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Abstract

Background: Day-of-surgery cancellation (DoSC) represents a substantial wastage of hospital resources and can cause significant
inconvenience to patients and families. Cancellation is reported to impact between 2% and 20% of the 50 million procedures
performed annually in American hospitals. Up to 85% of cancellations may be amenable to the modification of patients’ and
families’ behaviors. However, the factors underlying DoSC and the barriers experienced by families are not well understood.

Objective: This study aims to conduct a geospatial analysis of patient-specific variables from electronic health records (EHRs)
of Cincinnati Children’s Hospital Medical Center (CCHMC) and of Texas Children’s Hospital (TCH), as well as linked
socioeconomic factors measured at the census tract level, to understand potential underlying contributors to disparities in DoSC
rates across neighborhoods.

Methods: The study population included pediatric patients who underwent scheduled surgeries at CCHMC and TCH. A 5-year
data set was extracted from the CCHMC EHR, and addresses were geocoded. An equivalent set of data >5.7 years was extracted
from the TCH EHR. Case-based data related to patients’health care use were aggregated at the census tract level. Community-level
variables were extracted from the American Community Survey as surrogates for patients’ socioeconomic and minority status
as well as markers of the surrounding context. Leveraging the selected variables, we built spatial models to understand the variation
in DoSC rates across census tracts. The findings were compared to those of the nonspatial regression and deep learning models.
Model performance was evaluated from the root mean squared error (RMSE) using nested 10-fold cross-validation. Feature
importance was evaluated by computing the increment of the RMSE when a single variable was shuffled within the data set.

Results: Data collection yielded sets of 463 census tracts at CCHMC (DoSC rates 1.2%-12.5%) and 1024 census tracts at TCH
(DoSC rates 3%-12.2%). For CCHMC, an L2-normalized generalized linear regression model achieved the best performance in
predicting all-cause DoSC rate (RMSE 1.299%, 95% CI 1.21%-1.387%); however, its improvement over others was marginal.
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For TCH, an L2-normalized generalized linear regression model also performed best (RMSE 1.305%, 95% CI 1.257%-1.352%).
All-cause DoSC rate at CCHMC was predicted most strongly by previous no show. As for community-level data, the proportion
of African American inhabitants per census tract was consistently an important predictor. In the Texas area, the proportion of
overcrowded households was salient to DoSC rate.

Conclusions: Our findings suggest that geospatial analysis offers potential for use in targeting interventions for census tracts
at a higher risk of cancellation. Our study also demonstrates the importance of home location, socioeconomic disadvantage, and
racial minority status on the DoSC of children’s surgery. The success of future efforts to reduce cancellation may benefit from
taking social, economic, and cultural issues into account.

(J Med Internet Res 2021;23(9):e26231) doi: 10.2196/26231
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Introduction

Background
Surgical interventions, along with other diagnostic and
therapeutic procedures performed under anesthesia, can deliver
significant health benefits; it has been estimated that 30% of
the global burden of disease is treatable by surgery [1]. Unlike
most drug and nonprocedural therapies that require ongoing
adherence for maximal benefit, surgery is typically delivered
at a single encounter with a complex multidisciplinary health
care team. Therefore, barriers to compliance with surgery are
likely to be different from barriers to chronic treatment
compliance.

Cancellation is an important barrier to the successful delivery
of surgical therapy and is reported to affect between 2% and
20% of the 50 million procedures performed annually in
American hospitals [2,3]. Cancellation has become a focus of
interest at children’s hospitals in view of its substantial negative
repercussions for patients, families, and institutions. First, if
surgery is canceled, the child fails to receive therapeutic or
diagnostic benefits. Taking as an example the most common
surgery in childhood, insertion of ear tubes, confirmed by a
systematic review, reduces hearing loss in children with otitis
media with effusion [4]. Cancellation of, or even delay in,
insertion of ear tubes may thus impair language or speech
development and affect behavioral, cognitive, or quality of life
outcomes. For families, surgery cancellation leads to
psychological stress and increased financial burden. As an
illustration, researchers at another academic tertiary children’s
hospital, also in the American Midwest, found an average wasted
round-trip of more than 160 miles for those who come for
surgery but had to cancel [5]. This resulted in one-third of
accompanying family members missing a day of work, which
was unpaid in half of the cases. Parents and children expressed
disappointment, frustration, and anger as a result of cancellation.
From an institutional perspective, expensive staff and facilities
costs are not reimbursed when surgeries are canceled. Even
with a low 4.1% day-of-surgery cancellation (DoSC) rate at our
hospital, potential lost revenue exceeds US $3000 per hour for
operating room billing alone, with more than 5 hours lost per
day, costing over US $2 million per year [6].

In our previous work, we found that up to 85% of cancellations
may be amenable to modification of patients’ and families’

behaviors. We undertook a quality improvement project that
reduced cancellations by delivering interventions across the
board to all scheduled patients [6]. In preparation for subsequent
improvement efforts, we sought predictors of cancellation to
gain insight into its etiology and with the aim of targeting future
efforts more efficiently [7].

To date, most studies on surgery cancellation applied classical
statistical techniques to demonstrate association [8-14], whereas
few studies have used machine learning to predict surgical cases
at risk of cancellation [7,15,16]. Most recently, we developed
machine learning–based approaches to identify individual
surgery cases at high risk of DoSC from patient-specific and
contextual data from 2 distinct pediatric surgical sites of
Cincinnati Children’s Hospital Medical Center (CCHMC),
offering the promise of targeted interventions [7]. At the
conception of this study, we hypothesized that the risk of DoSC
at our tertiary children’s hospital varies according to the location
of the patient. We sought geographical clusters of high and low
cancellation rates and used these findings to explore the
underlying social determinants.

In recent years, increasing volumes of geospatial data have
become publicly available, including from censuses, cataloging
crimes, and relating to a variety of social and economic
processes. As, in spatial data sets, observations may not be
independent (spatial autocorrelation) or the relationships
between variables may vary across geographical space (spatial
nonstationarity), assumptions underlying conventional statistical
modeling approaches may be violated. For these reasons,
specialized methodologies have been developed for geospatial
analysis to explain the spatial patterns of human behavior and
the underlying factors that contribute to or explain these patterns
[17]. In addition, geospatial models may capture spatial patterns
(eg, spatial clusters) during model construction to achieve a
better fit [18-20]. Spatial autocorrelation measures quantify the
correlation of a variable with itself through geographical space
[21]. A mixed regressive spatial autoregressive (SAR) model
combines an autoregressive structure with a conventional
regression model by assuming that a regional outcome is also
impacted by outcomes from its neighbors [18], whereas a spatial
error model (SEM) combines a conventional regression model
with spatially autoregressive disturbances [22,23]. Spatial
moving average models are similar to SEMs but use a different
autocorrelation structure to represent the disturbances. Spatial
Durbin models extend the SAR framework by hypothesizing
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that a regional outcome is additionally impacted by predictors
from the neighborhoods that comprise it [18,23]. Similarly, an
SAR confused model is a generalized SAR model that
accommodates spatial dependence in both the outcome variable
and error terms [18]. A spatial Durbin error model includes
exogenous interaction effects in addition to interaction effects
among error terms [23].

Geospatial modeling approaches have been applied to a wide
range of public health problems, such as the estimation of
mortality or of air pollution effects or identification of causal
factors in disease [24-26]. However, such spatial analytical
techniques have not been used to study the geography of surgery
cancellation. In particular, community characteristics provide
vital information that is lacking when using individual-level
data in isolation. Therefore, in this study, we explore a variety
of established geospatial models to identify and visualize spatial
trends in cancellation rates and candidate predictors. The
findings were compared with those of the generalized linear
regression model (GLM) and deep learning model.

Objectives
This study presents a geospatial analysis of patient-specific
variables from the electronic health records (EHRs) of CCHMC
and of Texas Children’s Hospital (TCH) as well as of
socioeconomic factors measured at the census tract level. We
use the data to understand the potential contributors to spatial
variation in the cancellation rates of pediatric surgery. We
hypothesize that there are marked disparities in DoSC rates
across neighborhoods. To our knowledge, this is the first study
to investigate the geographic variation of pediatric surgery
cancellation rates. The long-term objective is to understand
contributors underlying DoSC and barriers experienced by
patients and their families so that support can be focused
efficiently toward families who are both in need and are most
likely to benefit.

Methods

Data
A 5-year geocoded data set (May 2011-May 2016) of 88,013
surgeries including 3702 (4.21%) DoSCs corresponding to
patients living in the hospital’s primary service area was
extracted from the CCHMC EHR. The data set included 2
primary surgical sites (main and Liberty campuses) of the
institution that covers 472 census tracts in Greater Cincinnati.
An equivalent set of 166,533 surgeries over 5.7 years with
10,236 (6.14%) DoSCs was extracted from the TCH EHR for
validation. The data set included 3 primary surgery sites (Texas
Medical Center, West Campus, and the Woodlands) of the

institution that serves 1065 census tracts in Greater Houston.
Ethics approval for this study was provided by the CCHMC
institutional review board (study ID 2018-4568). Both CCHMC
and TCH are urban, pediatric academic medical centers that
function as the primary pediatric facilities for their surrounding
metropolitan areas and also accept many tertiary and quaternary
care referrals from elsewhere. All home locations were geocoded
with an in-house geographic information system to ensure that
no protected health information was sent outside the institution.
Owing to high address matching accuracy, 90.2%
(229,600/254,546) of the locations were geocoded at the
city-block level (ie, a group of buildings surrounded by streets),
and a further 6.8% (17,309/254,546) were geocoded at street
level (ie, center of the matched street). For all surgical activities
at CCHMC, cancellations are comprehensively adjudicated to
one of 10 reason codes by clinical staff at the time of
cancellation, thus allowing analysis for specific causes, including
acute patient illness, failure to attend surgery (no show), failure
to comply with eating and drinking instructions (nil per os
[NPO] violation), and refusal to undergo surgery by either
patient or family. For CCHMC, rescheduled cases were defined
as completed surgeries with prior cancellations of similar case
length within the preceding 90 days for the same individual. At
TCH, in the absence of estimated case length data, rescheduled
cases were determined by the procedure name and service
department. All rescheduled cases (CCHMC: 1578/88,013,
1.79%; TCH: 4077/166,533, 2.45%) were excluded from the
analysis to avoid diluting the effects of cancellation predictors
by subsequently completed surgeries.

EHR variables for individual surgery cases, including recent
health care use, schedule-related factors, prior cancellation
behaviors, and information from a preoperative telephone call,
were extracted as previously described [7] and spatially
aggregated at the census tract level (Table 1). The estimated
driving time from patients’ homes to surgical sites was
calculated and categorized into 6-minute intervals (>60 for
locations farther than 1 hour away) using the DeGAUSS R
package (Cole Brokamp) [27]. Socioeconomic factors were
obtained from the US Census Bureau’s 2011-2015 American
Community Survey (ACS) 5-year estimates, which provide data
at the level of individual census tracts [28]. ACS variables were
selected for practical relevance to successful preparation and
attendance for surgery, including those relating to poverty, home
ownership, household vehicle availability, housing (vacancy,
value, and crowding), marriage, educational attainment,
population density, linguistic isolation, African American
(Black) race, and Hispanic heritage (Table 2). Census tract
population density was computed as the ratio of the population
to the total land area.
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Table 1. Case-based variables from institutional electronic health records. (N=14).

DescriptionVariables, n (%)Category

Driving time from home to the surgical site1 (7)Transportation

Number of call attempts1 (7)Preoperative phone call

Number of recent emergency room attendance (two 2 time points), number of medications
taken regularly at home before surgery, office visits, and hospitalizations in the previous
6 months

5 (35)Recent health care use

Numbers of previous cancellations, previous no shows, previous other cancellations,
clinic no shows, and previous surgeries

5 (35)Prior cancellation behaviors

Lead time and estimated case length2 (14)Surgery related factors

Table 2. American Community Survey data from the US Census Bureau measured at the census tract level.

Extracted dataTable descriptionACSa table code

Black or African American raceRaceB02001

Hispanic or Latino heritageHispanic or Latino originB03003

Families in povertyPoverty status of families by household type by number of related children aged
<18 years

B17012

Population with low educational attainmentSex by educational attainment for the population aged ≥25 yearsB15002

Linguistic isolationLanguage spoken at home and ability to speak EnglishB16002

Adults never marriedPlace of birth by marital status in the United StatesB06008

No car in householdHousehold size by vehicles availableB08201

Rented housesResidential tenureB25003

Median home valueMedian home value (US $)B25077

Median household incomeMedian family income in the past 12 months by the presence of own children
aged <18 years

B19125

Vacant housesResidential occupancy statusB25002

Household overcrowdingTenure by occupants per roomB25014

Total populationCensus tract total populationB01003

aACS: American Community Survey.

Spatial Autocorrelation
In geospatial analysis, it is important to assess the spatial
independence of variables before model construction. Spatial
autocorrelation measures describe the degree of spatial
dependence or patterns for a variable across a spatial area [21].
We used the global Moran I statistic to test spatial independence
for the DoSC rate and extracted variables [29]. Moran I values
with significant P values (P<.05) indicate that the values for a
variable are either spatially clustered (positive Moran I value)
or dispersed (negative Moran I value), whereas there is no spatial
dependence of the variable if the P value is not significant.

Data Processing
DoSCs resulting from CCHMC’s top four most frequent
patient-related cancellation reasons (ie, patient illness, no show,
NPO violation, and patient or family refusal) were considered
as canceled cases (denoted as all-cause cancellation) [7]. Census
tracts without inhabitants (eg, for CCHMC, the census tract
corresponding to the Cincinnati or Northern Kentucky
International Airport—GEOID 21015980100) or with less than
20 surgical cases were excluded a priori. The rate of DoSC was

calculated per census tract for the primary service area of the 2
hospitals (463 for CCHMC and 1024 for TCH) with empirical
Bayesian shrinkage toward a beta before lessening the influence
of sparsely populated tracts with few patients [30]. The
corresponding rates for common patient-related cancellation
reasons were also computed for CCHMC (but not for TCH for
which such categorization was not available). For each census
tract, the rates of the categorized driving times were similarly
computed using empirical Bayesian estimation. The most
common category of driving time was used as the base category
to avoid the linear dependencies induced between the features.
Missing ACS values (ie, median home value: 0.9% (4/463) of
missing values for CCHMC and 1.66% (17/1024) of missing
values for TCH; median household income: 6.7% (31/463) of
missing values for CCHMC and 2.8% (29/1024) of missing
values for TCH) were imputed using grand mean and mode
imputation. The median home value and the median household
income were categorized based on information from the US
Census Bureau website [31-34]. All variables based on
percentages were rescaled based on IQR to aid the interpretation
of regression models [35]. The collinearity among variables
was tested using the variance inflation factor (VIF) [36].
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Variables not exceeding a predefined threshold of collinearity
(VIF<10) were included in the model construction. Finally,
EHR and ACS variables without evidence of significant
geospatial clustering were excluded from the data set.

Spatial Weights
Spatial weight matrices summarize the spatial relations between
the census tracts. Neighboring tracts were determined by sharing
at least one boundary edge. Inverse distance weighting was
applied to compute spatial weights [37], and weight matrices
were then standardized by row, such that the sum of spatial
weights for each census tract equals 1.

Conventional Regression Models
We modeled the prediction of the DoSC rate for each census
tract as a supervised regression problem and tested both
nonspatial regression models (GLM, L2-normalized GLM,
support vector machine with polynomial kernels [SVM-P], and
decision tree) and spatial regression models including SAR
model, spatial Durbin model, SEM, spatial Durbin error model,
spatial moving average, and SAR confused models
[18,22,23,38-40]. Appropriate variants of the spatial regression
models, such as the L2-normalized SAR models, were also

implemented. We used these models to allow for the possibility
of spatial impact on a census tract by neighboring tracts.
Regression models were implemented using packages for the
R programming language (R Foundation for Statistical
Computing) [41].

Deep Learning Models
In addition to traditional regression models, we implemented
convolutional neural networks (CNNs) and graph convolutional
networks (GCNs) to allow for the possibility of nonlinear
relationships between the variables and DoSC rates [42,43].
Figure 1 illustrates the structures of the CNN and GCN models.
For CNNs, targeted census tracts with their K-nearest neighbors
(K=5, 10, 15, and 20) were used to construct feature vectors,
each of which was trained by a 2-layer 1D CNN. The
concatenated output was then used to predict the DoSC rates
for individual census tracts. For GCNs, an adjacency matrix
(eg, inverse distance weighting matrix) representing the graph
structure and a feature matrix were taken as inputs and a
framework with two layers of GCN and 1 layer of fully
connected neural network to predict DoSC rates. Deep learning
models were implemented using TensorFlow (version 2.2) for
Python [44,45].

Figure 1. Model development for deep learning models. CNN: convolutional neural networks; GCN: graph convolutional networks; KNN: K-nearest
neighbor.
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Experimental Setup
Owing to the relatively low number of census tracts (sample
size) in the data sets, a nested 10-fold cross-validation (10 folds
for both the outer and inner loops) was adopted. The approach
randomly split the data set into 10 rotating subsets: 9 for model
training and hyperparameter tuning and 1 for testing at each
run. At each iteration, an inner cross-validation was applied to
the 9 folds of training data to tune a model’s hyperparameters
with grid search parameterization [46], including (1) cost
parameters for L2-normalized GLM [38], L2-normalized SAR

model [18], and SVM-P [39] (screened from 10−6 to 106); (2)
optimal degree for SVM-P (screened from 1 to 3); (3) minimum
number of observations in a node (3, 5, 10, 15, and 20) and the

complexity parameters (screened from 10−6 to 10−1, 0.3, 0.5,
and 0.8) for decision tree [40]; (4) learning rates of an optimizer

parameter (screened from 10−3 to 10−1) for deep learning models
[42,43]; (5) filter size of kernels (2 and 3) for 1D CNN layers
[42]; and (6) dimensionality of output space (40, 50, 60, 75,
and 90) for 2 GCN layers [43]. The model with optimal
hyperparameters was then trained on all 9 folds of data and
evaluated on the hold-out subset. The process was repeated 10
times to cover all subsets, and the evaluation score was averaged
across the subsets as the final performance of the model. Model
selection was based on the performance in the outer loop of the
nested cross-validation. For models without hyperparameters,
a 10-fold cross-validation was performed using the same folds
as used in the outer loop of nested cross-validation. To assess
the validity of the geospatial analysis, we compared the model
performances with those aggregated from individual DoSC
predictions. The best-performing gradient boosted logistic
regression model, with 58 EHR variables developed in our
previous study, was applied to the surgical cases located within
the studied census tracts to predict DoSC [7]. The
individual-level predictions were then aggregated to predict the
DoSC rate per census tract (denoted as the
individual-prediction-aggregation model).

Evaluation Metrics
Model performance was evaluated by root mean square error
(RMSE), which is a commonly used evaluation metric for
numerical predictions in regression analysis [47]. The spatial
autocorrelation of model residuals was assessed using the global
Moran I statistic for indications that the model was misspecified.
Geographically, weighted Pearson correlation was used to mark
census tracts with significant local correlations between
observed and predicted cancellation rates [48]. A
permutation-based technique was used to calculate the feature
importance scores using the DALEX (Model Agnostic Language
for Exploration and Explanation) R package (Przemyslaw

Biecek) [49]. The importance of every variable was measured
by computing the increment of the RMSE when a single variable
was shuffled within the data set.

Results

Descriptive Statistics for the Data Sets
Among 86,435 CCHMC surgical cases meeting the analysis
selection criteria, the overall all-cause DoSC rate was 3.76%
(3255). Patients lived in 472 different census tracts within the
primary service area of the CCHMC. Of the 472 census tracts,
9 (1.9%) contributed to a few surgical cases (<20 cases) and
were excluded from the analysis. Of the 463 remaining, the
97.5th percentile for cancellation rate was 9.4%, but 10 tracts
(2.2%) had no cancellations. The TCH data set contained
166,533 surgical cases over 5.7 years, corresponding to 1065
different census tracts, with a DoSC rate of 6.14%
(10,236/166,533). After similar preprocessing, 162,026 surgery
cases and 1024 census tracts, with a median DoSC rate of 6.2%,
were included in the analysis.

Of note, the 463 census tracts within the CCHMC study area
had a median population of 3987 (IQR 2668, maximum 20,188),
with a total population of 2 million. The 1024 Houston area
census tracts encompassed a population of 6.38 million (median
5342 per tract). The relatively small population per census tract
supports that, although the ACS provides aggregate statistics,
these represent features of the locale and community
immediately adjacent to patients’ homes with a high degree of
spatial granularity. In support of this assertion, the proportion
of African American patients in each census tract from the
CCHMC EHR data is closely associated with the equivalent

proportion of the general population in the ACS data (R2=0.89).
This finding underscores the validity of using ACS variables
as surrogates for individual patients’ socioeconomic and
minority status, in addition to their characterization of the
surrounding context.

Figure 2 depicts the geospatial variation in DoSC rate by census
tract of home location in the Greater Cincinnati and Houston
regions. Enlarged maps are presented in Figures S1 and S2 in
Multimedia Appendix 1, and interactive maps are presented in
Multimedia Appendix 2 [50]. For CCHMC, tracts with increased
cancellation risk clustered mainly in the most populous urban
areas. Tracts with lower cancellation risk were located in
suburban and rural locations. However, in the Houston area
(Figure 2), high- and low-canceling census tracts were more
geographically dispersed. These visual impressions are
supported by the global Moran I as a measure of spatial
autocorrelation (Figure 3).
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Figure 2. Geospatial distributions of day-of-surgery cancellation rate in the primary service areas of (A) Cincinnati Children’s Hospital Medical Center
(2011-2016) and (B) Texas Children’s Hospital (2012-2017). CCHMC: Cincinnati Children’s Hospital Medical Center; TCH: Texas Children’s Hospital.

Figure 3. Spatial autocorrelation of day-of-surgery cancellation rate, case-based electronic health record variables and American Community Survey
variables for Cincinnati Children’s Hospital Medical Center and Texas Children’s Hospital measured by global Moran I with 95% CI. CANC: cancellation;
CCHMC: Cincinnati Children’s Hospital Medical Center; DoSC: day-of-surgery cancellation; ER: emergency room; MHI: median household income;
MHV: median house value; NPO violation: failure to comply with eating and drinking instructions; SURG: surgery; TCH: Texas Children’s Hospital.
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Predicting DoSC Rates With Conventional Regression
and Deep Learning Models
In preparation for model development, we tested for collinearity
among case-based EHR variables and ACS independent
variables using VIF. None of the variables exceeded a
predefined threshold of collinearity (VIF<10), which supports
their independence. Certain variables were excluded from model
development because they had insignificant Moran I values in
the spatial autocorrelation analysis (Figure 3). Specifically,
these variables excluded for low spatial variation were numbers
of previous surgeries (P=.13), previous cancellations (P=.06),

previous non–no show cancellations (P=.19), and patient illness
(P=.07). The exclusion resulted in 46 and 37 numerical variables
for model construction for CCHMC and TCH, respectively.
Figure 4 presents the performance of the regression and deep
learning models in predicting the all-cause DoSC rates. The
lowest (best) RMSE was generated by the L2-normalized GLM
at 1.299% (95% CI 1.21%-1.387%) for the CCHMC data set.
All models outperformed the individual-prediction-aggregation
model (RMSE 4.189%, 95% CI 4.178%-4.201%). This finding
was statistically significant (P<.001). For the TCH data set,
L2-normalized GLM also achieved the best performance,
yielding an RMSE of 1.305% (95% CI 1.257%-1.352%).

Figure 4. Model performance for predicting day-of-surgery cancellation rates at census tract level for Cincinnati Children’s Hospital Medical Center
and Texas Children’s Hospital. Dashed line in each box represents the mean value of root mean squared error. CCHMC: Cincinnati Children’s Hospital
Medical Center; CNN: convolutional neural networks; DT: decision tree; GCN: graph convolutional networks; GLM: generalized linear regression
model; IPA: individual-prediction-aggregation model; RMSE: root mean square error; SAC: spatial autoregressive confused model; SAR: spatial
autoregressive model; SDEM: spatial Durbin error model; SDM: Spatial Durbin models; SEM: spatial error model; SMA: spatial moving average;
SVM-P: support vector machine with polynomial kernels; TCH: Texas Children’s Hospital.

To augment our understanding of potential cancellation causes,
we used DALEX [49] to identify the most important predictors
in the best-performing L2-normalized GLMs (Figures 5 and 6).
All-cause cancellation at CCHMC was predicted most strongly
by the variable previous no show (Figure 5). Turning to
community-level variables, the proportion of African American
inhabitants per census tract is important. However, among

community-level factors in the Houston area, the proportion of
overcrowded households showed the strongest association with
surgery cancellation rate (Figure 6). The median household
income was also predictive, whereas spatial models highlighted
the importance of clustered neighborhoods with low educational
attainment (Figure S3 in Multimedia Appendix 1).
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Figure 5. Feature importance generated from the best-performing L2-normalized generalized linear regression model for the Cincinnati Children’s
Hospital Medical Center data set. Variables were ranked in descending order based on their importance in predicting all-cause day-of-surgery cancellation
rates. ER: emergency room; MHI: median household income; MHV: median house value; NPO: nil per os; RMSE: root mean squared error.
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Figure 6. (A) Feature importance and (B) impacts generated from the best-performing L2-normalized generalized linear regression model for the Texas
Children’s Hospital data set. Variables were ranked in descending order based on their importance in predicting day-of-surgery cancellation rates. MHI:
median household income; MHV: median house value; RMSE: root mean squared error.

The predicted DoSC rates at the census tract level from the
best-performing models for CCHMC and TCH are compared
with the actual data in the maps presented in Figure 7. Areas in
proximity to hospital locations and with larger populations
showed a higher correlation between the observed and predicted

DoSC rates. Figure 7 shows the observed and predicted DoSC
rates for specific cancellation causes, as detailed in the next
section (enlarged maps in Figures S4-S11 in Multimedia
Appendix 1). The interactive map versions of Figure 7 are
presented in Multimedia Appendix 2 [50].
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Figure 7. Comparison of surgery cancellation rates at census tract level predicted by the best-performing model to actual data. Census tracts with
significant local correlation between the observed and predicted values are marked with red borders and cross-hatching. (A) Predicted all-cause surgery
cancellation rate at Cincinnati Children’s Hospital Medical Center; (B) predicted surgery cancellation rate at Texas Children’s Hospital; (C) observed
no show–related surgery cancellation rate at Cincinnati Children’s Hospital Medical Center; (D) predicted no show–related surgery cancellation rate at
Cincinnati Children’s Hospital Medical Center; (E) observed nil per os violation-related surgery cancellation rate at Cincinnati Children’s Hospital
Medical Center; (F) predicted nil per os violation-related surgery cancellation rate at Cincinnati Children’s Hospital Medical Center; (G) observed
patient or family refusal–related surgery cancellation rate at Cincinnati Children’s Hospital Medical Center; (H) predicted patient or family refusal–related
surgery cancellation rate at Cincinnati Children’s Hospital Medical Center. CCHMC: Cincinnati Children’s Hospital Medical Center; NPO: nil per os;
TCH: Texas Children’s Hospital; SCR: surgery cancellation rate.

J Med Internet Res 2021 | vol. 23 | iss. 9 | e26231 | p. 11https://www.jmir.org/2021/9/e26231
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Predicting Specific Cancellation Codes
Cancellations were coded by reason in the CCHMC data set.
The four most frequent DoSC reasons account for more than
87% of the cases. These are patient illness (40%), nonattendance
(no show; 20%), concern for aspiration risk because of
noncompliance with preoperative NPO instructions (NPO
violation; 18%), and patient or family refusing surgery after
scheduling (10%) [6]. Cancellation because of patient illness
was not analyzed using a spatial approach because there was
no evidence of significant geospatial clustering (Figure 3).
Spatial risk analyses and predicted cancellation rates generated
by the best-performing models (Figure S12 in Multimedia
Appendix 1) for the other individual cancellation codes are
presented in Figure 7. Models using EHR data and ACS data
aggregated at census tract level achieved better performance
than individual-prediction-aggregation models (RMSEs of
1.124%, 0.868%, and 0.517% for no show–related, NPO
violation–related, and patient or family refusal–related surgery
cancellations, respectively). Of the 3 individual cancellation
causes examined in this way, no show showed better
geographically weighted Pearson correlation between observed
and predicted DoSC rates than NPO violation or patient or
family refusal (Figure 7). The key features for the specific
cancellation reasons are shown in Figure 5. Prior cancellation
behaviors, including the number of previous no show
cancellations and clinic appointment no shows in the previous
6 months were predictive for day-of-surgery no show
cancellation rates. Among community-level factors, the
proportion of never married adults showed an association with
no show cancellation rates. For both NPO violation–related and
patient or family refusal–related cancellation rates, the
proportion of African Americans per census tract, as well as
ACS markers of poverty (including the proportions of
households without a car, families in poverty or renting homes,
median household income, and median house value) were
salient. Linguistic isolation was predictive of the rates of
cancellation because of patient or family refusal.

Discussion

Principal Findings
This study aims to understand the potential contributors to
disparities in DoSC rates across neighborhoods. At 2 different
tertiary children’s hospitals, we found marked geographic
variation, particularly for cancellations coded as unrelated to
patient illness. To understand this spatial variation, we
developed models using case-based EHR data and ACS data
aggregated at the census tract level. For the CCHMC data set,
an L2-normalized GLM achieved the best performance in
predicting the all-cause DoSC rate, but its improvement over
the other regression models was marginal. The L2-normalized
SAR model showed a comparable performance. The
L2-normalized GLM performed better in urban areas around
the CCHMC (Figure 7), possibly because of the larger number
of surgical cases in these tracts. Interestingly, deep learning
models did not offer improved predictive power, suggesting
that geospatial impacts on DoSCs could be more regional and
linear. A similar performance trend was observed for the TCH
data set, suggesting the generalizability of our approach.

Looking into the specific causes of cancellation at CCHMC,
we found that patient illness (the most frequently recorded
cause) did not show marked geographic variation. Of the 3 most
frequent individual causes that showed spatial variation, no
show was predicted better than NPO violation and patient or
family refusal by the models.

Our geospatial analysis was helpful in identifying key factors,
including potentially actionable predictors and underlying
DoSCs at the census tract level. In the CCHMC data set (where
the categorization of cancellation reasons was available from
the EHR, unlike for TCH), the all-cause DoSC rate is composed
of the top four most frequent patient-related cancellation causes
(ie, patient illness, no show, NPO violation, and patient or family
refusal). The key factors for all-cause cancellation reflect the
average consensus for specific cancellation causes. The rate of
prior no show cancellations by patients in a census tract best
predicted the all-cause DoSC rate (Figure 5). The use of ACS
data also provided granular and relevant information on
community social and economic factors that were not available
from the EHR, expanding the view of contextual factors likely
influencing a family’s preparations for their child’s surgery
[51]. We found that the proportion of African American
inhabitants per census tract was predictive of geographic
variation in the all-cause cancellation rate; that is, tracts with a
higher proportion of African American inhabitants had higher
DoSC rates. Important predictors for the 3 individual
cancellation causes are discussed in detail below.

For the best model to predict no show cancellation rate, prior
cancellation behaviors were of prime importance, including the
number of previous no show cancellations and clinic no show
in the previous 6 months (Figure 5). Both the GLM and SAR
model suggested that every unit increase in the number of
previous no shows was associated with a ~30% increase in the
no show DoSC rate (Figures S13 and S14 in Multimedia
Appendix 1). These patient- or family-level factors were
complemented by a series of contextual variables that proved
relevant. Indeed, for no show DoSCs, we found a similar link
with the census tract proportion of adults who had never married,
a potential surrogate for single parent–headed households. We
speculate that such households experience more difficulty
navigating day-to-day schedules. Working single parents may
have trouble taking time off work. Those with multiple children
may be challenged to ensure adequate coverage for their care.
Obtaining appointments can be difficult; they may be especially
difficult for those without a robust support structure [52].

Turning to NPO violation–related and patient or family
refusal–related cancellations, we found commonality in key
predictors. The proportion of African American inhabitants per
census tract was predictive of both NPO violation–related and
patient or family refusal–related DoSC rates. There are a variety
of reasons that could underlie this finding—the reasons built
atop analogous findings that highlight racial disparities across
a range of health outcomes [53-56]. Racial segregation is
strongly correlated with socioeconomic segregation in the United
States. We found that, in addition to the proportion of African
Americans within a tract, median household income, median
house value, proportion of households without a car, and the
proportion of families in poverty or renting homes were also
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influential [57,58]. Thus, it is possible that the link between
race and DoSC was largely driven by structural racism and the
concomitant challenges that accompany the disproportionate
economic disadvantage experienced by racial minorities (eg,
lack of trust in the health care system, inflexible work schedules,
transportation barriers, and competing priorities) [59-61].
Moreover, the proportion of adults who were never married was
salient to both. Linguistic isolation was associated with higher
rates of cancellation because of patient or family refusal (Figure
5). We, therefore, hypothesize that CCHMC’s communications
with urban, poor, minority, and non–English-speaking families
leave room for improvement. Similar predictors (in this case
for all-cause cancellation) were also identified using the TCH
data set, including the proportion of African Americans per
census tract and ACS markers of poverty (proportion of
overcrowded households, families renting homes, low median
household income, and low median house value; Figure 6).

Our analysis is novel for demonstrating that surgery cancellation
is a source of inequity in surgical care and also for applying
geospatial analysis to investigate barriers to care delivery.
Furthermore, unlike the majority of studies in the literature on
surgery cancellation, our study investigates patient- and
family-related factors in the community using a geographic data
set and offers insight into the underlying spatial risk factors and
barriers experienced by families.

The findings of this study offer encouragement that geospatial
analysis could appropriately be used to target interventions for
patients living in census tracts with a higher rate of cancellations.
In this way, support can be focused efficiently on families who
are both in need and are most likely to benefit. Moreover, the
specific predictors identified for individual cancellation codes
may inform the design of interventions to address specific failure
modes. For example, the association of cancellation risk with
linguistic isolation argues for delivering preoperative
communications using clear and simple language and for ready
availability of interpreting services.

Arguably, our results uniquely reflect the characteristics of the
Greater Cincinnati conurbation and its surrounding area, the

pattern of referrals for surgery at CCHMC, and preoperative
processes at this hospital. Thus, the findings may not be directly
applicable to other locations. However, we hypothesize that
similar social factors may determine cancellation patterns in
other hospitals offering surgery for children, as evidenced by
the similar performance and predictors observed in the TCH
data set. In particular, the methodology used is likely to be
transferable to other locales and institutions and to disparate
aspects of health care delivery. With the easy availability of
high-quality commercial or open-sourced geocoding software,
our approach will be relatively easy to translate.

Limitations
We acknowledge that our study is limited in several ways. First,
as an observational study, exposures to socioeconomic
disadvantage or to racial minority status are not the only
potential explanations for observed differences in cancellation
rates. Second, the study relied on extracting patients’ home
addresses from the EHRs, which may be inaccurate (eg,
outdated) or incomplete. In addition, cancellation of children’s
surgery likely depends on individual circumstances and perhaps
seasonal factors. Finally, the relatively low number of census
tracts (sample size) in the data sets might limit the application
of complex models, such as deep learning.

Conclusions
This study aimed to conduct a geospatial analysis of
patient-specific variables from EHRs and linked socioeconomic
factors to understand the underlying contributors to disparities
in DoSC rates across neighborhoods. Our findings demonstrate
the importance of home location, socioeconomic disadvantage,
and racial minority status on the last-minute cancellation of
children’s surgery. The success of future efforts to reduce
cancellation may benefit from taking social, economic, and
cultural issues into account. Although the original aim of this
study was to drive improvement efforts, our results add further
evidence of the importance of social determinants in children’s
health, including increased incidence and frequency of illness,
barriers to accessing health care, and readmissions [62,63].

Authors' Contributions
LL developed the algorithms, ran the experiments, analyzed the results, created the tables and figures, and wrote the manuscript.
YN assisted with the design of the study, provided suggestions for algorithm development, analyzed the results, and contributed
to the manuscript. AFB and CB reviewed the errors and provided suggestions for the result analysis. RCR, LDH, and MKK
coordinated the data extraction and provided suggestions for the analysis of the results. JNP conceptualized the study, coordinated
the data extraction, preprocessed the data, analyzed the results, and wrote the manuscript. All authors read and approved the final
manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Supplementary figures of enlarged maps, feature importance, and model performance.
[DOCX File , 2832 KB-Multimedia Appendix 1]

J Med Internet Res 2021 | vol. 23 | iss. 9 | e26231 | p. 13https://www.jmir.org/2021/9/e26231
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v23i9e26231_app1.docx&filename=11f56c899cb7e1e11a2483f02fa4ebcb.docx
https://jmir.org/api/download?alt_name=jmir_v23i9e26231_app1.docx&filename=11f56c899cb7e1e11a2483f02fa4ebcb.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 2
Interactive maps.
[TXT File , 0 KB-Multimedia Appendix 2]

References

1. Shrime MG, Bickler SW, Alkire BC, Mock C. Global burden of surgical disease: an estimation from the provider perspective.
Lancet Glob Health 2015 Apr;3:8-9. [doi: 10.1016/s2214-109x(14)70384-5]

2. Boudreau SA, Gibson MJ. Surgical cancellations: a review of elective surgery cancellations in a tertiary care pediatric
institution. J Perianesth Nurs 2011 Oct;26(5):315-322. [doi: 10.1016/j.jopan.2011.05.003] [Medline: 21939884]

3. FastStats 2013. Centers for Disease Control and Prevention. URL: http://www.cdc.gov/nchs/fastats/inpatient-surgery.htm
[accessed 2016-07-20]

4. Browning G, Rovers M, Williamson I, Lous J, Burton M. Grommets (ventilation tubes) for hearing loss associated with
otitis media with effusion in children. Cochrane Database Syst Rev 2010:1801. [doi: 10.1002/14651858.cd001801.pub3]

5. Tait AR, Voepel-Lewis T, Munro HM, Gutstein HB, Reynolds PI. Cancellation of pediatric outpatient surgery: economic
and emotional implications for patients and their families. J Clin Anesth 1997 May;9(3):213-219. [doi:
10.1016/s0952-8180(97)00032-9]

6. Pratap JN, Varughese AM, Mercurio P, Lynch T, Lonnemann T, Ellis A, et al. Reducing cancelations on the day of scheduled
surgery at a children's hospital. Pediatrics 2015 May 13;135(5):1292-1299. [doi: 10.1542/peds.2014-2418] [Medline:
25869374]

7. Liu L, Ni Y, Zhang N, Pratap JN. Mining patient-specific and contextual data with machine learning technologies to predict
cancellation of children's surgery. Int J Med Inform 2019 Sep;129:234-241 [FREE Full text] [doi:
10.1016/j.ijmedinf.2019.06.007] [Medline: 31445261]

8. Schuster M, Neumann C, Neumann K, Braun J, Geldner G, Martin J, et al. The effect of hospital size and surgical service
on case cancellation in elective surgery. Anesth Analg 2013:1. [doi: 10.1213/ane.0b013e318222be4d]

9. Hand R, Levin P, Stanziola A. The causes of cancelled elective surgery. Qual Assur Util Rev 1990 Feb 03;5(1):2-6. [doi:
10.1177/0885713x9000500102] [Medline: 2136658]

10. Lacqua M, Evans J. Cancelled elective surgery: an evaluation. Am Surg 1994 Nov;60(11):809-811. [Medline: 7978670]
11. Argo JL, Vick CC, Graham LA, Itani KM, Bishop MJ, Hawn MT. Elective surgical case cancellation in the Veterans Health

Administration system: identifying areas for improvement. Am J Surg 2009 Nov;198(5):600-606. [doi:
10.1016/j.amjsurg.2009.07.005] [Medline: 19887185]

12. Seim AR, Fagerhaug T, Ryen SM, Curran P, Saether OD, Myhre HO, et al. Causes of cancellations on the day of surgery
at two major university hospitals. Surg Innov 2009 Jun 21;16(2):173-180. [doi: 10.1177/1553350609335035] [Medline:
19460816]

13. Al Talalwah N, McIltrot KH. Cancellation of surgeries: integrative review. J Perianesth Nurs 2019 Feb;34(1):86-96. [doi:
10.1016/j.jopan.2017.09.012] [Medline: 29678319]

14. Caesar U, Karlsson J, Olsson L, Samuelsson K, Hansson-Olofsson E. Incidence and root causes of cancellations for elective
orthopaedic procedures: a single center experience of 17,625 consecutive cases. Patient Saf Surg 2014;8(1):24 [FREE Full
text] [doi: 10.1186/1754-9493-8-24] [Medline: 24955115]

15. Luo L, Zhang F, Yao Y, Gong R, Fu M, Xiao J. Machine learning for identification of surgeries with high risks of cancellation.
Health Informatics J 2018 Dec 05;26(1):141-155 [FREE Full text] [doi: 10.1177/1460458218813602] [Medline: 30518275]

16. Zhang F, Cui X, Gong R, Zhang C, Liao Z. Key experimental factors of machine learning-based identification of surgery
cancellations. J Healthc Eng 2021 Feb 20;2021:6247652. [doi: 10.1155/2021/6247652] [Medline: 33688420]

17. Illian J, Penttinen A, Stoyan H, Stoyan D. Statistical Analysis and Modelling of Spatial Point Patterns. Chichester: John
Wiley & Sons Ltd; 2008.

18. Haining R. Spatial Data Analysis in the Social and Environmental Sciences. Cambridge: Cambridge University Press; 1990.
19. Bivand R. Spatial econometrics functions in R: classes and methods. J Geograph Syst 2002 Dec 1;4(4):405-421. [doi:

10.1007/s101090300096]
20. Cressie N. Statistics for Spatial Data. New York: John Wiley & Sons, Inc; 1993.
21. Moran PA. Notes on continuous stochastic phenomena. Biometrika 1950;37(1-2):17-23. [doi: 10.1093/biomet/37.1-2.17]
22. Anselin L, Bera A. Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Handbook

of Applied Economic Statistics. Boca Raton: CRC Press; 1998:237-289.
23. Anselin L. Spatial Econometrics: Methods and Models. Dordrecht: Springer Science & Business Media; 1988.
24. Lee D, Shaddick G. Spatial modeling of air pollution in studies of its short-term health effects. Biometrics 2010

Dec;66(4):1238-1246. [doi: 10.1111/j.1541-0420.2009.01376.x] [Medline: 20070295]
25. Owusu-Edusei K, Bohm MK, Chesson HW, Kent CK. Chlamydia screening and pelvic inflammatory disease: insights from

exploratory time-series analyses. Am J Prev Med 2010 Jun;38(6):652-657. [doi: 10.1016/j.amepre.2010.02.008] [Medline:
20494242]

J Med Internet Res 2021 | vol. 23 | iss. 9 | e26231 | p. 14https://www.jmir.org/2021/9/e26231
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v23i9e26231_app2.txt&filename=01807f5d89512842e1bda6b0478ed79c.txt
https://jmir.org/api/download?alt_name=jmir_v23i9e26231_app2.txt&filename=01807f5d89512842e1bda6b0478ed79c.txt
http://dx.doi.org/10.1016/s2214-109x(14)70384-5
http://dx.doi.org/10.1016/j.jopan.2011.05.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21939884&dopt=Abstract
http://www.cdc.gov/nchs/fastats/inpatient-surgery.htm
http://dx.doi.org/10.1002/14651858.cd001801.pub3
http://dx.doi.org/10.1016/s0952-8180(97)00032-9
http://dx.doi.org/10.1542/peds.2014-2418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25869374&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1386-5056(18)30949-3
http://dx.doi.org/10.1016/j.ijmedinf.2019.06.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31445261&dopt=Abstract
http://dx.doi.org/10.1213/ane.0b013e318222be4d
http://dx.doi.org/10.1177/0885713x9000500102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2136658&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7978670&dopt=Abstract
http://dx.doi.org/10.1016/j.amjsurg.2009.07.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19887185&dopt=Abstract
http://dx.doi.org/10.1177/1553350609335035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19460816&dopt=Abstract
http://dx.doi.org/10.1016/j.jopan.2017.09.012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29678319&dopt=Abstract
https://pssjournal.biomedcentral.com/articles/10.1186/1754-9493-8-24
https://pssjournal.biomedcentral.com/articles/10.1186/1754-9493-8-24
http://dx.doi.org/10.1186/1754-9493-8-24
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24955115&dopt=Abstract
https://journals.sagepub.com/doi/10.1177/1460458218813602?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/1460458218813602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30518275&dopt=Abstract
http://dx.doi.org/10.1155/2021/6247652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33688420&dopt=Abstract
http://dx.doi.org/10.1007/s101090300096
http://dx.doi.org/10.1093/biomet/37.1-2.17
http://dx.doi.org/10.1111/j.1541-0420.2009.01376.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20070295&dopt=Abstract
http://dx.doi.org/10.1016/j.amepre.2010.02.008
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20494242&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


26. Sparks PJ, Sparks CS. An application of spatially autoregressive models to the study of US county mortality rates. Popul
Space Place 2009 Jun 15;16(6):465-481. [doi: 10.1002/psp.564]

27. Brokamp C. DeGAUSS: Decentralized geomarker assessment for multi-site studies. J Open Source Softw 2018 Oct;3(30):812.
[doi: 10.21105/joss.00812]

28. 2011-2015 American Community Survey 5-year estimates. U.S. Census Bureau. 2016. URL: https://www.census.gov/
programs-surveys/acs/technical-documentation/table-and-geography-changes/2015/5-year.html [accessed 2021-03-25]

29. Cliff A, Ord J. Spatial Processes: Models and Applications. London: Pion; 1980:1-260.
30. Robbins H. An empirical bayes approach to statistics. In: Proceedings of the Third Berkeley Symposium on Mathematical

Statistics and Probability. 1956 Presented at: The Third Berkeley Symposium on Mathematical Statistics and Probability;
1956; Berkeley p. 157-163. [doi: 10.1525/9780520313880-015]

31. 2011-2015 American Community Survey: Income in the past 12 months (in 2015 inflation-adjusted dollars) for Ohio. U.S.
Census Bureau. URL: https://data.census.gov/cedsci/
table?t=Income%20%28Households,%20Families,%20Individuals%29&g=0400000US48&tid=ACSST5Y2015.
S1901&hidePreview=false [accessed 2021-03-25]

32. 2011-2015 American Community Survey 5-year estimates: Income in the past 12 months (in 2015 inflation-adjusted dollars)
for Texas. U.S. Census Bureau. 2016. URL: https://data.census.gov/cedsci/
table?q=TEXAS&t=Income%20%28Households,%20Families,%20Individuals%29&g=0400000US39&tid=ACSST5Y2015.
S1901&hidePreview=false [accessed 2021-03-25]

33. 2011-2015 American Community Survey 5-year estimates: Selected housing characteristics for Ohio. U.S. Census Bureau.
2016. URL: https://data.census.gov/cedsci/table?t=Housing&g=0400000US39&tid=ACSDP5Y2015.DP04&hidePreview=false

34. 2011-2015 American Community Survey 5-year estimates: Selected housing characteristics for Texas. U.S. Census Bureau.
2016. URL: https://data.census.gov/cedsci/table?t=Housing&g=0400000US48&tid=ACSDP5Y2015.DP04&hidePreview=false
[accessed 2021-03-25]

35. Upton G, Cook I. Understanding Statistics. Oxford: Oxford University Press; 1996.
36. Miles J. Tolerance and variance inflation factor. Wiley StatsRef: Statistics Reference. New York: John Wiley & Sons, Ltd;

2014. URL: https://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat06593 [accessed 2021-08-16]
37. Shepard D. A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd ACM national

conference: Association for Computing Machinery. 1968 Presented at: 23rd ACM national conference: Association for
Computing Machinery; August 27 - 29, 1968; New York p. 517-524. [doi: 10.1145/800186.810616]

38. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Sta. Soft
2010;33(1):1-22. [doi: 10.18637/jss.v033.i01]

39. Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. Cambridge: Cambridge University Press; 2004:1-478.
40. Quinlan JR. Induction of decision trees. Mach Learn 1986 Mar;1(1):81-106. [doi: 10.1007/bf00116251]
41. R: A language and environment for statistical computing. R Foundation for Statistical Computing. 2019. URL: http://www.

R-project.org [accessed 2021-03-25]
42. Lawrence S, Giles C, Tsoi AC, Back A. Face recognition: a convolutional neural-network approach. IEEE Trans Neural

Netw 1997 Jan;8(1):98-113. [doi: 10.1109/72.554195] [Medline: 18255614]
43. Kipf T, Welling M. Semi-supervised classification with graph convolutional networks. ArXiv. 2017. URL: https://arxiv.

org/abs/1609.02907 [accessed 2021-08-16]
44. van Rossum G, Drake Jr F. The Python Language Reference Manual. Devon, UK: Network Theory Ltd; 2011.
45. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-scale machine learning on

heterogeneous distributed systems. ArXiv. 2016. URL: https://arxiv.org/abs/1603.04467 [accessed 2021-08-16]
46. Krstajic D, Buturovic LJ, Leahy DE, Thomas S. Cross-validation pitfalls when selecting and assessing regression and

classification models. J Cheminform 2014 Mar 29;6(1):10 [FREE Full text] [doi: 10.1186/1758-2946-6-10] [Medline:
24678909]

47. Barnston AG. Correspondence among the correlation, RMSE, and heidke forecast verification measures; refinement of the
heidke score. Weather Forecast 1992 Dec;7(4):699-709. [doi: 10.1175/1520-0434(1992)007<0699:catcra>2.0.co;2]

48. Brunsdon C, Fotheringham A, Charlton M. Geographically weighted summary statistics — a framework for localised
exploratory data analysis. Comput Environ Urban Syst 2002 Nov;26(6):501-524. [doi: 10.1016/s0198-9715(01)00009-6]

49. Biecek P. DALEX: Explainers for complex predictive models in R. J Mach Learn Res 2018;19(1):3245-3249 [FREE Full
text]

50. Liu L. Supplementary materials: interactive maps. GitHub. 2020. URL: https://leiliu-uc.github.io/geospatial/InteractiveMaps.
html [accessed 2021-03-25]

51. Beck AF, Sandel MT, Ryan PH, Kahn RS. Mapping neighborhood health geomarkers to clinical care decisions to promote
equity in child health. Health Aff (Millwood) 2017 Jun 01;36(6):999-1005 [FREE Full text] [doi: 10.1377/hlthaff.2016.1425]
[Medline: 28583957]

52. Moncrief T, Beck AF, Simmons JM, Huang B, Kahn RS. Single parent households and increased child asthma morbidity.
J Asthma 2014 Apr 09;51(3):260-266 [FREE Full text] [doi: 10.3109/02770903.2013.873806] [Medline: 24320709]

J Med Internet Res 2021 | vol. 23 | iss. 9 | e26231 | p. 15https://www.jmir.org/2021/9/e26231
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1002/psp.564
http://dx.doi.org/10.21105/joss.00812
https://www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-changes/2015/5-year.html
https://www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-changes/2015/5-year.html
http://dx.doi.org/10.1525/9780520313880-015
https://data.census.gov/cedsci/table?t=Income%20%28Households,%20Families,%20Individuals%29&g=0400000US48&tid=ACSST5Y2015.S1901&hidePreview=false
https://data.census.gov/cedsci/table?t=Income%20%28Households,%20Families,%20Individuals%29&g=0400000US48&tid=ACSST5Y2015.S1901&hidePreview=false
https://data.census.gov/cedsci/table?t=Income%20%28Households,%20Families,%20Individuals%29&g=0400000US48&tid=ACSST5Y2015.S1901&hidePreview=false
https://data.census.gov/cedsci/table?q=TEXAS&t=Income%20%28Households,%20Families,%20Individuals%29&g=0400000US39&tid=ACSST5Y2015.S1901&hidePreview=false
https://data.census.gov/cedsci/table?q=TEXAS&t=Income%20%28Households,%20Families,%20Individuals%29&g=0400000US39&tid=ACSST5Y2015.S1901&hidePreview=false
https://data.census.gov/cedsci/table?q=TEXAS&t=Income%20%28Households,%20Families,%20Individuals%29&g=0400000US39&tid=ACSST5Y2015.S1901&hidePreview=false
https://data.census.gov/cedsci/table?t=Housing&g=0400000US39&tid=ACSDP5Y2015.DP04&hidePreview=false
https://data.census.gov/cedsci/table?t=Housing&g=0400000US48&tid=ACSDP5Y2015.DP04&hidePreview=false
https://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat06593
http://dx.doi.org/10.1145/800186.810616
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1007/bf00116251
http://www.R-project.org
http://www.R-project.org
http://dx.doi.org/10.1109/72.554195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18255614&dopt=Abstract
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1603.04467
https://dx.doi.org/10.1186/1758-2946-6-10
http://dx.doi.org/10.1186/1758-2946-6-10
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24678909&dopt=Abstract
http://dx.doi.org/10.1175/1520-0434(1992)007<0699:catcra>2.0.co;2
http://dx.doi.org/10.1016/s0198-9715(01)00009-6
https://www.semanticscholar.org/paper/DALEX%3A-Explainers-for-Complex-Predictive-Models-in-Biecek/d8d599f513b29a01d1c8ccd279af4e80bb5ba329
https://www.semanticscholar.org/paper/DALEX%3A-Explainers-for-Complex-Predictive-Models-in-Biecek/d8d599f513b29a01d1c8ccd279af4e80bb5ba329
https://leiliu-uc.github.io/geospatial/InteractiveMaps.html
https://leiliu-uc.github.io/geospatial/InteractiveMaps.html
http://europepmc.org/abstract/MED/28583957
http://dx.doi.org/10.1377/hlthaff.2016.1425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28583957&dopt=Abstract
http://europepmc.org/abstract/MED/24320709
http://dx.doi.org/10.3109/02770903.2013.873806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24320709&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


53. Beck AF, Huang B, Simmons JM, Moncrief T, Sauers HS, Chen C, et al. Role of financial and social hardships in asthma
racial disparities. Pediatrics 2014 Mar 02;133(3):431-439 [FREE Full text] [doi: 10.1542/peds.2013-2437] [Medline:
24488745]

54. Beck AF, Riley CL, Taylor SC, Brokamp C, Kahn RS. Pervasive income-based disparities in inpatient bed-day rates across
conditions and subspecialties. Health Aff (Millwood) 2018 Apr;37(4):551-559 [FREE Full text] [doi:
10.1377/hlthaff.2017.1280] [Medline: 29608357]

55. Beck AF, Huang B, Auger KA, Ryan PH, Chen C, Kahn RS. Explaining racial disparities in child asthma readmission
using a causal inference approach. JAMA Pediatr 2016 Jul 01;170(7):695-703. [doi: 10.1001/jamapediatrics.2016.0269]
[Medline: 27182793]

56. Mujahid MS, Roux AV, Cooper RC, Shea S, Williams DR. Neighborhood stressors and race/ethnic differences in hypertension
prevalence (the Multi-Ethnic Study of Atherosclerosis). Am J Hypertens 2011 Feb 01;24(2):187-193 [FREE Full text] [doi:
10.1038/ajh.2010.200] [Medline: 20847728]

57. Crowder K, Pais J, South SJ. Neighborhood diversity, metropolitan constraints, and household migration. Am Sociol Rev
2012 Jun 30;77(3):325-353 [FREE Full text] [doi: 10.1177/0003122412441791] [Medline: 22753955]

58. Williams D, Mohammed S, Leavell J, Collins C. Race, socioeconomic status, and health: complexities, ongoing challenges,
and research opportunities. Ann N Y Acad Sci 2010 Feb;1186:69-101 [FREE Full text] [doi:
10.1111/j.1749-6632.2009.05339.x] [Medline: 20201869]

59. Smith LA, Bokhour B, Hohman KH, Miroshnik I, Kleinman KP, Cohn E, et al. Modifiable risk factors for suboptimal
control and controller medication underuse among children with asthma. Pediatrics 2008 Oct 01;122(4):760-769. [doi:
10.1542/peds.2007-2750] [Medline: 18829799]

60. Boyd RL, Weeks L, McLemore M. On racism: a new standard for publishing on racial health inequities. Health Affairs
Blog. 2020. URL: https://www.healthaffairs.org/do/10.1377/hblog20200630.939347/full/ [accessed 2021-03-25]

61. Jones CP, Jones CY, Perry GS, Barclay G, Jones CA. Addressing the social determinants of children's health: a cliff analogy.
J Health Care Poor Underserved 2009;20(4 Suppl):1-12. [doi: 10.1353/hpu.0.0228] [Medline: 20168027]

62. Sills MR, Hall M, Colvin JD, Macy ML, Cutler GJ, Bettenhausen JL, et al. Association of social determinants with children's
hospitals' preventable readmissions performance. JAMA Pediatr 2016 Apr 01;170(4):350-358. [doi:
10.1001/jamapediatrics.2015.4440] [Medline: 26881387]

63. Beck AF, Simmons JM, Huang B, Kahn RS. Geomedicine: area-based socioeconomic measures for assessing risk of hospital
reutilization among children admitted for asthma. Am J Public Health 2012 Dec;102(12):2308-2314. [doi:
10.2105/ajph.2012.300806]

Abbreviations
ACS: American Community Survey
CCHMC: Cincinnati Children’s Hospital Medical Center
CNN: convolutional neural network
DALEX: Model Agnostic Language for Exploration and Explanation
DoSC: day-of-surgery cancellation
EHR: electronic health record
GCN: graph convolutional network
GLM: generalized linear regression model
NPO: nil per os
RMSE: root mean square error
SAR: spatial autoregressive
SEM: spatial error model
SVM-P: support vector machine with polynomial kernels
TCH: Texas Children’s Hospital
VIF: variance inflation factor

Edited by R Kukafka; submitted 04.12.20; peer-reviewed by L Gottlieb, Z Ren, Y Chu, C Son; comments to author 01.02.21; revised
version received 28.03.21; accepted 05.07.21; published 10.09.21

Please cite as:
Liu L, Ni Y, Beck AF, Brokamp C, Ramphul RC, Highfield LD, Kanjia MK, Pratap J“
Understanding Pediatric Surgery Cancellation: Geospatial Analysis
J Med Internet Res 2021;23(9):e26231
URL: https://www.jmir.org/2021/9/e26231
doi: 10.2196/26231
PMID:

J Med Internet Res 2021 | vol. 23 | iss. 9 | e26231 | p. 16https://www.jmir.org/2021/9/e26231
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://europepmc.org/abstract/MED/24488745
http://dx.doi.org/10.1542/peds.2013-2437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24488745&dopt=Abstract
http://europepmc.org/abstract/MED/29608357
http://dx.doi.org/10.1377/hlthaff.2017.1280
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29608357&dopt=Abstract
http://dx.doi.org/10.1001/jamapediatrics.2016.0269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27182793&dopt=Abstract
http://europepmc.org/abstract/MED/20847728
http://dx.doi.org/10.1038/ajh.2010.200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20847728&dopt=Abstract
http://europepmc.org/abstract/MED/22753955
http://dx.doi.org/10.1177/0003122412441791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22753955&dopt=Abstract
http://europepmc.org/abstract/MED/20201869
http://dx.doi.org/10.1111/j.1749-6632.2009.05339.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20201869&dopt=Abstract
http://dx.doi.org/10.1542/peds.2007-2750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18829799&dopt=Abstract
https://www.healthaffairs.org/do/10.1377/hblog20200630.939347/full/
http://dx.doi.org/10.1353/hpu.0.0228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20168027&dopt=Abstract
http://dx.doi.org/10.1001/jamapediatrics.2015.4440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26881387&dopt=Abstract
http://dx.doi.org/10.2105/ajph.2012.300806
https://www.jmir.org/2021/9/e26231
http://dx.doi.org/10.2196/26231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Lei Liu, Yizhao Ni, Andrew F Beck, Cole Brokamp, Ryan C Ramphul, Linda D Highfield, Megha Karkera Kanjia, J “Nick”
Pratap. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 10.09.2021. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the
Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication
on https://www.jmir.org/, as well as this copyright and license information must be included.

J Med Internet Res 2021 | vol. 23 | iss. 9 | e26231 | p. 17https://www.jmir.org/2021/9/e26231
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

