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Abstract

Background: Previous studies have shown promising results in identifying individuals with autism spectrum disorder (ASD)
by applying machine learning (ML) to eye-tracking data collected while participants viewed varying images (ie, pictures, videos,
and web pages). Although gaze behavior is known to differ between face-to-face interaction and image-viewing tasks, no study
has investigated whether eye-tracking data from face-to-face conversations can also accurately identify individuals with ASD.

Objective: The objective of this study was to examine whether eye-tracking data from face-to-face conversations could classify
children with ASD and typical development (TD). We further investigated whether combining features on visual fixation and
length of conversation would achieve better classification performance.

Methods: Eye tracking was performed on children with ASD and TD while they were engaged in face-to-face conversations
(including 4 conversational sessions) with an interviewer. By implementing forward feature selection, four ML classifiers were
used to determine the maximum classification accuracy and the corresponding features: support vector machine (SVM), linear
discriminant analysis, decision tree, and random forest.

Results: A maximum classification accuracy of 92.31% was achieved with the SVM classifier by combining features on both
visual fixation and session length. The classification accuracy of combined features was higher than that obtained using visual
fixation features (maximum classification accuracy 84.62%) or session length (maximum classification accuracy 84.62%) alone.

Conclusions: Eye-tracking data from face-to-face conversations could accurately classify children with ASD and TD, suggesting
that ASD might be objectively screened in everyday social interactions. However, these results will need to be validated with a
larger sample of individuals with ASD (varying in severity and balanced sex ratio) using data collected from different modalities
(eg, eye tracking, kinematic, electroencephalogram, and neuroimaging). In addition, individuals with other clinical conditions
(eg, developmental delay and attention deficit hyperactivity disorder) should be included in similar ML studies for detecting
ASD.

(J Med Internet Res 2021;23(8):e29328) doi: 10.2196/29328
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Introduction

Autism spectrum disorder (ASD) is a complex
neurodevelopmental condition characterized by social
communication deficits along with restricted and repetitive
behavior [1]. Owing to a lack of objective biomarkers, the
current diagnosis of ASD heavily depends on behavioral
evaluation, which involves substantive subjective procedures
that can be negatively impacted by various factors such as
caregivers’ reporting bias and clinicians’ insufficient capability
in differentiating ASD [2,3]. In addition, the current diagnostic
procedure is highly labor- and time-demanding due to the
shortage in clinical specialists and requirement of lengthy
examinations. A delayed diagnosis directly leads to postponed
interventions, which subsequently impacts the prognosis of the
affected children [4]. Therefore, seeking quantifiable and
objective biomarkers of ASD, which could potentially make
the diagnostic procedure more efficient and effective, has
become a critical issue.

With respect to seeking objective biomarkers for ASD, recent
studies reflect increasing interest in applying machine learning
(ML) algorithms to examine whether features extracted from
neuroimaging [5,6], electroencephalogram (EEG) [7], eye
tracking [8,9], and kinematic data [10-12] could be used to
identify ASD. The underlying justification for applying ML is
based on the advantages of these approaches in identifying
patterns that are not readily recognized by human eyes. Indeed,
an ML approach demonstrated promising results in detecting
ASD with objectively measured features. For example, Crippa
et al [11] showed that seven kinematic features computed from
a goal-directed motor task could accurately classify children
with and without ASD (accuracy 96.7%). By implementing an
imitation task, Li et al [13] reported a maximum classification
accuracy of 86.7% using an ML approach.

Recently, a few studies have revealed that eye-tracking data
could be used to identify ASD by implementing ML algorithms
[8,9,14-19]. For example, Wan et al [9] recruited children within
the ages of 4-6 years with ASD and typical development (TD)
to watch a 10-second video displaying a woman speaking. ML
features were extracted from eye-tracking measures in seven
areas of interest (AOIs). Their results demonstrated that fixation
time at the mouth and body AOIs could discriminate these two
groups of participants with a classification accuracy of 85.1%.
In contrast to Wan et al [9], who used a predefined AOI
approach, Liu et al [8] used the K-means algorithm to extract
features from the fixation data, which reached a maximum
classification accuracy of 88.51%. Further, a few studies
demonstrated that eye-tracking data obtained from
web-searching tasks could be used to detect ASD [14-16].
Instead of computing features from eye-tracking data, Eraslan
et al [15] performed a scan-path trend analysis to identify
representative eye movement sequences for both individuals
with ASD and TD. A classification was made based on the
similarity of the individual’s visual scan path to the
representative sequences. This approach was able to classify
individuals with ASD and TD with above-chance accuracy.

The eye-tracking data used in these prior studies were primarily
obtained by having participants watch images (ie, videos,
pictures, web pages) [8,9,14]. However, in reality, human gaze
behavior is highly context-sensitive. Existing findings show
that experimental settings and cognitive load are critical factors
that could influence how people visually attend [20,21]. In
contrast to image-watching tasks, face-to-face interaction is a
social task that is much more perceptually and cognitively
difficult [22]. Other studies have shown that the presence of the
social partner elicits a different pattern of both neural response
and gaze behavior [23,24]. In this vein, findings obtained from
image-viewing tasks could not be directly generalized to the
scenario of natural social interaction. Accordingly, there is a
need to investigate whether eye-tracking data from live social
interaction could be used to identify ASD.

The major novelty of this study is that we investigated the
feasibility of using eye-tracking data from face-to-face
conversations to classify children with ASD and TD. This
research question is of practical significance since face-to-face
interaction is omnipresent in everyday life. With the
development of eye-tracking technology that enables the
detection of natural social gaze behavior, ASD might be initially
screened in daily life without needing to undergo lengthy and
sophisticated procedures in clinical settings. In addition, apart
from visual fixation measures, we included the length of
conversation as an input feature to investigate whether
combining features from these two modalities would increase
the classification performance. The majority of prior
eye-tracking ML research focused on using gaze data to identify
ASD. To the best of our knowledge, only two recent studies
combined eye tracking and EEG or kinematic data, showing
that combined features yielded better classification performance
than using features from a single modality [19,25]. With the
development of objective assessment, it is proposed that future
detection of ASD might be realized by integrating data from
different modalities. Our research therefore contributes to the
existing literature by investigating whether combining data from
visual fixation and length of conversation could improve the
performance of ML models.

Methods

Participants
Data used in this study were obtained from a research project
aiming at identifying behavioral markers of ASD. Twenty
children with ASD and 23 children with TD were enrolled in
the study. Children with ASD were recruited from the Child
Psychiatry Department of Shenzhen Kangning Hospital. Owing
to limited access to instruments such as the Autism Diagnostic
Observation Schedule or the Autism Diagnostic
Interview-Revised, ASD was primarily diagnosed by a licensed
psychiatrist with no less than 5 years of clinical experience
following the Diagnostic and Statistical Manual of Mental
Disorders-IV criteria. In addition, the ASD diagnosis was further
evaluated by a senior psychiatrist. A consultation with at least
two additional senior psychiatrists would be arranged if there
was disagreement among the specialists. All of these procedures
ensured the correctness of the ASD diagnosis for the children
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enrolled in our study. Additional inclusion criteria were as
follows: (1) aged between 6 and 13 years; (2) at least average
nonverbal intelligence (IQ level was initially screened by the
psychiatrist, and measured with the Raven advanced progressive
matrices [26]); and (3) absence of other clinical conditions,
including attention deficit hyperactivity disorder (ADHD) and
schizophrenia. The TD group included healthy children without
any mental or physical disorders and no diagnosis of
ASD/ADHD in first-degree relatives, who were recruited from
local schools. The experimental protocol followed the principles
of the Declaration of Helsinki and the ethical guidelines of
Shenzhen University. Written informed consent was provided
by the participants’ caregivers.

Data Collection
Participants were asked to engage in a structured face-to-face
conversation with a 33-year-old female interviewer who was
blinded to the participant’s group membership. The interviewer
was required to behave consistently across all interviews with
all participants. Participants were required to wear a
head-mounted eye tracker (Tobii Pro Glasses 2; sampling rate:
50 Hz; Tobii Technology, Stockholm, Sweden) during the
conversation, and they were seated 80 cm away from the
interviewer’s chair (Figure 1). The conversation was videotaped
with two still cameras. One camera (Samsung HMX-F90,
sampling frequency 25 Hz) recorded both the interviewer and
interviewee by placing each person equally on the left and right
side of the recording view. The other camera (Logitech C270,
sampling frequency 30Hz) was positioned beside the interviewer
to capture the participant’s behavior from the front view.

Figure 1. Experimental setup.

Participants were not informed of the function of the eye tracker,
and they were asked to avoid moving the glasses or to make
any intense head movements during the conversation. A
postexperiment interview confirmed that none of the participants
was aware that their gaze behavior had been recorded. In
addition, once the eye tracker was moved by the participant
(particularly those with ASD), an accuracy test was performed
at the end of the conversation to ensure the accuracy of the
eye-tracking data recording. Verifications showed that Tobii
Pro Glasses 2 was reliably accurate even if the glasses were
moved by participants during the conversation.

The structured conversation consisted of four chronologically
arranged sessions: general questions in the first session, hobby

sharing in the second session, yes-no questions in the third
session, and question raising in the fourth session. The first
session allowed both the interviewer and the child to become
familiarized with each other. The second session served the
purpose of examining the participants’behavior when speaking
about their hobbies, which might induce different gaze behavior
from that induced when discussing more generic topics [20].
The third session was designed to investigate the extent to which
participants used head nodding or shaking to answer yes-no
questions. The behavior of taking initiatives to raise questions
was examined in the fourth session. Refer to Textbox 1 for
further details of the questions used in each session.
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Textbox 1. Details of the four sessions of the structured conversation.

Session 1: General questions

1. What is your name?

2. How is your name written?

3. What is the name of your school and what grade are you in?

4. Who is your best friend? What is your favorite thing to do together?

5. Could you please share with me the most interesting thing that happened last week? Let me know the time, place, people, and the whole process
of the event.

6. What is the plan for your summer vacation?

Session 2: Hobby sharing

1. What is your favorite thing to do? And can you tell me why you like doing it?

Session 3: Yes-no questions

1. Do you like apples?

2. Do you like to go to the zoo?

3. Do you like to go to school?

4. Do you like reading?

5. Do you like painting?

6. Do you like watching cartoons?

7. Do you like sports?

8. Do you like watching movies?

9. Do you like traveling?

10. Do you like shopping?

Session 4: Question raising

1. Now that I have asked you many questions, do you have any questions for me?

Eye-Tracking Data Analysis
Data of four participants (one with ASD and three with TD)
were discarded due to technical problems that occurred during
the eye-tracking process. Hence, the final dataset consisted of
20 children with TD and 19 children with ASD. The
participants’ demographic information is presented in Table 1.

The eye-tracking data were analyzed with Tobii Pro Lab
software, which enables processing visual fixation data on

dynamic stimuli. Note that the interviewer was also a dynamic
stimulus as she was interacting with the participants throughout
the conversation.

Features were extracted on visual fixation and session length
from the eye-tracking data. For the visual fixation features, four
AOIs were analyzed, including the eyes, mouth, whole face,
and whole body (Figure 2). We computed the percentage of
visual fixation time on each AOI as features. Therefore, 16
AOI-based features were acquired (4 sessions × 4 AOIs).
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Table 1. Comparison of demographic information and the area of interest (AOI)-based features in the autism spectrum disorder (ASD) and typical
development (TD) groups.

P valueGroup comparisonTDASDCharacteristic

Demographic characteristics

.68χ2
1=0.1717:317:2Sex ratio, M:F

.28t37=1.09108.8 (27.0)99.6 (25.1)Age (months), mean (SD)

.02t37=2.45116.1 (22.7)100.8 (22.7)IQ, mean (SD)

AOI features, mean (SD)a

<.001U=59.50.19 (0.13)0.05 (0.06)Mouth_Session 1

.63U=173.00.08 (0.09)0.06 (0.06)Eyes_Session 1

.001U=70.50.41 (0.18)0.21 (0.17)Face_Session 1

.003U=85.50.55 (0.21)0.33 (0.23)WholeBody_Session 1

.004U=88.00.16 (0.13)0.05 (0.09)Mouth_Session 2

.18U=143.00.06 (0.07)0.04 (0.04)Eyes_Session 2

.001U=77.00.39 (0.20)0.17 (0.16)Face_Session 2

.008U=95.50.52 (0.25)0.29 (0.26)WholeBody_Session 2

.10U=131.00.21 (0.17)0.12 (0.15)Mouth_Session 3

.91U=186.00.08 (0.10)0.07 (0.06)Eyes_Session 3

.05U=120.50.49 (0.21)0.33 (0.26)Face_Session 3

.12U=134.50.06 (0.20)0.46 (0.28)WholeBody_Session 3

.05U=122.00.12 (0.12)0.05 (0.06)Mouth_Session 4

.85U=183.50.08 (0.11)0.06 (0.09)Eyes_Session 4

.05U=120.00.32 (0.18)0.21 (0.20)Face_Session 4

.07U=125.50.47 (0.22)0.34 (0.25)WholeBody_Session 4

aDue to a violation of the normality assumption, Mann-Whitney U tests were performed for group comparisons on AOI-based features.
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Figure 2. Four areas of interest.

To obtain the percentage of visual fixation time on each AOI,
the first step was to draw a snapshot image from the eye-tracking
video for the purpose of defining AOIs. Once AOIs were
defined, with the help of the real-world mapping algorithm,
Tobii Pro Lab automatically mapped the gaze point in the video
onto correct spots of the snapshot image. The correctness of the
mapping process was confirmed by a human observer. Manual
mapping was performed in the case that no fixation was
automatically mapped onto the snapshot or if the fixation
automatically assigned failed to match the correct spot. In this
way, the accuracy of visual fixation was reliably ensured. Note
that we used the velocity-threshold identification fixation filter
to define fixation, which meant that a fixation was detected if
the velocity of the eye movement was below 30 degrees per
second for no less than 60 milliseconds. Finally, the percentage
of visual fixation time on each AOI in a session was computed
as the length of the fixation time on the AOI divided by the total
duration of the particular session. Results regarding the group
comparison on the AOI-based features in different sessions are
presented in Table 1.

The length of each session varied across participants.
Mann-Whitney U tests showed that the children with ASD had
significantly longer conversations in the first session (U=48,
P<.01), second session (U=103, P=.02), and fourth session
(U=107, P=.02), but not in the third session (U=150, P=.26).
In addition, the total length of all four sessions was significantly
longer in the ASD group (U=39, P<.01). These results indicated

that session length might serve as an effective feature to classify
children with ASD and TD. Thus, the lengths of the four
sessions and the total session length were used as five input
features.

ML Procedure

Description of Dataset
Sixteen features on visual fixation (percentages of visual fixation
time on four AOIs [mouth, eyes, face, and whole body] in four
conversation sessions) and five features on session length were
computed as features fed into the ML procedure. Therefore, the
original dataset for the ML procedure was a 39 (participants)×21
(features) matrix. Three types of ML models were established,
one with visual fixation features alone, one with session length
features alone, and one with combined features on both
modalities, to investigate whether combined features would
yield better classification performance.

Classifiers
The classification task was performed by implementing four
ML classifiers: support vector machine (SVM), linear
discriminant analysis (LDA), decision tree (DT), and random
forest (RF). The description of these classifiers is detailed below.

SVM is a supervised learning algorithm that has been previously
implemented in classifying individuals with and without ASD
[8,10]. The purpose of the SVM classifier is to create an optimal
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hyperplane in a multidimensional space with labeled training
samples. Testing samples are classified based on the sign of the
distance vector to the hyperplane, and the distance to the
hyperplane determines the probability that they belong to the
specific category.

The task of classifying children with ASD from those with TD
is a binary classification problem. In this case, the LDA
classifier works as a dimension reduction technique that projects
all data points in the high-dimensional space onto a straight line
(ie, one dimension) with training samples. Testing samples were
classified in either group by the threshold value on the straight
line.

The DT classifier is a tree-like flowchart. The nodes in the
model represent tests on an attribute, the branches represent the
outcomes of the tests, and the leaf nodes denote class labels.
The DT classifier exhibits the advantage of strong
interpretability, but it is prone to overfitting.

Instead of building a tree-like structure, the RF classifier is
established by creating multiple simple trees with the training
data. Test samples are categorized into a specific group based
on the majority of votes from the trees.

Feature Selection
Forward feature selection (FFS) was applied to select features
for model training and testing. Specifically, FFS is an iterative
process starting with the evaluation of each individual feature
by examining their classification performance. The feature with

the highest classification accuracy would be preserved and is
then combined with each of the other features to form
two-feature models whose classification performances are
further evaluated. The two features with optimal classification
accuracy are then retained and used to establish three-feature
models by combining them with each of the remaining features.
By repeating these procedures, the one-feature, two-feature, …,
n-feature models with the highest classification accuracy would
be obtained (n represents the total number of examined features
intended to be fed into ML models). In this way, FFS helped to
identify not only the model with the highest classification
accuracy but also the corresponding feature or feature
combination.

Classification
The entire ML procedure is schematically presented in Figure
3. To minimize the potential overfitting problem, we
implemented leave-one-out cross-validation in ML model
training and testing. Specifically, the test set contained only one
participant sample and the remaining participant samples were
used to train the ML model. This procedure was repeated until
all participant samples were tested once. The accuracy,
sensitivity, and specificity were computed to evaluate the
classification of the ML models. Accuracy was defined as the
percentage of participant samples that were correctly classified
in both groups. Specificity and sensitivity corresponded to the
model’s capability of correctly detecting the TD and ASD
samples respectively.

Figure 3. Flowchart of the machine learning procedure. LOOCV: leave-one-out cross-validation.
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Results

Classification with Combined Features
The variation in classification accuracy according to the number
of features used in the model is illustrated in Figure 4. All
classifiers yielded a maximum classification accuracy above
84%. The SVM classifier achieved optimal classification

accuracy of 92.31% with three features (specificity=100%,
sensitivity=84.21%, area under the receiver operating
characteristic curve [AUC]=0.92), followed by LDA with
89.74% accuracy using four features (specificity=90.00%,
sensitivity=89.47%, AUC=0.92), DT with 84.62% accuracy
using two features (specificity=80.00%, sensitivity=89.47%,
AUC=0.86), and RF with 84.62% accuracy using 16 features
(specificity=85.00%, sensitivity=84.21%, AUC=0.86).

Figure 4. Variation of the classification accuracy with the number of features. SVM: support vector machine; LDA: linear discriminant analysis; DT:
decision tree; RF: random forest.

The classification performance of the SVM classifier was the
highest among the four classifiers. The variation of the SVM
classification performance according to the number of features
is presented in Table 2. The classification accuracy reached

79.49% with only one feature: total session length. The optimal
classification accuracy of 92.31% was achieved with a minimum
of three features: total session length, mouth in the first session,
and whole body in the third session.
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Table 2. Variation of the support vector machine classification performance with different features.

Specificity (%)Sensitivity (%)Accuracy (%)Added featureNumber of features

90.0068.4279.49Total SLa1

90.0078.9584.62~b +Mouth_Session 12

100.0084.2192.31~ +Wholebody_Session 33

100.0084.2192.31~ +Face_Session 34

95.0089.4792.31~ +Face_Session 25

95.0089.4792.31~ +Eyes_Session 46

95.0089.4792.31~ +Face_Session 17

95.0089.4792.31~ +SL_Session 28

90.0089.4789.74~ +Wholebody_Session 19

95.0089.4792.31~ +Face_Session 410

95.0089.4792.31~ +Mouth_Session 211

95.0084.2189.74~ +Eyes_Session 112

95.0084.2189.74~ +Eyes_Session 213

90.0084.2187.18~ +Mouth_Session 314

95.0084.2189.74~ +SL_Session 315

95.0084.2189.74~ +Wholebody_Session 416

90.0084.2187.18~ +Mouth_Session 417

90.0078.9584.62~ +Eyes_Session 318

85.0078.9582.05~ +SL_Session 119

80.0078.9579.49~ +SL_Session 420

80.0073.6876.92~ +Wholebody_Session 221

aSL: session length.
bIn forward feature selection, ~ represents all features in the previous iteration; for example, ~ represents all 6 previously selected features in the 7th
iteration.

The confusion matrix of this three-feature model that achieved
the highest accuracy is presented in Table 3, which shows that
the model correctly classified children in the TD group with
100% accuracy, but it mislabeled three children with ASD as
having TD. Error analysis examining the mislabeled samples
showed that these participants performed equally well as the
children with TD (Figure 5). For example, the total session

length of mislabeled sample 1 was shorter than that of 75% of
the children in the TD group, and the visual fixation time on
the mouth AOI in the first session was higher than that of half
of the children in the TD group. Consistent with a previous
study [27], these results support the significant heterogeneity
among individuals with ASD.

Table 3. Confusion matrix of the support vector machine classifier with the highest accuracy.a

Predicted classActual class

ASDcTDb

FPe=0TNd=20TD

TPg=16FNf=3ASD

aAccuracy=TP+TN/TP+FP+FN+TN; sensitivity=TP/TP+FN; specificity=TN/FP+TN.
bTD: typical development.
cASD: autism spectrum disorder.
dTN: true negative.
eFP: false positive.
fFN: false negative.
gTP: true positive.
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Figure 5. Boxplots of three features that achieved the highest classification accuracy in the support vector machine classifier along with the three
mislabeled samples. ASD: autism spectrum disorder; TD: typical development.

Classification Using Only Visual Fixation Features
Following the same procedure but feeding only AOI-based
features into the ML classifiers achieved a maximum
classification accuracy of 84.62% by the LDA classifier
(specificity=80.00%, sensitivity=89.47%, AUC=0.86) with
three features (mouth in session 1, face in session 2, and mouth
in session 3), and by the DT classifier (specificity=80.00%,
sensitivity=89.47%, AUC=0.86) with two features (face in
session 2 and eyes in session 3).

Classification Using Only Session Length Features
When using only session length features to perform the
classification task, the maximum classification accuracy of
84.62% was achieved by the SVM classifier
(specificity=90.00%, sensitivity=78.95%, AUC=0.87) with four
features (session length in sessions 1, 3, and 4, and total session
length).

Discussion

Principal Findings
In this study, we extracted features on visual fixation and session
length from eye-tracking data collected during face-to-face
conversations and investigated their capacity for classifying
children with ASD and TD. The maximum classification
accuracy of 92.31% was achieved by combining features on
both visual fixation and session length with the SVM classifier.
The classification accuracy was higher than that obtained using
visual fixation features (highest accuracy: 84.62%) or session
length features (highest accuracy: 84.62%) alone. Since 19
children with ASD and 20 children with TD were enrolled in
this study, there was a slight class imbalance. Majority class
prediction is typically used as a baseline for imbalanced
classification. In the context of this study, majority class
prediction requires every participant sample to be predicted as
“TD”. Thus, the classification accuracy of majority class
prediction would be 51.3% (ie, 20/39), which is greatly lower
than the optimal classification accuracy of our results. This

suggests that our results could not be explained by majority
class prediction.

The highest classification accuracy was achieved with three
features: total session length, percentage of visual fixation time
on the mouth AOI in the first session, and percentage of visual
fixation time on the whole body AOI in the third session. As
shown in Table 2, the total session length was an effective
feature for discriminating ASD from TD with an accuracy of
79.49% alone. In our study, participants were engaged in a
structured conversation, in which they had to interact with the
interviewer by answering the same number of questions. Longer
conversation might be explained by the social deficits in children
with ASD. Specifically, it was assumed that children with ASD
might have experienced greater difficulty in understanding the
social information (eg, motivation, mental state, and emotion)
conveyed by the interviewer [28,29]. Interestingly, various
studies demonstrated that the social deficits are more
pronounced when dealing with naturalistic social stimuli [29,30].
Thus, it took the children with ASD longer to finish the same
number of questions. However, further exploration is needed
to confirm whether the length of conversation could be attributed
to the poor social understanding capacity.

Notably, fixation measures on the mouth and whole body AOIs
played important roles in the SVM classifier that produced the
highest classification accuracy. The mouth AOI emerged as a
prominent feature in this study, possibly owing to the fact that
participants were engaged in a conversational task. Previous
studies showed that the mouth is an important body feature that
affords the looking-toward behavior in conversations [22,31,32].
Our result of selecting the mouth AOI as an important feature
was consistent with the findings of Wan et al [9], in which
participants watched a video of a model speaking. With respect
to the whole body AOI, abundant research has shown that
individuals with ASD pay less attention to socially relevant
stimuli [33,34]. The interviewer in this study could be viewed
as the most relevant social stimulus, as participants needed to
utilize information of the interviewer (eg, emotions, gestures,
body movements) to converse with her. Looking away from the
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interviewer would induce the missing of important social
information, which may further undermine the ability of the
participants with ASD to interact with the interviewer during
the conversation.

Apart from the fact that we used data from face-to-face
interaction as opposed to data obtained from image-viewing
tasks used in previous related studies, our study is different from
other eye-tracking ML studies in two main aspects. First, this
study recruited children aged between 6 and 13 years, whereas
Wan et al [9] studied younger children (4-6 years old) and other
studies [14-16,19] tested the adult population. Age is of
profound significance in this context, since early identification
and intervention may tremendously improve the prognosis of
individuals with ASD [4]. A recent meta-analysis reported that
the mean age at diagnosis of ASD was 60.48 months and was
43.18 months when only incorporating children aged ≤10 years
[35]. This suggests that future ML studies should focus on
examining younger children to facilitate the detection of ASD
at an early stage. Second, the ASD severity level was not
specifically measured in our study, which was accounted for in
a previous study [27]. The children with ASD included in this
study could be viewed as representing individuals with minor
severity. It is recommended that individuals with ASD with
different degrees of severity be included in future studies to
improve the generalizability of the ML model. Except for these
two differences, it is notable that our study and most others only
classified individuals with ASD and TD [8,9,14-16]. Therefore,
it remains unclear whether eye-tracking data could effectively
detect ASD from other clinical phenotypes (eg, developmental
delay and ADHD). More scientific endeavor is certainly required
before a practical ML model that could detect ASD from
different conditions is established.

Limitations
To ensure that the participants would be able to converse with
the interviewer, we recruited children within the age range of
6-13 years with at least average intellectual ability. Participants
with severe symptoms of autism were not included. In addition,
only four girls were enrolled in our study. Prior studies reported
that males with ASD differ from females with ASD in many
respects, including behavioral presentation, cognitive domains,
and emotions [36,37]. Therefore, this study should only be
considered as proof-of-concept research, which explored the
feasibility of using eye-tracking data from face-to-face
conversations to classify children with ASD and TD. Future
studies might consider recruiting participants with various
presentations (eg, different degrees of severity and balanced
sex ratio) to ensure the generalizability of the ML model.

This study utilized a head-mounted eye tracker to record the
gaze behavior, which might affect the social behavior of children
with ASD to a larger extent. In general, individuals with ASD
are more sensitive to wearing devices and eye-tracking
techniques usually require extensive calibration [38,39]. These
issues considerably raise the difficulty of implementing
eye-tracking techniques on children with ASD, particularly on
the younger population. To address these problems, a recent
study used a webcam to record eye movement and developed
a computer vision–based algorithm to detect gaze behavior. The

results showed that the accuracy of the algorithm was
comparable to that of manual coding when evaluating particular
gaze behaviors [39]. It is proposed that more contactless and
calibration-free techniques should be developed to record the
gaze behavior in individuals with ASD.

Our study only computed the percentage of visual fixation time
on different AOIs as measures of gaze behavior. In fact, a variety
of other features could be obtained from the gaze behavior,
including the number of fixations, entropy, and number of
revisits [16,40]. Additionally, features extracted from
oculomotor behavior are also recommended since atypical
oculomotor performance has been extensively reported in
individuals with ASD [41,42]. Future ML studies are encouraged
to generate as many features as possible so as to allow for
specification of the globally optimal set of features for ASD
identification.

Using eye-tracking data from face-to-face interaction was a
major novelty of this study. However, human interaction may
introduce a variety of subjective factors that are difficult to
control but might influence the gaze behavior of participants.
For example, the interviewer might unconsciously behave
differently with the children with ASD from the TD group, even
if she was required to maintain a similar manner of behavior
when interacting with participants in both groups. To examine
whether the interviewer behaved consistently with both groups
of participants, the overall amount of movement she made
during the conversation was estimated using image differencing
techniques applied to the video recordings [43,44]. Statistical
analysis of these data showed that the amount of the
interviewer’s movement was not significantly different when
interacting with these two groups of participants (t214=1.76,
P=.29). However, it is acknowledged that a similar amount of
body movement does not necessarily mean that the interviewer’s
behavior was completely identical for all participants. This is
an inevitable problem faced by all studies investigating natural
social interaction since no human being can be expected to
behave exactly the same way when interacting with different
people. In summary, future studies attempting to apply eye
tracking to live social interactions need to cautiously control
for factors (eg, context, task, and the interactant’s behavior) that
might be introduced through human interaction.

Conclusion
Our study extracted features from eye-tracking data during
face-to-face conversations to investigate their capacity of
detecting children with ASD. With a relatively small sample,
our results showed that combining features on visual fixation
and session length could accurately classify children with ASD
and those with TD. It is proposed that future eye-tracking ML
studies could use features from gaze-based measures [8,9],
visual scanning path [15], and oculomotor performance [41,42]
to detect ASD. Finally, we recommend that a larger and younger
participant sample should be tested with the ML approach by
combining features obtained from different modalities (eye
tracking, neuroimaging, EEG, and kinematic) to evaluate how
these objectively measured features could contribute to the early
screening of ASD.
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