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Abstract

Background: The dynamic tracking of tumors with radiation beams in radiation therapy requires the prediction of real-time
target locations prior to beam delivery, as treatment involving radiation beams and gating tracking results in time latency.

Objective: In this study, a deep learning model that was based on a temporal convolutional neural network was developed to
predict internal target locations by using multiple external markers.

Methods: Respiratory signals from 69 treatment fractions of 21 patients with cancer who were treated with the CyberKnife
Synchrony device (Accuray Incorporated) were used to train and test the model. The reported model’s performance was evaluated
by comparing the model to a long short-term memory model in terms of the root mean square errors (RMSEs) of real and predicted
respiratory signals. The effect of the number of external markers was also investigated.

Results: The average RMSEs of predicted (ahead time=400 ms) respiratory motion in the superior-inferior, anterior-posterior,
and left-right directions and in 3D space were 0.49 mm, 0.28 mm, 0.25 mm, and 0.67 mm, respectively.

Conclusions: The experiment results demonstrated that the temporal convolutional neural network–based respiratory prediction
model could predict respiratory signals with submillimeter accuracy.

(J Med Internet Res 2021;23(8):e27235) doi: 10.2196/27235
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Introduction

The aim of radiation therapy is not only to deliver lethal doses
of radiation to target tumors but also to minimize the dose of
unnecessary radiation delivered to the surrounding healthy
tissues and structures [1-5]. Modern technical advances, such

as intensity-modulated radiation therapy, have improved the
accuracy of dose delivery. However, some targets, such as lung
cancer and liver cancer tumors, may move substantially during
the treatment delivery process due to respiratory motion [6-10].
Investigators have reported that lung and liver tumors can move
up to 3 cm during a conventional radiation therapy treatment
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session [11,12]. The motion of targets may substantially
decrease the accuracy and efficiency of intensity-modulated
radiation therapy or other advanced technologies.

Many methods have been investigated to reduce the effect of
respiratory motion, which mainly include the following:

• Adding a margin around the target tumor: a 10- to 15-mm
margin is always used as the radiation treatment field to
avoid missing a tumor, which may result in unnecessary
radiation exposure to heathy tissues and structures [13].

• Breath hold: patients need to hold their breath during the
treatment to temporarily stop respiration, but this is not
applicable for some patients, such as older patients and
juvenile patients [14].

• Beam tracking: radiation beams track a moving tumor
dynamically to ensure that the tumor target is constantly
within the treatment field [15].

All beam tracking methods must compensate for the latency of
various sources, such as latencies from beam adjustment and
image capture times [5,16]. Hence, we must estimate the
position of targets in advance to compensate for latency effects.

Recently, deep learning approaches based on long short-term
memory (LSTM) have been successfully used to solve time
series prediction problems in several fields. For example, Ma
et al [17] used an LSTM model to capture traffic dynamics data
for predicting short-term traffic speed. Bao et al [18]
implemented an LSTM model to predict the one-step-ahead
price (closing) of 6 stock indices for various financial markets.
Lin et al [19] used an LSTM model to predict respiratory signals.
Moreover, some recent studies have demonstrated that certain
temporal convolutional neural network (TCN) architectures

could achieve state-of-the-art accuracy in time series prediction
problems [20-23]. However, to our knowledge, there are no
studies on using a TCN model to predict respiratory tumor
motion. Hence, in this study, we developed a TCN-based
respiratory prediction model by using external markers and
compared the prediction performance of the TCN to that of an
LSTM model. We also investigated the effect that the number
of external markers had on prediction performance.

Methods

Data Acquisition
The tumor motion data (69 treatment fractions of 21 patients)
used in this study were obtained from an open data set, which
was recorded by the CyberKnife Synchrony (Accuray
Incorporated) tracking system with a recorded sampling rate of
25 Hz [24]. To analyze the external movements of patients,
charge-coupled device cameras were used to monitor the
luminous diodes located on a patient's abdomen and chest. To
analyze internal fiducial positions, orthogonal diagnostic x-ray
systems were used to observe implanted markers periodically.

Prediction Process
The general scheme for the prediction process of 2 models is
outlined in Figure 1, and the arrangement of the respiratory
signals that were used for network training and validation is
shown in Table 1. Each recorded position (internal tumor and
external marker positions) was stratified into 2 cohorts based
on time ts. The positions prior to time ts (the training signals)
were used to train the TCN and LSTM models. The positions
after ts (the testing signals) were used to evaluate the developed
model.

Figure 1. Flowchart of the prediction algorithm.
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Table 1. The arrangement of respiratory signals used for network training and validation.

Data for validationData for trainingPosition type

Inputs of the network

M1SI, AP, LR (ts+1, 2,…, ts+tend)Ma1SI
b, AP

c, LR
d (1, 2,…, ts)Position of marker 1

M2SI, AP, LR (ts+1, 2,…, ts+tend)M2SI, AP, LR (1, 2,…, ts)Position of marker 2

M3SI, AP, LR (ts+1, 2,…, ts+tend)M3SI, AP, LR (1, 2,…, ts)Position of marker 3

Targets of the network

TSI, AP, LR (ts+1, 2,…, ts+tend)Te
SI, AP, LR (1, 2,…, ts)Position of a tumor

aM: external marker position.
bSI: superior-inferior.
cAP: anterior-posterior.
dLR: left-right.
eT: tumor position.

For the training process, the training input data and prediction
target data were first used to tune the hyperparameters, which
was done by using a cross-validation model. Afterward, they
were used to train the model. The external markers’ positions
during the first input period of the training process (ie, the time
between t=1 and t=tdelay) were used as the training input data
for predicting the tumor positions (target positions) at a specific
time frame (t=tdelay+tahead). This training process was repeated
and continued to predict the next tumor position until either the
threshold of the cost function or the maximum iteration number,
which was set in advance, was reached. Each pair of data points
(ie, the input data, M[t+1,…, t+tdelay], vs the output data,
T[t+tdelay+tahead]) consisted of a training data set. “M” denoted
3 external markers’ positions (M1, M2, and M3), which were
based on 3 directions (the superior-inferior, anterior-posterior,
and left-right directions). tahead represented the ahead time we
needed for making predictions.

For the evaluation process, the testing signals, which were
represented as M(ts+1, ts+2,…, tend) and T(ts+1, ts+2,…, ts+
tend), were used to evaluate the developed model. Similar to the
process implemented in the training process, the external
markers’positions during the first input period of the evaluation
process (ie, the time between t=1 and t=tdelay) were used to
predict a tumor’s position (T’[ts+tdelay+tahead]) at a specific time
(t=ts+tdelay+tahead). This process was also repeated to predict the
next tumor position continuously. The external signals that were

recorded during radiation therapy (ie, the time between
t=tend−tdelay−tahead+1 and t=tend−tahead) were used to predict the
final tumor position (T’[tend]). Finally, the predicted signals
(T’[ts+tdelay+tahead],…, T’[tend]) were compared to the real tumor
positions (T[ts+tdelay+tahead],…, T[tend]).

LSTM Model
The recurrent neural network (RNN) is a particular type of
neural network that allows for self-cycle connections and
transmits parameters across different time stamps. An RNN
model can store the information of former time stamps.
However, it is difficult for the RNN to memorize long-term
memory information due to vanishing and exploding gradients
[25-27].

The LSTM layer is a special RNN layer that overcomes the
weakness that the RNN has with memorizing long-term memory
information [26,28]. Figure 2 shows an LSTM unit. Unlike the
simple RNN unit, the LSTM unit has a memory cell state ct at
time t. The information that passes through state ct is controlled
by the following three gates: the input gate (it), the forget gate
(ft), and the output gate (ot). The input gate is used to control
input data that flow into state ct, the hidden state connection
(ht) is used to control the forgetting of state ct, and the output
gate is used to moderate the output data that flow from state ct.
A plurality of LSTM layers can be stacked in a deeper neural
network, which can fit the data of the complicated functions
that are required to analyze the inputs and the targets.
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Figure 2. The structure of an LSTM layer. LSTM: long short-term memory.

TCN Model
The TCN model was based on a transformation of a 1D fully
convolutional network that was used for sequential prediction
problems. The TCN model used a multilayer network to learn
information over a long time span. Sequence information were
transmitted layer by layer across the network until prediction
results were obtained. The architecture of the TCN model is
illustrated in Figure 3 [23], in which x1, x2,…, xT are the original

sequence signals (inputs), and are the prediction
signals (outputs). The obvious characteristics of the TCN model,
which were compared to those of the normal 1D fully
convolutional network model, were as follows:

• The TCN model used causal convolutions, in which the
output at time t was convolved only with elements from
previous layers at time t and earlier, to ensure that no
leakage occurred from the future into the past.

• The TCN model used dilated convolutions to ensure that
each hidden layer had the same size as the input sequence

and to increase the receptive field (ie, learning longer
lengths of information).

The input of the TCN model was interval sampled. The equation
for the dilated convolution was as follows:

In equation 1, d is the dilation factor (sampling rate). A d value
of 1 in the lowest layer meant that every signal was sampled,
whereas a d value of 2 in the middle layer meant that every 2
respiratory signals were sampled.

Residual networks [29], which are shown in Figure 3, were
imported in this study to accelerate convergence and stabilize
training. A residual block that included a branch was used to
make a series of transformations (F). Afterward, the outputs of
the residual block (ie, F[Xresidual]) were added to the input (ie,
Xresidual), as follows:

Oresidual = Activation(Xresidual + F[Xresidual])

(2)

Figure 3. The architecture of the temporal convolutional neural network model. "d" was the dilation factor. Conv: convolution; ReLU: rectified linear
unit.
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Hyperparameter Tuning
With regard to the TCN model, previous TCN studies [20-23]
reported (in the Instruction section) using the same TCN
architecture and only sometimes varying the number of layers
(n) and the filter size. Hence, we tested these two

hyperparameters and used a dilation factor (d) of 2n for layer
n. Moreover, the number of neurons in the input layer and the
learning rate of the TCN model were also investigated in this
study. For the LSTM model, the number of LSTM layers,
learning rate, number of hidden units per layer, and number of
neurons in the input layer were investigated. Furthermore, the
Adam algorithm was used as the optimization algorithm for
both the TCN model and LSTM model. The Kingma and Ba
[30] study demonstrated that the hyperparameters in the Adam
model required little tuning. Goodfellow et al [31] also approved
of the robustness of the Adam model for their hyperparameter
of choice and provided advice on how to tune the learning rate
from the default value. Hence, we used the good default settings
that were tested by Kingma and Ba [30] as the hyperparameters
of the Adam optimizer and tuned the learning rate. The default
settings were exponential decay rates of 0.9 and 0.999 and a

decay exponent of 10−8. In this study, all hyperparameters were
tuned synthetically by using a grid search model. It should be
noted that we tested the hyperparameters in a 4D hyperparameter
space instead of a subspace (ie, while a parameter was
investigated, others were fixed) to maintain the accuracy of
hyperparameter tuning.

Model Evaluation
The respiratory signals from 69 treatment fractions of 21 patients
with cancer who were treated with the CyberKnife Synchrony
(Accuray Incorporated) device were used to evaluate the
proposed model. Of the 69 treatment fractions, 5 were used to
tune the hyperparameters. The rest of the patients were used to
evaluate prediction performance. For each of the 69 treatment

fractions, signals that were acquired around the first 3 minutes
(4500 data points) were used as the training signals for training
the prediction model, and signals from the following 30 seconds
were used as the test signals for assessing the effectiveness of
the proposed model. The ahead time (tahead) used in this study
was 400 ms [1,5].

The root mean square errors (RMSEs) between real and
predicted signals of respiratory motion in a 3D space were used
for assessment [6,7]. The RMSEs for motion in each direction
(RMSESI, LR, AP) and motion in a 3D space (RMSE3D) were
calculated by using equations 3 and 4, respectively, as follows:

In equation 5, is the average of the true values, and is
the average of predicted values. Time point t in equation 3
ranged from tstart (ts+tdelay+tahead) to tend. The Wilcoxon
signed-rank test was used as the statistical model for evaluating
the differences between true values and predicted values.

Results

Table 2 presents the RMSEs of the three models (ie, the LSTM,
TCN, and no prediction models; ahead time=400 ms). Compared
to the no prediction model, the RMSEs for motion in a 3D space
were reduced by 46% in the LSTM model and 51% in the TCN
model. For motion in all directions, the RMSEs of the TCN
model were consistently lower than those of the LSTM model.
The RMSE for motion in a 3D space decreased from 0.73 mm
(LSTM model) to 0.67 mm (TCN model). The P value was
<.001, indicating that the TCN method could significantly
improve the prediction performance of the LSTM method.

Table 2. The root mean square errors (RMSEs) of the three prediction models.

RMSEs (mm) of the no prediction
modelRMSEs (mm) of the TCNb modelRMSEs (mm) of the LSTMa modelDirection

0.500.280.29Anterior-posterior direction

0.450.250.27Left-right direction

1.040.490.55Superior-inferior direction

1.360.670.733D space

aLSTM: long short-term memory.
bTCN: temporal convolutional neural network.

Figure 4 shows the RMSEs for motion in all directions with
different ahead times. Obviously, the prediction performance
of the TCN model was positive compared to that of the LSTM
model for all ahead times. Further, the prediction performance
of both models worsened as ahead times increased.

Figure 5 illustrates the performance comparison between the
TCN and LSTM methods for predicting motion in the
superior-inferior direction, anterior-posterior direction, and

left-right direction. Obviously, the TCN method was more
accurate and robust than the LSTM method.

We investigated the hyperparameters in the 4D hyperparameter
space (625 experiments) for both the TCN and LSTM models
by using the grid search method among 5 treatment fractions,
which were selected randomly. The options and results of
hyperparameter tuning are depicted in Table 3.
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Figure 4. The RMSEs for respiratory motion in all directions. These were determined by using the LSTM and TCN models and different ahead times
for each treatment fraction. AP: anterior-posterior; LR: left-right; LSTM: long short-term memory; RMSE: root mean square error; SI: superior-inferior;
TCN: temporal convolutional neural network.

Figure 5. The performance comparison between the TCN and LSTM methods for predicting motion in the (A) superior-inferior direction, (B) left-right
direction, and (C) anterior-posterior direction. LSTM: long short-term memory; TCN: temporal convolutional neural network.
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Table 3. The options and results of hyperparameter tuning.

Hyperparameter selectedHyperparameter optionsModels and hyperparameters

Temporal convolutional neural network model

54, 5, 6, 7, and 8Number of layers

91, 3, 5, 7, and 9Filter size

155, 10, 15, 20, and 25Number of neurons in the input layer

0.0010.0001, 0.001, 0.005, 0.01, and 0.1Learning rate

LSTMa model

21, 2, 3, 4, and 5Number of LSTM layers

0.010.0001, 0.001, 0.005, 0.01, and 0.1Learning rate

20010, 50, 100, 150, 200, and 250Number of hidden units per layer

205, 10, 15, 20, and 25Number of neurons in the input layer

aLSTM: long short-term memory.

Table 4 presents the RMSEs of the TCN model for each external
marker. Figure 6 shows the RMSEs for respiratory motion in a
3D space among each treatment fraction. The TCN model using
1 or 2 external markers was compared to the TCN model using
all 3 external markers. The TCN model had the best performance
in terms of predicting motion in all directions when all three
external markers were used simultaneously. The average RMSEs
for motion in a 3D space when using 1 marker and 2 markers
were 0.72 mm and 0.68 mm, respectively. This decreased to
0.67 mm when using all three makers.

As illustrated in Figure 7, the ablative analysis of the TCN was
also conducted. We focused on two components in this
study—the filter size and the residual blocks. We found that
the effect of the filter size was small when the filter size was
larger than 3. The P values between 5 filter size pairs—filter
sizes 1 and 3, 3 and 5, 5 and 7, and 7 and 9—were <.001, .11,
.20, and .83, respectively. This indicated that prediction
performance improved significantly before the filter size rose
to 3. Further, we found that the residual blocks contributed
significantly to prediction performance, as the P value was
<.001.

Table 4. The root mean square errors (RMSEs) of the temporal convolutional neural network model for each external marker (EM).

RMSEs for
EM 3

RMSEs for
EM 2

RMSEs for
EM 1

RMSEs for
EMs 2 and 3

RMSEs for
EMs 1 and 3

RMSEs for
EMs 1 and 2

RMSEs for all
EMs

Direction

0.290.290.290.280.280.280.28Anterior-posterior direction

0.260.260.270.250.260.260.25Left-right direction

0.530.530.520.500.500.510.49Superior-inferior direction

0.720.720.710.680.680.690.673D space
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Figure 6. A comparison of RMSEs for respiratory motion in a 3D space among each treatment fraction. A: Results of the TCN model using 1 external
marker compared to those of the TCN model using all 3 external markers. B: Results of the TCN model using 2 external markers compared to those of
the TCN model using all 3 external markers. RMSE: root mean square error; TCN: temporal convolutional neural network.
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Figure 7. The effects of different components in the temporal convolutional neural network layer. A: Residual blocks. B: FS. FS: filter size; RMSE:
root mean square error.

Discussion

Principal Findings
A TCN model for predicting respiratory motion by using
external markers’ prior signals was developed and tested in this
study. The experiment demonstrated that the TCN model’s
performance in predicting future respiratory signals with a
400-ms ahead time was better than that of the LSTM model.

As is well known, hyperparameter settings have a large influence
on the prediction performance of machine learning models. This
also holds true for our TCN and LSTM models. We tuned 4
major hyperparameters for both of the TCN and LSTM models.
Among these hyperparameters, the number of neurons in the
input layer and the learning rate were tested for both models.
Having a large number of neurons in the input layer allows for
the inclusion of more features in models. Obviously, useful

features may increase prediction accuracy. However, redundancy
features may also be brought in along with the useful features.
Hence, if this hyperparameter is too large, prediction
performance may degenerate. The best number of neurons in
the input layer for the TCN and LSTM models in this study was
15 and 20, respectively. The learning rate was an important
hyperparameter in the model optimization process. If the
learning rate is too large, the model may oscillate around the
global minimum value instead of achieving convergence. On
the other hand, if this value is too small, the training time and
the risk of overfitting increase. Learning rates of 0.001 and 0.01
were selected as the optimal hyperparameters of the TCN and
LSTM models, respectively. In addition to the two
abovementioned hyperparameters, the number of layers and
filter sizes were also investigated for the TCN model, whereas
the number of LSTM layers and number of hidden units per
layer were tested for the LSTM model. With regard to the TCN
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model, the size of the effective window (receptive field)
increased as the number of layers and filter size increased.
Hence, these two hyperparameters should guarantee that the
receptive field of TCN model covers enough context for
respiratory signal prediction. The optimal values for these two
hyperparameters in our experiments were 5 and 9, respectively.
With regard to the LSTM model, on one hand, a deeper LSTM
model (a large number of LSTM layers) may be representative
of a more complicated relationship among respiratory signals
and improve prediction performance. On the other hand, a
deeper LSTM model also has an increased risk of overfitting
and increased convergence speed. In this study, the prediction
performance results of the LSTM model were comparable when
the number of LSTM layers was over 2. Hence, we selected 2
as the optimal number of LSTM layers. Further, the number of
hidden units per layer determined the width of each LSTM layer.
We also found that having a large number of hidden units per
layer was helpful for establishing a more complicated prediction
model, but at the same time, this increased the risk of overfitting
and convergence speed.

The effect that different numbers of external markers had on
prediction performance was also investigated in this study. The
TCN model had the best prediction performance when it used
all three markers’ positions. As shown in Figure 6, the TCN
model’s prediction performance when using 3 markers was
more robust than when using 1 marker or 2 markers. For most
treatment fractions, the RMSEs of the TCN model using 3
markers was slightly smaller than those obtained by using 1
marker or 2 markers. However, for some treatment fractions,
such as treatment fractions 7 and 11, the RMSEs of predictions

based on 1 or 2 external markers were quite larger than those
of predictions based on 3 external markers. This was probably
because having more external markers for different skin surface
positions resulted in the inclusion of more useful features. Such
useful features may alleviate the overfitting and underfitting
problems.

Finally, we studied the influence of the different components
(the filter size and residual blocks) in the TCN model. The size
of the effective window (receptive field) increased with filter
size. Hence, the model’s prediction performance initially became
better as the filter size increased. However, the model’s
prediction performance only slightly improved as the filter size
increased continually. This may be because the receptive field
that resulted from using a filter size of 3 provided enough
context for the respiratory signal prediction task. On the other
hand, we observed that the residual block architecture enhanced
the model’s prediction performance immensely. We believe
that this was because the residual blocks effectively allowed
the TCN model to be modified based on identity mapping
instead of a full transformation, which was crucial for the deep
neural network architecture.

Conclusion
A deep learning approach based on the TCN architecture was
developed to predict internal tumor positions with a 400-ms
ahead time based on the external markers’ positions in this
study. The results demonstrated that this model could predict
tumor positions accurately. Further, the prediction performance
of the TCN model using multiple external markers was more
robust and positive than that of the TCN model using 1 or 2
external markers.
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Abbreviations
LSTM: long short-term memory
RMSE: root mean square error
RNN: recurrent neural network
TCN: temporal convolutional neural network
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