7 Hz). Voice task—c_mean: mean of the MFCC; gqc: glottis quotient close; log: energy of the signal and the first and second derivatives
of the MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. Tapping task—corXY: correlation of X and Y positions;
cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; sd: standard deviation; TapInter:
tap interval.
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Repetition Effects
Next, we evaluated the longitudinal stability of these most
reliable features. Using rm-ANOVA, we tested for the main
effects of diagnosis, repetition (first, second, third, fourth, and
fifth), and their interaction (Figures 4 and 5, Tables S9 and
S10-S13 in Multimedia Appendix 1). A significant main effect
of diagnosis across all time points was observed for 6 out of 15
gait features, 11 out of 15 balance features, 8 out of 12 voice
features, and 11 out of 12 tapping features. A significant effect
of repetition was found for 8 out of 15 gait features, 8 out of 15
balance features, 4 out of 12 voice features, and 10 out of 12

tapping features. A significant diagnosis-by-repetition
interaction effect was identified for 3 out of 15 gait features, 0
out of 15 balance features, 3 out of 12 voice features, and 9 out
of 12 tapping features. Further, we tested for the main effects
of the elapsed time between repetitions and its interaction with
diagnosis (Tables S18-S21 in Multimedia Appendix 1). A
significant main effect of elapsed time was observed for 1 out
of 15 gait features, 2 out of 15 balance features, 5 out of 12
voice features, and 5 out of 12 tapping features. A significant
diagnosis-by-time interaction effect was observed only in 1 out
of 15 balance features and 3 out of 12 tapping features.
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Figure 4. Mean value of the best performing baseline features across different time points, calculated for PD and HC separately. a: accelerometer
average signal; HC: healthy controls; iqr: interquartile range; min: minimum value; PD: Parkinson disease; PeakEnerg: peak of energy; x: accelerometer
mediolateral signal; y: accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Gait task. cov: coefficient of variation; FB: freezing
band; frec_peak: frequency at the peak of energy; FreezeInd: freeze index; LB: locomotor band; MSI: mean stride interval; RatioPower: sum of the
power in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. (B) Balance task. buttonNoneFreq: frequency of tapping outside
the button; CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF:
high frequency (>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL:
ratio between power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very
high frequency (>7 Hz). (C) Voice task. c_mean: mean of the MFCC; gqc: glottis quotient close; log: energy of the signal and the first and second
derivatives of the MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. (D) Tapping task. corXY: correlation of
X and Y positions; cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; sd: standard
deviation; TapInter: tap interval.
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Figure 5. Mean value of the best performing baseline features across repetitions, calculated for PD and HC separately. a: accelerometer average signal;
HC: healthy controls; iqr: interquartile range; min: minimum value; PD: Parkinson disease; PeakEnerg: peak of energy; x: accelerometer mediolateral
signal; y: accelerometer vertical signal; z: accelerometer anteroposterior signal. (A) Gait task. cov: coefficient of variation; FB: freezing band; frec_peak:
frequency at the peak of energy; FreezeInd: freeze index; kur: kurtosis; LB: locomotor band; MSI: mean stride interval; RatioPower: sum of the power
in the freezing and locomotor band; skew: skewness; zcr: zero-crossing rate. (B) Balance task. buttonNoneFreq: frequency of tapping outside the button;
CFREQ: centroidal frequency; F50: frequency containing 50% of total power; FRQD: frequency of dispersion of the power spectrum; HF: high frequency
(>4 Hz); LF: low frequency (0.15-3.5 Hz); MF: medium frequency (4-7 Hz); post: postural; Power: energy between 3.5-15 Hz; RHL: ratio between
power in high frequency and low frequency; rms: root mean square; TotalPower: energy between 15-3.5 Hz; trem: tremor; VHF: very high frequency
(>7 Hz). (C) Voice task. c_mean: mean of the MFCC; gqc: glottis quotient close; log: energy of the signal and the first and second derivatives of the
MFCC; MFCC: Mel-frequency cepstral coefficients; p95: 95th percentile; shbd: shimmer. (D) Tapping task. corXY: correlation of X and Y positions;
cv: coefficient; DriftLeft: left drift; DriftRight: right drift; mad: median absolute deviation; numberTaps: number of taps; sd: standard deviation; TapInter:
tap interval.
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In an additional sensitivity analysis, we further tested if the
between-group differences and group-by-repetition interaction
remain significant when controlling for age and sex. The results
(Tables S14-S17 in Multimedia Appendix 1) show that a
significant effect of diagnosis was still identified for 2 out of 6
gait features, 8 out of 11 balance features, 1 out of 8 voice
features, and 10 out of 11 tapping features. A significant effect
of repetition was still found for 6 out of 8 gait features, 7 out
of 8 balance features, 3 out of 4 voice features, and 10 out of
10 tapping features. Also, a significant main effect of
diagnosis-by-repetition was still observed for 1 out of 3 gait
features, 1 out of 1 balance feature, and 8 out of 10 tapping
features.

Medication Effects 
Lastly, we tested which of the most reliable features identified
above also display sensitivity to PD medication. For this we
compared the conditions reported by the patients as being before
PD medication, after PD medication, or at best. A significant
effect of PD medication was only observed for 2 out of 15 gait
features, 1 out of 15 balance features, 2 out of 12 voice features,
and 1 out of 12 tapping features (Figure S3, Tables S9 and
S10-S13, medication column, in Multimedia Appendix 1).

Discussion

Principal Findings
Here we assessed the longitudinal test-retest reliability and
stability of DB measures related to gait, balance, voice, and
finger dexterity impairments in PD. We found a wide range of
test-retest reliabilities across tasks and features ranging from
poor to excellent, with highest reliabilities observed for voice
followed by the tapping task. Only a few features had medium
to large effect sizes for differentiation between PD and HC. For
all tasks, a substantial percentage of features displayed
significant longitudinal alterations in their mean values over
time.

Overall, tapping and voice tasks revealed a better performance
compared to gait and balance tasks with respect to test-retest
reliability and observed effect sizes. Balance and gait tasks
displayed consistently poor test-retest reliabilities as well as
low effect sizes for differentiation between PD and HC, calling
into question their usability for home-based applications. In
contrast, best performing voice features displayed fair to
excellent test-retest reliabilities across repetitions but also over
weeks and months.

Unlike some previous studies that showed good performance
and moderate to excellent correlation of gait and balance features
with clinical score [4,39], the overall poor performance of these
tasks in the m-Power study may be explained by the nature of
these tasks, which requires strict supervision and monitoring.
Both may not be sufficiently achieved in the self-administered
setting of the m-Power study. Overall, acceleration-related
features in the gait task and tremor-related features and those
selected from frequency domain in the balance task displayed
the best performance for the respective task [23,40]. The features
related to Mel-frequency cepstral coefficients for the voice task
displayed the highest effect sizes for this task, which is in line

with previous studies showing its ability in identifying
pathological speech [41,42]. In line with previous studies,
features related to intertapping interval and precision of the
tapping task (eg, number of taps, taps drift) displayed the best
performance among all [43,44].

Most features showed a decrease in test-retest reliability with
longer periods of time. This may reflect a consequence of the
repetition effects and the group-by-repetition interaction
observed in the analyses of variance for a substantial proportion
of the features. Features selected from the tapping task were
less sensitive to the effect of age and sex compared to other
tasks. Overall, the effects of age and sex were not significant
for most of the features. The analysis of elapsed time between
repetitions also revealed that the time difference between
repetitions did not have a significant effect on most of the
features. ICC values obtained from the PD and HC groups were
largely similar, suggesting that other non-PD related sources of
variation may have played a larger role in the observed low ICC
values. Determining these reasons requires more controlled
experiments than provided by the m-Power study.

Despite a significant difference at baseline, several features did
not differentiate PD and HC when using data from all time
points. This effect became most pronounced for the gait task,
likely due to its poor test-retest reliability performance.
Differential learning, variation in motivation, medication,
reduced adherence to task instructions, and other physical and
environmental parameters may contribute to this loss of
differentiation [2,10,12]. While a clear differentiation of
motivation versus learning effects on the often-abstract DB
features is difficult in an observational study design, a possible
way to provide inference on this issue is to compare the direction
of alterations in PD and HC. Assuming that alterations in PD
relative to HC reflect impairment, movement of a feature state
toward PD is likely to reflect worsening due to reduced
motivation, disease progression, or other similar factors. In
contrast, movements toward HC is likely to reflect improvement
and is therewith compatible with a learning effect. We find a
mixture of both effects for most tasks, suggesting the presence
of both aspects in DB longitudinal data. These observations are
also in line with previous studies showing that training may
reduce motor impairment in PD [45-47]. In particular, for the
tapping task the difference between PD and HC disappears for
several features, which is primarily due to a shift in performance
in HC. These findings may point to a differential change in
motivation across groups. While differential learning has been
previously reported [45,48-52], the differential change in
motivation is an important novel aspect to consider when
comparing DB measures between PD patients and HC.
Understanding the sources leading to this variability of DB
measures over time is a vital and open question that needs to
be systematically addressed to enable their application for
specific clinical questions.

Most patients with PD take dopaminergic medication to alleviate
their motor functions. However, the responsiveness to PD
medication highly varies between patients. Besides good
reliability and the ability to differentiate PD and HC, another
important and desired quality of an effective DB is therefore to
monitor PD medication response. Among the most reliable
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features from each task, only a few displayed significant but
weak sensitivity to different medication conditions. One possible
reason for this poor performance of DB measures in our study,
as compared to some previous reports [20], might be the
self-reported nature of the medication status in the m-Power
data set, which likely introduced some noise variation (ie,
different drugs and differences in time after administration).
Nonetheless, our findings point to the need for further
optimization of DB measures to increase their sensitivity to PD
medication effects.

The self-administered design of the m-Power data set is also
the major limitation of our study. In such an uncontrolled setting,
accuracy in reporting the diagnosis and demographics, defining
the medication status, and ensuring correct understanding of
and compliance with the instructions may all have introduced
variation into the study measures. The reported ballpark
estimates for test-retest reliability and ability of the respective
measures to differentiate between PD and HC therefore need
to be carefully considered when interpreting our results. Another

limitation of our study is the moderate adherence of participants
in the m-Power study, which limited the number of participants
who could be included in our analyses. Differences in age as
well as lack of standardization of the time of day when the
assessments were conducted are further sources of variation
that may affect the generalizability of our findings [53]. Future
studies may make inferences about the impact of different
confounders such as comorbidities and disease severity on the
longitudinal stability of DB. Also, further research is needed to
establish the longitudinal stability of DB in the context of their
relationship to clinical rating scales such as UPDRS.

Nonetheless, our findings clearly demonstrate the need for
further optimization of DB tasks as well as for introducing
careful monitoring and quality control procedures to enable
integration of DB measures into clinically relevant applications.

Data Availability
The m-Power data set used for this paper is available upon
registration from Synapse [54].
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