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Abstract

Background: The assessment of behaviors related to mental health typically relies on self-report data. Networked sensors
embedded in smartphones can measure some behaviors objectively and continuously, with no ongoing effort.

Objective: This study aims to evaluate whether changes in phone sensor–derived behavioral features were associated with
subsequent changes in mental health symptoms.

Methods: This longitudinal cohort study examined continuously collected phone sensor data and symptom severity data,
collected every 3 weeks, over 16 weeks. The participants were recruited through national research registries. Primary outcomes
included depression (8-item Patient Health Questionnaire), generalized anxiety (Generalized Anxiety Disorder 7-item scale), and
social anxiety (Social Phobia Inventory) severity. Participants were adults who owned Android smartphones. Participants clustered
into 4 groups: multiple comorbidities, depression and generalized anxiety, depression and social anxiety, and minimal symptoms.

Results: A total of 282 participants were aged 19-69 years (mean 38.9, SD 11.9 years), and the majority were female (223/282,
79.1%) and White participants (226/282, 80.1%). Among the multiple comorbidities group, depression changes were preceded
by changes in GPS features (Time: r=−0.23, P=.02; Locations: r=−0.36, P<.001), exercise duration (r=0.39; P=.03) and use of
active apps (r=−0.31; P<.001). Among the depression and anxiety groups, changes in depression were preceded by changes in
GPS features for Locations (r=−0.20; P=.03) and Transitions (r=−0.21; P=.03). Depression changes were not related to subsequent
sensor-derived features. The minimal symptoms group showed no significant relationships. There were no associations between
sensor-based features and anxiety and minimal associations between sensor-based features and social anxiety.

Conclusions: Changes in sensor-derived behavioral features are associated with subsequent depression changes, but not vice
versa, suggesting a directional relationship in which changes in sensed behaviors are associated with subsequent changes in
symptoms.

(J Med Internet Res 2021;23(9):e22844) doi: 10.2196/22844
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Introduction

Background
Behaviors such as levels of activity and social engagement are
associated with common mental health conditions such as
depression and anxiety [1-4]. Retrospective evaluations of these
behaviors through self-report measures or interviews rely heavily
on retrospective recall, which is subject to systematic biases
[5,6]. Even more accurate methods, such as ecological
momentary assessment (EMA), which acquire self-reported
experiences in the course of peoples’ lives [7,8], have not proven
practical over extended periods outside of research settings [7].
Accelerometry data from wearable devices that measure activity
levels have also been associated with depression [9], but many
people stop wearing the devices within the first weeks [10].

Smartphones are becoming ubiquitous. As of 2019, 81% of
Americans owned a smartphone [11], as did 76% of people in
countries with advanced economies, and 45% in emerging
nations [12]. Smartphones are fully integrated into our lives,
supporting a growing number of activities. Smartphones contain
embedded networked sensors that provide continuous, objective
data without user effort, which can be used to produce
behavioral markers. A growing body of research suggests that
these sensor data can be associated with common mental health
problems [13]. Location features derived from GPS actual
measurement of patterns of locations visited, time in locations,
and travel in phone communications such as text messaging
and phone and app use have been associated with depression,
anxiety, and social anxiety [14-17].

The potential for personal mobile sensing to improve our
understanding of the relationship between behavior and mental
health, as well as to advance clinical care, has been widely
recognized [18]. However, although there is promise, research
to date has had a number of weaknesses. Many of these studies
have been conducted in small, relatively homogenous groups,
such as students [15,16,19-21]. Although there has been some
specificity, with location features tending to identify depression
[14,15,19,22,23] and communication features tending to predict
social anxiety [17], there have also been a few studies that have
found the opposite [16,24]. This may be because of the
heterogeneity in symptoms and comorbidities [25], which are
common and have not been considered in existing research [13].

To date, studies have focused on using sensed behavioral
features to estimate a person’s state, either the presence or
absence of a condition or symptom severity. With some
exceptions, they have generally not evaluated the capacity for
sensed behavioral features to predict whether symptoms will
increase or decrease in the future. Among the few studies that
have examined the capacity of sensed features to predict
symptom change, one small study of 18 patients with bipolar
disorder found that greater inconsistencies in rates of typing on
a smartphone keyboard were related to future greater depressive

symptom severity [26]. Relative to studies that use sensed
behavior to estimate a person’s state, the temporal relationship
between sensed behaviors and symptom change has received
relatively little attention.

Objectives
In this study, we examine the temporal relationship between
changes in sensor features and subsequent changes in mental
health symptoms in a large sample of participants. The aim of
this exploratory study is to evaluate whether changes in classes
of smartphone sensor features were associated with changes in
symptom severity for depression, anxiety, and social anxiety,
across all participants as well as within groups clustered based
on symptoms.

Methods

Participants
Participants were recruited from July 15 to July 26, 2019,
through ResearchMatch, a National Institute of Health-funded
volunteer network, and the Center for Behavioral Intervention
Technologies research registry. Participants were included if
they were US citizens and residents, age ≥18 years, could read
English, and had an Android smartphone. Participants were
excluded if they endorsed, via self-report, having been diagnosed
with a severe mental illness, defined as bipolar disorder,
schizophrenia, or other psychotic disorder. Participants were
compensated for completing measures at set assessment points
as well as for completing EMA check-ins. Compensation for
completing assessments increased as the study period
progressed, such that participants were compensated relatively
less for early assessment points and relatively more for
assessments toward the end of the study. No single assessment
was compensated at more than US $32.50 per assessment time
point. Recruitment was advertised as a study on depression and
deliberately oversampled depressed participants such that at
least 50% of the sample experienced at least moderate
depression symptom severity according to the 8-item Patient
Health Questionnaire (PHQ-8).

Procedures
Participants downloaded the Passive Data Kit [27] mobile app,
which unobtrusively collects phone sensor data and administers
surveys. Web-based questionnaires were administered every 3
weeks. Participants were enrolled in the study for 16 weeks.
All procedures were approved by the Northwestern University
Institutional Review Board, and informed consent was obtained
from all participants before participation.

Measures
Participants completed web-based symptom severity assessments
at baseline and every 3 weeks until the end of the study period
(ie, weeks 4, 7, 10, 13, and 16). Symptom measures included
depression severity (PHQ-8) [28], generalized anxiety disorder
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(Generalized Anxiety Disorder 7-item scale [GAD-7]) [29], and
social anxiety disorder (Social Phobia Inventory [SPIN]) [30].
The PHQ-8 was administered as an EMA survey after the
baseline assessment point and, subsequently, had one additional
assessment point (week 1) relative to other symptom measures.

Phone sensor data included GPS coordinates sampled once
every 5 minutes, communication information (ie, phone logs
and duration, text message logs, and length), and open apps.
Assessment weeks occurred every 3 weeks, during which
participants were asked each evening to label the semantic
location (type of location) that they had visited for more than
10 minutes [31]. A series of maps identifying each location
were presented, and participants selected the category of each
place (eg, home, work, errand, entertainment, place of worship,
etc).

Data Analyses

Phone Sensor Feature Transformation

Overview

We considered four categories of phone features for our analysis:
GPS-derived movement and location information, semantic
locations, app use, and phone-based communication (calls and
texts).

To increase interpretability and reduce the number of sensor
features, we aggregated features first based on their phone sensor
source, as different sensor sets provide unique information.
Within each sensor set, we used unit weightings that maximized
the interpretability for each feature aggregation. Where possible,
we used existing theory to guide our unit aggregations. All
sensor features were standardized (mean-centered with unit
variance) across the full sample and averaged to produce sensor
groupings within the four sensor categories. A full list of
features, feature calculations, and their groupings can be found
in Multimedia Appendix 1.

GPS-Derived Location and Movement

Following the methodology of Saeb et al [20], we computed
high-level features from GPS data that measure participant
movement, including location variance (variability in GPS
location), total unique location clusters, location entropy
(variability in time spent at location clusters), normalized
entropy, total distance traveled, average velocity, and circadian
movement (extent to which sequence of locations followed a
24-hour pattern). The features were aggregated into Locations
(location cluster and location variance; represents the number
and variability in locations visited), Time (total entropy,
normalized entropy, and circadian movement; represents the
variability in time spent across locations), and Transitions
(distance traveled and velocity; represents travel between
locations).

Semantic Location

Labels for semantic location categories included home duration,
work duration, shopping duration, social activities duration (eg,
friends’ homes and entertainment), religious activities duration
(eg, place of worship), and exercise location duration (eg, gyms).
During the nonassessment weeks, semantic labels were assigned
to locations visited using GPS coordinates assigned during the

assessment weeks. This allowed us to estimate the daily duration
of time participants spent in each semantic location category.

Communication

The number of incoming and outgoing calls and texts, call
duration, and text message length were summed to obtain daily
aggregates. The feature groups were Calls and Text Messages.

App Use

Apps running in the foreground of the phone were sampled
every 5 minutes. We aggregated to produce daily app use
duration measurements. We grouped apps of interest into 3
categories based on previous theory that certain apps facilitate
active use, whereas others elicit more passive use [32,33]. This
theoretical underpinning resulted in 3 categories of app use that
were manually constructed using unit weighting. Final
categorizations included: Active Apps (eg, messaging, email,
and maps), which required active engagement to complete the
primary essential task of each app, Information Consumption
Apps (eg, YouTube and web browsers) where the primary
purpose was more passive consumption of information or
entertainment and Social Apps (eg, Facebook, Instagram, and
Snapchat), which were considered social media apps, and were
generally considered as a unique category of apps [34].

Population Clustering
Heterogeneity in underlying symptom patterns may impede the
ability to observe clinically meaningful relationships between
sensor features and symptom severity [13,35]. We used a
data-driven approach, performing k-means clustering on the
baseline PHQ-8, GAD-7, and SPIN items [36]. We chose k=4
using the elbow heuristic to choose the number of clusters
(Multimedia Appendix 2). Qualitative analysis of these clusters
showed that the 4 groups roughly corresponded to (1) a Minimal
Symptom cluster (n=88), comprising participants characterized
by low mean scores on all outcome measures; (2) a Depression
andSocial Anxiety cluster (n=71) that included participants with
predominantly moderate severity scores on the PHQ-8 and the
SPIN, but low scores on the GAD-7 measures; (3) a Depression
and Anxiety cluster (n=69), characterized by generally
moderate-severe symptoms on the PHQ-8, moderate symptoms
on the GAD-7, but mild ratings on the SPIN; and a (4) Multiple
Comorbidities cluster (n=54) characterized by elevated ratings
across all three symptom measures, with a substantial proportion
scoring in the severe range.

Statistical Methods: Correlation of Changes in Sensors
to Changes in Symptom Severity
Figure 1 shows the strategy we used to lag, by 2 weeks, repeated
measure correlations [37] of the changes in phone sensor
features with changes in symptom severity. The 2-week window
for sensor features, consistent with previous research [14,20],
was used to allow for sufficient quality of sensor readings to
match the retrospective time spans of self-report questionnaires
and to maximize data available for analysis while preventing
overlapping data sources (ie, symptom outcomes and concurrent
sensed behavioral data) from being used at different time points.
For the PHQ-8, we had six check-ins across the entire study,
yielding five pairs of changes for each participant, whereas for
GAD-7 and SPIN, we had five check-ins, yielding four pairs of
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changes for each participant. For analyses, in which changes in
sensor features were used to estimate subsequent symptom
severity, Sn2−Sn1 was correlated with Sx2−Sx1. For analyses
in which changes in symptom severity were used to estimate
changes in subsequent sensor features, Sx2−Sx1 was correlated
with Sn'2−Sn'1. To correct for multiple comparisons, we
computed adjusted P values using the Benjamini-Hochberg
procedure to control the false discovery rate [38].

If one assessment check-in was missing from a given pair of
check-in dates, we used a within-person mean-fill method for
the missing assessment. Any pair of assessment check-ins that
had missing phone sensor data was discarded from analyses.
Power calculations revealed that a sample size of 255 would be
required to detect an effect size (correlation, |ρ|) of 0.2 at an α
of .05 and power (β) of .90.

Figure 1. The sensor window preceding (a) and proceeding (b) the assessment check-ins. Correlations are run as corrected (Sx2−Sx1, Sn2−Sn1) and
corrected (Sx2−Sx1, Sn'2−Sn'1).

Results

Participants
The flow of participants in this study is shown in Figure 2.
Participant demographic and baseline symptom severity

characteristics across the entire sample and participant clusters
are detailed in Multimedia Appendix 3.
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Figure 2. Participant flow diagram. GAD-7: Generalized Anxiety Disorder 7-item scale; PHQ-8: 8-item Patient Health Questionnaire; SPIN: Social
Phobia Inventory.

Symptom Change Over Time
Ordinary least square regression revealed no significant change
in symptom severity as a function of time (PHQ-8: P=.80;
GAD-7: P=.83; SPIN: P=.57). However, there was substantial
within-participant variability depending on the symptom
measure, with mean SDs of 2.66, 3.50, and 5.90, for the PHQ-8,
GAD-7, and SPIN, respectively.

Association Between Sensor-Derived Behavioral
Feature Changes and Subsequent Symptom Severity
Change

Overview
Table 1 displays the repeated measure correlations primary
outcomes by symptom cluster.
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Table 1. Repeated measure correlations between sensor and symptom changes and symptom and sensor changesa.

Repeated measure correlationsCharacteristics

Change in symptom measure association with change in
sensor features

Change in sensor features association with change in
symptom measure

P value

(corrected)d
P value

(uncorrected)rrmdofbValue, n

P value

(corrected)d
P value

(uncorrected)rrm
c

dofbValue, n

Symptom measure: PHQ-8e

Full samplef

GPS features

.98.98<0.001801225<.001<.001−0.17802223Locations

.97.86−0.006801225.003<.001−0.12802223Time

.94.560.020801225.003<.001−0.12802223Transitions

Semantic location

.95.640.017801224.23.130.054806−225Home

duration

.97.74−0.012691190.53.500.026700192Work duration

.97.88−0.005210210.80.800.009767212Shopping

duration

.94.57−0.021207207.17.08−0.062790219Social activities
duration

.31.08−0.144444.36.24−0.08419554Religious activities
duration

.30.02−0.138181.005.0010.1831485Exercise location
duration

Communication

.31.08−0.062790221.46.34−0.034796223SMS text

messages

.94.52−0.023786221.50.400.03802225Calls

App use

.97.90−0.004807225.36.24−0.041809226Active apps

.30.04−0.072809226.53.470.026805225Information con-
sumption apps

.94.57−0.021746207.14.050.073748208Social apps

Subgroups (features with corrected P≥.1 omitted)

Multiple comorbidities

.93.800.02114341<.001<.001−0.3614341Locations

.70.46−0.06114341.02.005−0.2314341Time

.74.550.05114341.07.03−0.1814341Transitions

.70.45−0.133310.03.010.394111Exercise location
duration

.70.220.1014642<.001<.001−0.3114642Active apps

Depression and anxiety

.94.750.02220256.03.005−0.2020456Locations

.22.02−0.1720256.03.002−0.2120456Transitions

Depression and social anxiety

.93.920.00721862.08.01−0.1721861Locations
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Repeated measure correlationsCharacteristics

Change in symptom measure association with change in
sensor features

Change in sensor features association with change in
symptom measure

P value

(corrected)d
P value

(uncorrected)rrmdofbValue, n

P value

(corrected)d
P value

(uncorrected)rrm
c

dofbValue, n

.93.710.02521862.08.02−0.1621861Time

.93.930.00620857.08.01−0.1721460Social Activities
Duration

Symptom measure: SPINg

Depression and social anxiety (features with corrected P≥.1 omitted)

.73.53-0.04519366.005<.0010.2519566Calls

aThere were no significant associations between sensor features and subsequent 8-item Patient Health Questionnaire (PHQ-8) symptoms or PHQ-8
symptoms and subsequent sensor features within the minimal symptoms group. There were also no significant associations between sensor features and
subsequent Generalized Anxiety Disorder 7-item scale (GAD-7) symptoms or GAD-7 symptoms and subsequent sensor features for any subgroup.
bdof = n (k − 1), where n is the total number of participants and k is the average number of observations per participant.
cRepeated measures correlation coefficient.
dBenjamini-Hochberg corrected P values. Identical P values are due to the recursive definition of the Benjamini-Hochberg correction; it is possible for
corrected P values to be identical, especially for nonsignificant correlations.
ePHQ-8: Patient Health Questionnaire-8 item.
fFull results are provided for Patient Health Questionnaire-8 item results in the full sample only to display all sensed behavioral features. Thereafter
only relationships with corrected P<.1 are displayed.
gSPIN: Social Phobia Inventory.

Location Features
Patterns in individuals’ movements were associated with
subsequent changes in psychological symptoms, specifically
depressive symptoms. Changes in GPS-derived Location were
negatively associated with changes in the PHQ-8 in two of three
symptom clusters, Multiple Comorbidities (r=−0.36; P<.001),
Depression and Anxiety (r=-.20; P=.03), and the full sample
(r=−0.17; P<.001) and trended toward significance in the
Depression and Social Anxiety cluster (r=−0.16; P=.08), but
the results were not statistically significant. Changes in
GPS-derived Time were negatively associated with changes in
PHQ-8 within the Multiple Comorbidities cluster (r=−0.23;
P=.02) and the full sample (r=−0.12; P=.003) and trended
toward significance in the Depression and Social Anxiety cluster
(r=−0.16; P=.08), but the results were not statistically
significant. Changes in GPS-derived Transitions were negatively
correlated with changes in PHQ-8 for the Depression and
Anxiety cluster (r=−0.21; P=.03) and the full sample (r=−0.12;
P=.003) and trended toward significance in the Multiple
Comorbidities cluster (r=−0.18; P=.07), but the results were
not statistically significant. There were no significant
relationships for the Minimal Symptom cluster for the PHQ-8
and no significant relationships between GPS features and
subsequent changes in the GAD-7 or SPIN.

Certain types of semantic locations were also associated with
PHQ-8 changes. In the depression and social anxiety cluster,
there was a trend toward significance for Social Activity
Duration, which was negatively correlated with changes in the
PHQ-8 (r=−0.17; P=.08), but the results were not statistically
significant. Within the Multiple Comorbidities symptom cluster
and the full sample, Exercise Location Duration was positively
associated with subsequent changes in PHQ-8 scores (Multiple

Comorbidities cluster: r=0.39, P=.03; full sample: r=0.18,
P=.005). This unexpected association between changes in
exercise locations and changes in PHQ-8 was likely due to a
preponderance of individuals who spent no time in
exercise-based locations (ie, zero change in Exercise Location
Duration from zero time spent in exercise locations), thus
overweighting the data of some individuals who saw increased
time spent in exercise-based locations with increased PHQ-8.
There were no significant relationships within the minimal
symptom cluster for the PHQ-8, and no significant relationships
were found between semantic location features and subsequent
changes in the GAD-7 or SPIN.

Telephone Calls
Within the Depression and Social Anxiety baseline cluster,
increases in calls were associated with increases in SPIN scores
(r=0.25; P<.001).

App Use
Changes in Active App Use were negatively correlated (r=−0.31;
P<.001) with changes in PHQ-8 scores within the Multiple
Comorbidities cluster.

Association Between Changes in Symptom Severity
and Subsequent Change in Sensor-Derived Behavioral
Features
There were no significant correlations between changes in any
symptom severity measures and subsequent changes in
sensor-derived behavioral features.

Missing Data
Across all treatment weeks, missingness (ie, the number of
missing observations/total number of possible observations for
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all 282 participants) was higher for the PHQ-8 (277/1692,
16.37%) assessments than for the GAD-7 (104/1410, 7.38%)
and SPIN (104/1410, 7.38%). PHQ-8 assessments were
administered through our smartphone app, whereas the GAD-7
and SPIN were administered through REDCap (Research
Electronic Data Capture) [39]. In addition, across symptom
outcome measures and relative to baseline symptom levels
(Multimedia Appendix 3), those with missing assessments
tended to have slightly higher baseline symptom severity
(PHQ-8 range: 10.94-12.82; GAD-7 range: 9.95-11.5; and SPIN
range: 24.52-27.48).

Discussion

Principal Findings
Changes in numerous phone sensor–derived behavioral features
were associated with subsequent changes in mental health
symptoms among people with elevated symptoms of depression.
However, changes in symptoms were not associated with
subsequent changes in behavioral features. GPS location features
were fairly consistently and negatively, albeit modestly, related
to subsequent changes in depression severity across symptom
groups. This is consistent with a number of previous relatively
small studies showing correlations between GPS features and
depression [14,19,20,22,40,41]. This larger study confirms these
earlier findings, and importantly, indicates a directional
relationship in which GPS features are associated with
subsequent increases or decreases in depressive symptoms, but
not with anxiety or social anxiety.

The types of locations (work, shopping, etc) people visited were
less consistently related to changes in depression. This does not
necessarily mean that specific locations are unimportant at the
individual level: one person may like shopping, whereas another
may detest it. However, this suggests that patterns of movement
through geographic space, irrespective of the destinations or
locations to which one travels, are indicators of symptom change
among people with depression. We speculate that this may
reflect a loss of motivation expressed through geographic
movement. Perhaps more speculatively, it may also be that
changes in neurocognitive mechanisms, such as executive
control, affect, and motivation, impact both depression and basic
mechanisms involved in movement through geographic space
[42,43].

The different constellations of symptoms that participants
experience impact the salience of some sensed behaviors in
predicting outcomes. For example, only within participants in
the Depression and Social Anxiety symptom cluster was the
amount of time spent in locations related to social activities
associated with (at the trend level) subsequent change in
depressive symptoms, suggesting that although locations are
generally useful for depression prediction, social activities may
be particularly useful when social anxiety symptoms are present.
Active App Use (texting, email, and mapping) was associated
with depression change among those with multiple and more
severe comorbidities. Although GPS features were generally
useful, features integrating time and location were not useful
among those with comorbid generalized anxiety, and features
measuring transitioning between locations were not useful for

those with comorbid social anxiety. Thus, there was support for
the notion that symptom constellations are important
considerations for some features.

Increases in telephone calls were associated with increases in
social anxiety symptoms among clusters characterized by
depression and social anxiety. This finding notwithstanding,
the capacity for sensor-derived features to be associated with
changes in social anxiety symptoms was not as consistent as
that for depressive symptoms. Furthermore, we did not find any
associations between sensor-derived features and generalized
anxiety symptom changes.

These findings indicate that sensor-derived behavioral features,
which are objective and can be acquired with reduced participant
effort, can be a useful tool for investigating the role of some
behaviors in changing depressive symptom severity. There has
been much speculation about the clinical potential of mobile
sensing [18,44]. The effect sizes are modest, albeit consistent
with many other studies that have examined the use of sensed
behavioral features to estimate the presence or severity of
symptoms [16,19]. This study does not support the use of phone
sensor data alone in monitoring symptom changes in mental
health populations; however, phone sensor data may be useful
in conjunction with other networked sensing tools such as
wearables. Phone sensor data may be useful for digital mental
health interventions [45]. Just-in-time adaptive interventions
[46,47] use individualized data to predict risk and deliver
context-aware intervention material that is adaptive. These
approaches are increasingly applied in digital health
interventions, such as identifying when to send messages to
increase physical activity such as step counts [48]. The promise
of delivering motivational messages at opportune moments that
reinforce behavioral activation strategies, such as visiting
someplace new, spending more time outside of the home or
work, or engaging socially, has the potential to improve
engagement with these tools and reduce depression.

Limitations
This study had several limitations. First, the exploratory nature
of this study requires interpreting results with caution and
necessitates that future work must explicitly test the a priori
hypotheses arising from these results. Next, although we
establish significant temporal relationships between sensed
behavior changes and subsequent changes in symptom severity,
our study is not experimental and does not establish causal
relationships. Furthermore, our sensor feature aggregations were
limited to single sensor sources and were constructed to
maximize interpretability; however, future studies that use
data-driven aggregations are necessary to help inform feature
aggregations across sensor modalities. Although aggregating
across sensor modalities presents a challenge for interpretability,
future work that examines cross-sensor aggregations could yield
improved estimation of sensed behaviors and, subsequently,
more robust associations with changes in symptoms. In addition,
although these findings provide some support for the hypothesis
that sensed behavior change is associated with subsequent
changes in depression and not vice versa, this study examined
the associations between changes in sensor features and
subsequent changes in symptom severity measures lagged by
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2 weeks, and therefore should not be generalized to periods
beyond the 2-week window. Another limitation is that our
sample only included those who used Android devices and
agreed to participate in this research. App use and
communication data are not readily available for iOS devices.
Regarding data missingness, across all the surveys, individuals
who had missing data had higher baseline symptom severity
than the overall sample, though not dramatically so; thus, data
were missing not at random. These missingness rates are in line
with established criteria that are often used as the standard for
good trial data [49]. Finally, although we controlled for multiple
analyses, we nonetheless caution against overinterpretation of
more isolated findings that need to be replicated in future
studies.

Conclusions
The ubiquity of smartphones with networked sensors has opened
up new opportunities to identify behavioral markers related to
mental health that can be acquired continuously and effortlessly.
Changes in movement through geographic space were
consistently associated with subsequent changes in depressive
symptoms; however, there was no evidence that changes in
depression were associated with subsequent changes in sensed
behaviors. This supports a directional relationship in which
changes in movement patterns precede symptom change, but
symptom change does not precede changes in movement
behaviors.
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