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Abstract

Background: Kidney transplantation is the optimal treatment for patients with end-stage renal disease. Short- and long-term
kidney graft survival is influenced by a number of donor and recipient factors. Predicting the success of kidney transplantation
is important for optimizing kidney allocation.

Objective: The aim of this study was to predict the risk of kidney graft failure across three temporal cohorts (within 1 year,
within 5 years, and after 5 years following a transplant) based on donor and recipient characteristics. We analyzed a large data
set comprising over 50,000 kidney transplants covering an approximate 20-year period.

Methods: We applied machine learning–based classification algorithms to develop prediction models for the risk of graft failure
for three different temporal cohorts. Deep learning–based autoencoders were applied for data dimensionality reduction, which
improved the prediction performance. The influence of features on graft survival for each cohort was studied by investigating a
new nonoverlapping patient stratification approach.

Results: Our models predicted graft survival with area under the curve scores of 82% within 1 year, 69% within 5 years, and
81% within 17 years. The feature importance analysis elucidated the varying influence of clinical features on graft survival across
the three different temporal cohorts.

Conclusions: In this study, we applied machine learning to develop risk prediction models for graft failure that demonstrated
a high level of prediction performance. Acknowledging that these models performed better than those reported in the literature
for existing risk prediction tools, future studies will focus on how best to incorporate these prediction models into clinical care
algorithms to optimize the long-term health of kidney recipients.

(J Med Internet Res 2021;23(8):e26843) doi: 10.2196/26843
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Introduction

Background
Kidneys are vital for the health of an individual, as they filter
waste products from the blood and produce hormones and urine
[1]. Patients are considered to have end-stage renal disease when
their kidney function falls below a specific threshold [2]. A lack
of timely measures to prevent kidney failure results in premature
death [3,4].

Kidney transplantation [5,6] and dialysis are the two main
treatments for kidney failure [7]. Kidney transplantation offers
a survival advantage compared with other forms of kidney
replacement therapy; however, the rate of graft loss following
transplant is still undesirably high [8]. Kidneys are a limited
resource, and optimizing the match between donors and
recipients is crucial for improving outcomes after
transplantation. Kidney transplant allocation is, in part, based
on a number of donor-recipient–related factors that influence
graft survival. Various clinical studies have been conducted on
the influence of these factors on graft survival; however, given
the complex interactions between these factors, there remains
much to be learned in this area. Existing risk prediction models
only have a limited ability to predict outcomes for kidney
transplant recipients with receiver operating characteristic scores
of 0.6-0.7 [9-11].

Prediction modeling using machine learning (ML) algorithms
has gained attention in recent years [12] for predicting the
success of clinical or surgical procedures (such as kidney
transplant). ML algorithms autonomously learn the underlying
associations between preprocedure clinical features and
postprocedural outcomes to predict the outcome of the procedure
for a given clinical case. In kidney transplant, ML-based
prediction models, based on donor-recipient information,
autonomously learn the underlying relationships between donor
and recipient factors to predict transplant outcomes. Multiple
studies have been conducted using ML methods to predict the
kidney graft outcome [13-16]; however, the standard approach
in nearly all the reviewed studies has been to select one or more
arbitrary period starting from the date of transplant and applying
classification algorithms for prediction. There is a clear need
for further exploration of data stratification approaches and
other ML methods with respect to feature engineering and
prediction modeling.

Objectives
In this study, the intent is to investigate kidney transplant
allograft survival, that is, estimating the time-to-event and the
evolving influence of clinical features leading to an
event—within three temporal cohorts of 1 year, >1-5 years, and
>5 years of a kidney transplant. We predicted the outcome of
graft failure after kidney transplant based on the analysis of
donor and recipient features. We applied ML methods to (1)
predict the graft status over different temporal periods and (2)
analyze the changing effect of donor-recipient–related predictors
across different periods. To develop the prediction models, we
analyzed a large data set of over 50,000 transplants covering
approximately a 20-year period of kidney transplants in the
United States. To generate the clinically meaningful temporal

cohorts, we experimented with two patient stratification
approaches: (1) a novel nonoverlapping patient stratification
approach, whereby a patient’s graft failure was recorded only
in the temporal cohort when it actually happened, that is, a graft
failure event in the preceding cohort was not included and (2)
the traditional overlapping patient stratification approach that
provides an accumulative count of graft outcomes until a specific
time point. To develop the prediction models, we investigated
multiple ML algorithms using both patient stratification
approaches. Nonoverlapping temporal cohorts were considered
to investigate the influence of clinical features on predicting
graft survival over time, as the temporal partitioning of the data
allowed for the establishment of feature influence across distinct
temporal windows. We applied the feature importance method
based on the mean decrease in impurity (Gini).

The contributions of this research are as follows: (1) ML-based
prediction models that are trained on a large data set, offering
improved prediction performance compared with previous
studies (previous graft prediction studies are based on a smaller
number of transplants over a shorter period); (2) data
dimensionality reduction based on a deep learning framework
to handle the high-dimensional and complex kidney transplant
data set; (3) a novel nonoverlapping patient stratification
approach to provide fine-grained feature importance within a
specific period while avoiding bias from preceding cohorts; (4)
explaining the influence of the different clinical features, during
different periods, toward the prediction performance of ML
prediction models. This finding allows the selection of the most
important features to predict graft outcomes within a specific
temporal window; and (5) a comparison between the two
stratification approaches with respect to the performance of the
prediction models. The future practical outcome of this study
is the provision of a data-driven decision support tool to assist
nephrologists in the kidney allocation process by identifying
the best donor and recipient pair that will lead to the highest
likelihood of graft survival for a given recipient.

Prior Work
Patients can receive a kidney from either deceased donors or
living donors. The donor-recipient matching process becomes
relatively more complex with deceased donors because of the
need to account for additional clinical factors (ie, prolonged
cold ischemia time, prolonged wait times, and generally lower
quality organs) [17]. Given the fact that kidney organs are a
limited resource, it is important to have an efficient and effective
donor-recipient matching process to ensure long-term graft
survival [18].

Data-driven methods are now being used for organ matching;
these methods are used to establish clinical compatibility beyond
the blood group and tissue type. Conventional data-driven
prediction methods use statistical techniques such as Cox
proportional hazard models and Kaplan-Meier estimates to
perform time-to-event analyses [19]. Significant research has
been conducted with Cox-based models in the survival analysis
of different organ transplants; however, these methods
eventually lose predictive accuracy as the feature space increases
[13,14].
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ML-based data analysis to develop prediction models for
predicting outcomes is usually performed using classification
methods, whereas regression methods are used for time-to-event
analysis. There are two prominent approaches to predict kidney
allograft outcomes using ML-based classification methods. The
first approach is to predict graft survival over time by dividing
a longitudinal data set into different time cohorts based on the
occurrence of a given adverse event or the last follow-up date
from the date of transplant. Each time cohort has a binary target
variable, that is, success or failure of the graft, which is used to
train the classification model to predict graft survival [15,16].
The second approach is to predict the risk acuity associated with
a graft within a period. Topuz et al [15] used this approach and
divided the data set into three graft failure risk groups (high,
medium, and low) across three different periods to predict the
risk of graft failure within a specific time using classification
methods. Li et al [20] used Bayes net to classify graft risk levels
and predict graft survival.

Due to the high dimensionality of existing data sets for organ
transplantation, feature selection is applied to filter out redundant
features. A stacked autoencoder, which is an unsupervised neural
network, is an efficient dimensionality reduction technique with
promising performance for deep representation of medical data
[21] that reconstructs its own inputs by first encoding them to
a smaller size and then decoding back to the original inputs. A
comparative study by Sadati et al [22] highlighted the efficacy
of different types of autoencoders for data sets based on
electronic health records.

Right-censored data are a common problem for survival analysis,
as it represents cases for which the adverse event is not available
or recorded because of either the subject having been lost to
follow-up or not experiencing the event during the study period.
Multiple approaches have been adopted in previous studies to
address this problem. The study on kidney transplants by Topuz
et al [15] discarded all the right-censored data before 7 years
from the time of transplant and included the remaining
transplants that took place after that time point in the low-risk
group. In a study predicting heart transplant outcomes, the data
set was divided into three different time cohorts (1, 5, and 9
years) to predict the status of the graft. Patients who did not
have graft failure during a particular time cohort were censored,
and all the patients beyond that time cohort were considered to
have successful transplants [23].

The influence of clinical features (or clinical predictors) on graft
survival tends to vary over time [16], as shown using a heat
map [24]. Dag et al [23] analyzed the changing significance of
features for three overlapping time cohorts (1, 5, and 9 years).
They deduced that certain types of features perform well in the
long term compared with the short and medium terms. For
instance, socioeconomic factors were more influential in their
9-year time cohort as they covered major variations in the data.
It is important to note here that feature significance over time
can only be substantiated if the analysis is performed with
nonoverlapping cohorts to avoid any bias introduced by the
cumulative effect of data before the analysis period.

In previous studies [16,20-22,25], predicting graft failure has
been pursued by taking an overlapping patient stratification
approach, which means that each subsequent time cohort
includes data from the previous cohort. This introduces a
cumulative effect that is useful for predicting graft failure across
a staggered time period. However, the overlapping patient
stratification approach is ineffective in determining the influence
of clinical features during a specific time period. Hence, the
nonoverlapped cohort approach offers a novel mechanism to
investigate the influence of clinical features within specific time
windows. To the best of our knowledge, nonoverlapping cohorts
have not been studied in the literature to develop prediction
models or analyze the temporal influence of clinical features
on kidney transplant outcomes.

This study is organized into five major sections: Methods
presents the study’s methodology; Results presents the results
of the prediction; and Discussion discusses the significance of
clinical features toward graft status prediction across different
time cohorts and offers a conclusion and future research
directions.

Methods

Overview
To predict graft survival over time and to analyze the influence
of clinical features on graft survival, our data analytics
methodology (Figure 1) comprised data preparation, feature
engineering, prediction modeling, model evaluation, and analysis
of changing relevance of features.
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Figure 1. Overview of our data analytics methodology. AUC: area under the curve; SMOTE: synthetic minority oversampling technique; UNOS:
united network of organ sharing.

Data Description
This study used data from the Scientific Registry of Transplant
Recipients (SRTR). The SRTR data system includes data on all
donors, wait-listed candidates, and transplant recipients in the
United States, submitted by the members of the Organ
Procurement and Transplantation Network. The Health
Resources and Services Administration and the US Department
of Health and Human Services provided an overview of the
activities of the Organ Procurement and Transplantation
Network and SRTR contractors.

The data set provided pretransplant clinical features and
outcomes of 277,316 kidney transplants between 2000 and 2017.
Survival was reported in terms of graft outcome and patient
status. For the purposes of this study, graft failure was defined
as (1) graft loss or (2) death with a functioning graft.

We analyzed the data and used only complete cases (ie, no
missing feature values), which comprised a total of 52,827
kidney transplants. Table 1 provides a list of the included clinical
features and their descriptions used in our experiments.
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Table 1. List of clinical features used to train the prediction models.

AbbreviationData typeFeature description

PKPRAContinuousPeak panel reactive antibody

REC_TX_PROCEDURECategoricalType of transplant

PREVKICategoricalAny previous kidney transplant

DAGEContinuousDonor age

DHT100ContinuousDonor height

RHT2100ContinuousRecipient height

DWTContinuousDonor weight

RWT2ContinuousRecipient weight

DONCREATContinuousDonor creatinine level

ECDCategoricalExpanded criteria donor

DCDCategoricalDonation after cardiac death

DHTN2CategoricalDonor hypertension

RHTNCategoricalRecipient hypertension

RBMI2ContinuousRecipient BMI

DBMIContinuousDonor BMI

CITContinuousCold ischemia time

RAGETXContinuousRecipient age

HLAMMCategoricalNumber of HLA antigen mismatches (paired)

FUNCTSTATCategoricalFunctional status of the recipient

DRSEXCategoricalDonor-recipient sex (paired)

DRRACECategoricalDonor-recipient race (paired)

DRAGECategoricalDonor-recipient age (paired)

RCVDCategoricalRecipient cardiovascular disease

DHCVCategoricalDonor hepatitis C virus

RPVDCategoricalRecipient peripheral vascular disease

DRACESIMPCategoricalDonor race

RRACESIMPCategoricalRecipient race

RMALIGCategoricalRecipient malignancy

VINTAGEContinuousYears on dialysis pretransplant

DDMCategoricalDonor diabetes

PREEMPTIVECategoricalPreemptive transplant

RDM2CategoricalRecipient diabetes

RCADCategoricalRecipient coronary artery disease

ESRDDXSIMPCategoricalSimplified ESRDa diagnosis

DRCMVCategoricalDonor-recipient CMVb (paired)

AHD1CategoricalDonor-recipient height difference

DRWTCategoricalDonor-recipient weight difference

aESRD: end-stage renal disease.
bCMV: cytomegalovirus.
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Data Preparation
Data preparation for learning the ML-based prediction models
consisted of data cleaning, partitioning the data set into temporal
cohorts, and addressing class imbalances.

Data Cleaning
Data cleaning involved removing (1) all patient identifying
features (such as transplant ID, donor ID, and patient ID) [23],
(2) post- and intraoperative features (such as delayed graft
function and warm ischemia time) as we focused on
pretransplant features to predict outcomes [23], (3) living donors
[15,26], (4) recipients below the age of 18 years [14,27,28], and

(5) all sequential and en bloc transplants, both of which are
atypical procedures that would not broadly apply to most
deceased donor situations. These exclusion criteria were
suggested by domain experts and also noted in prior studies
[9,28].

Data Partitioning Into Temporal Cohorts
Given the longitudinal data set, we generated two distinct data
sets using traditional overlapping and our novel nonoverlapping
patient stratification approaches to partition the data set into
three temporal cohorts representing graft status at 1 year, >1-5
years, and 5-17 years (Figures 2 and 3).

Figure 2. Derivation of the overlapped cohorts.

Figure 3. Derivation of the nonoverlapped cohorts.

The overlapping patient stratification approach (used in previous
graft status prediction studies) provides a cumulative analysis

of graft outcomes up to a specific time point. In our study, the
overlapping data stratification resulted in the following three
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cohorts: cohort 1, spanning from year0 to year1, which reported
graft outcomes (ie, graft failure or survival) during this period;
cohort 2, which reported graft status from year0 to year5 and
overlapped with cohort 1 such that it included the patients in
cohort 1; and cohort 3, which reported graft status from year0

to year10+, thus overlapping with both earlier cohorts. As per
the overlapping approach, a graft failure in the preceding cohort
was also counted in the proceeding cohort.

Our nonoverlapping patient stratification approach yielded three
cohorts: cohort 1, spanning year0 to year1, reporting graft
outcomes in this period; cohort 2, spanning year1 to year5 and
reporting graft outcomes only in this period, resulting in the
exclusion of graft failures reported in cohort 1 and only reporting
the graft outcomes of patients who survived cohort 1; and cohort
3, spanning year5 to year10+, reporting the graft outcomes of
patients who survived cohort 2. In a nonoverlapping cohort
approach, there was no looking back beyond the cohort’s starting
point, as such a graft failure in the preceding cohort was not
counted in the proceeding cohort.

When partitioning the data into cohorts, we accounted for the
presence of censored data, that is, the lack of information about
the occurrence of an adverse event for a surviving patient. There
is no concrete method to determine survivors when confronted
with censored data. We initially assumed that those patients
who did not fail in a certain cohort could be presumed as
survivors. However, this assumption led to two problems: (1)
it included censored patients who might have experienced graft
failure during the study, and (2) it led to a severe class imbalance
between the graft failure and surviving patients. To overcome
these problems, we took a two-phase heuristic approach to

remove the censored observations to identify survivors in each
cohort. First, we removed all the censored observations from
the cohort being analyzed and labeled all the remaining instances
as survived. For instance, the censored data that were removed
for cohort 2 were all instances with a missing outcome by the
end of cohort 2. The remaining instances were considered to
have survived. The first phase of our approach reduced the
number of censored observations, but the surviving observations
were still relatively high compared with the graft failure cases
in each cohort. In the second phase, we applied the approach
of Topuz et al [15] to further refine our surviving class by
removing all the instances that were deemed as surviving for
less than 8 years from the date of transplant. This two-phase
approach to account for censored data is summarized in Equation
1 below, where we estimated the number of survivors in each
cohort.

The first part of this equation illustrates the first phase of the
proposed approach. The i in the equation is the ending year of
our defined cohorts, that is, 1, 5, and 17. The equation first
calculates the total number of graft failures that occurred after
the end of the cohort. This fraction of instances was considered
as confirmed survivors for the cohort under analysis. The second
part of the equation deals with the second phase of the approach.
It attempts to identify the potential survivors from the censored
data by removing all the observations that did not have a graft
failure within 8 years (2920 days) following a transplant. Table
2 shows the patient distribution across the three time cohorts.

Table 2. Number of failed and survived transplants in overlapped and nonoverlapped cohorts.

NonoverlappingOverlappingCohort

Survived, n (%)Failed, n (%)Count, nSurvived, n (%)Failed, n (%)Count, n

45,273 (85.7)7554 (14.3)52,82745,273 (85.7)7554 (14.3)52,8271

29,352 (64.83)15,921 (35.17)45,27329,352 (55.56)23,475 (44.44)52,8272

14,888 (50.72)14,464 (49.28)29,35214,888 (28.18)37,939 (71.82)52,8273

Addressing Class Imbalance
Our data set had two outcomes: the presence or absence of graft
failure. There was a significant class imbalance whereby the
graft failure had a significantly lower number of instances
compared with graft survival. Techniques such as Synthetic
Minority Oversampling Technique (SMOTE) and random
undersampling have been widely used in the literature [18,29]
for class imbalance. We applied SMOTE for Nominal and
Continuous features [30], which is a variant of SMOTE
specifically developed to handle a mix of categorical and
numerical data, on all cohorts to achieve a reasonable class
balance. To balance the minority class (ie, mostly graft failure),
we would need to generate 600% additional synthetic samples
(at least for cohort 1), which would have led to overfitting.
Therefore, we doubled our minority class to achieve a workable
class balance to prevent the overfitting of the classification
models. As cohort 2 of overlapped stratification and cohort 3

of nonoverlapped stratification had a class balance, they were
not considered for oversampling.

Feature Engineering
This step involved both the removal and construction of features
with the intent to reduce the dimensionality of the feature space.

Paired Features
A set of paired features was constructed by combining the
related features. Typically, graft predictions use discrete
individual donor and recipient features. We examined the
underlying correlation between the donor and recipient features
and paired the highly related features to generate new paired
features. The following four donor and recipient features were
generated: sex, age, CMV (cytomegalovirus), and race. In
addition, three types of HLA Antigen Mismatch features—ie,
HLA Antigen Mismatch at the A Locus, HLA Antigen
Mismatch at the B Locus, and HLA Antigen Mismatch at the
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DR Locus were also combined into a single HLA Antigen
Mismatch feature.

One-Hot Encoding
We transformed the categorical features into multiple dummy
features to make them compatible with the stacked autoencoders,
which cannot process categorical features. In addition, it was
also a necessary operation because of the functional constraint
of the scikit-learn library [31].

Stacked Autoencoders
Finally, we used 86 transformed categorical features as inputs
to the stacked autoencoders for feature reduction to subsequently
train the ML prediction models. Continuous features were also
initially considered as a part of the input vector to stacked
autoencoders (Table S1 in Multimedia Appendix 1), but
preliminary model training returned better results with pristine
continuous features; hence, no modification was performed for
them while training the prediction models. It should be noted
that the resultant features from the stacked autoencoders were
only used for training the prediction models and not for the
analysis of the changing relevance of features over time.

After testing with different configuration settings provided in
the Keras framework [32], the stacked autoencoders were set
up as a 13-layer architecture consisting of 12 dense layers and
one dropout layer set at the very beginning of the network with
a dropout rate of 0.05. The sigmoid activation function was
used throughout the dense layers, with Adam as the optimizer

and binary cross entropy as the loss function with 500 epochs
and 700-900 batch sizes. The middle layer of the autoencoder
was finally trained with 12 neurons and 30 neurons for cohort
1 and the remaining cohorts, respectively. The feature space
was reduced by more than 50 dummy features.

Learning Classification-Based Graft Survival
Prediction Models

Overview
Prediction was pursued as a binary classification problem, where
the prediction output represents the graft outcome for a given
patient in terms of the class label, graft failure or survived. We
investigated four different ML-based classification models for
each time cohort (ie, cohorts 1-3). Given that logistic regression
(LR) has been widely used in prior studies to develop graft
prediction models [29,33], we trained an LR model as a baseline
to compare the predictive performance of our ML prediction
models.

All classification models were trained using a 10-fold stratified
cross-validation training approach. The stratification ensured
that outcome class ratio in each fold is maintained to avoid any
sampling bias that may affect the classification results. We
mainly used the scikit-learn library [31] to train the
below-mentioned classification models with the parameter
settings listed in Table 3. Hyperparameters were optimized
using a random search. The different parameters that were tested
during the random search are provided in Table S2 in
Multimedia Appendix 1.

J Med Internet Res 2021 | vol. 23 | iss. 8 | e26843 | p. 8https://www.jmir.org/2021/8/e26843
(page number not for citation purposes)

Naqvi et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Algorithmic settings for the classifiers.

ValuesMethod, Hyperparameter

RFa

200Number of estimators

BalancedClass weight

GiniCriterion

9Maximum depth

2 for cohort 1; 3 for the restMinimum samples split

14Maximum features

Support vector machine

50Cb

Auto, scaleGamma

One versus restDecision function shape

RadialKernel

Artificial neural network

AdamSolver

AdaptiveLearning rate

LogisticActivation

1e-2,1e-6Alpha

4: 70, 35, 30, 15; 5: 60, 30, 30, 15, 10Hidden layers

Adaptive boosting

RFBase learner

401Number of estimators

1Learning rate

Samme.RAlgorithm

Logistic regression

l2Penalty

10C

BalancedClass weight

1000Max iteration

SagSolver

aRF: random forest.
bC: regularization parameter.

Random Forest
Random forest (RF) was used as both a standalone classifier
and a base learner for the adaptive boosting (AdaBoost)
algorithm. It has been widely used to predict survival data
[26,27].

AdaBoost
The AdaBoost algorithm was applied to two weak learners, RF
and LR. The study by Thongkam et al [34] used this algorithm
on a breast cancer data set, where it outperformed all single
classifiers. In our experiments, LR did not perform well;
therefore, we did not pursue it. RF, with the optimized

hyperparameters, was used to train the boosting classifier with
a number of estimators and learning rates.

Artificial Neural Network
A backpropagation algorithm was used to train a neural
network–based binary classifier. Generally, artificial neural
networks (ANNs) perform well on survival data sets [30,35].

Support Vector Machines
Classification models using support vector machines (SVMs)
have been applied to predict survival data [29,31,32]. To train
the SVM, we experimented with different kernels, that is, linear,
radial, sigmoid, and polynomial kernels. The linear and sigmoid
kernels provided the lowest prediction scores; therefore, we did
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not use them further. A polynomial kernel with degree 2 yielded
suboptimal results, and the SVM model could not converge for
degree 3. The radial basis kernel was the most effective for
learning the classification model.

Calculating Feature Importance Over Time
The nonoverlapped time cohorts were used to calculate the
feature importance scores to understand the changing relevance
of features over time. We calculated these scores by training an
RF classifier on the complete data set. The scores were
calculated using Gini. Feature influence scores were used to
understand the effect of features over the three cohorts.

Results

Overview
Below, we present the prediction performance of the four ML
classifiers using both overlapped and nonoverlapped cohorts.
As LR has been extensively used to predict time-to-event in
organ transplant studies [16,29], it is used as a comparator
classifier to the ML-based classifiers. The prediction
performance of each of the best-trained classifiers (SVM, RF,

AdaBoost, ANN, and LR), covering the three different
time-to-event periods for both the original and reduced feature
sets, were evaluated using 10-fold stratified cross validation for
both overlapped and nonoverlapped cohorts. The results of each
classifier were examined using the area under the curve (AUC)
and F1 scores. The AUC score was used as the main
performance evaluation metric to select the best model in each
cohort and to make comparisons with similar studies. For our
purpose, the ideal prediction model provides the best accuracy
for graft failure. Therefore, to further substantiate the selection
of the best model, we also evaluated the F1 score for graft
failures. In cases where the AUC score was the same for
different models, preference was given to the model with the
highest F1 score.

Analysis of Feature Engineering
Table 4 presents the results of feature engineering, whereby the
prediction scores of all classifiers were obtained using both the
original feature set and the reduced set. The reduced set consists
of original continuous features and latent features returned by
the stacked autoencoders. Cohort 1 for overlapped and
nonoverlapped cohorts was the same; hence, the results were
presented only once to avoid unnecessary duplication.
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Table 4. Area under the curve comparison—all features with auto-encoded features.

NonoverlappedOverlappedCohort

Continuous+auto-en-
coded features (%)

All features (%)Continuous+auto-en-
coded features (%)

All features (%)

Cohort 1

N/AN/Ab8280SVMa

N/AN/A7876AdaBoostc

N/AN/A7068RFd

N/AN/A6162ANNe

N/AN/A6262LRf

Cohort 2

53536663SVM

60646967AdaBoost

67656562RF

62626262ANN

61646262LR

Cohort 3

65688073SVM

64688176AdaBoost

66687572RF

65687273ANN

64626969LR

aSVM: support vector machine.
bN/A: not applicable.
cAdaBoost: adaptive boosting.
dRF: random forest.
eANN: artificial neural network.
fLR: logistic regression.

The AUC scores (Table 4) show that prediction models for
overlapped cohorts trained with auto-encoded features improved
the prediction performance as compared with the prediction
models trained using the original feature set. However, it was
the opposite for nonoverlapped cohorts. Interestingly, the
traditional approach of overlapped cohorts performed better
with both the original and reduced feature sets compared with
the nonoverlapped cohorts. Except for RF in cohort 2 of
nonoverlapped cohorts, which showed slightly better
performance (67%) when compared with its overlapped
counterpart (65%), all other prediction models had better AUC
scores with the traditional overlapping cohort approach.

Therefore, for further analysis, we proceeded with overlapping
cohorts only.

Although ANN and LR (the baseline model) showed no
significant improvement across all three cohorts, the results
confirmed the effectiveness of our deep learning architecture
of stacked autoencoders for feature selection. For the subsequent
prediction modeling analysis, we used the reduced feature set.

Analysis of Prediction Performance of ML Models
Table 5 presents the prediction performance of the classifiers
for each cohort in terms of AUC, F1 scores, recall, and precision,
with SD for the 10-fold classification.
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Table 5. Prediction performance of the machine learning classifiers across three different temporal cohorts using the overlapped patient stratificationa.

Auto-encoded feature setCohort

Precision (%), mean (SD)Recall (%), mean (SD)F1 (%), mean (SD)AUCb (%), mean (SD)

Cohort 1

90 (0.01)49 (0.01)61 (0.01)82 (0.01)SVM c

35 (0.01)95 (0.01)56 (0.01)78 (0.01)AdaBoostd

41 (0.01)47 (0.01)45 (0.001)70 (0.009)RFe

6 (0.004)42 (0.01)5 (0.001)61 (0.01)ANNf

29 (0.04)58 (0.01)39 (0.009)62 (0.008)LRg

Cohort 2

60 (0.01)55 (0.01)53 (0.01)66 (0.006)SVM

63 (0.004)64 (0.003)63 (0.01)69 (0.01)AdaBoost

61 (0.01)62 (0.01)62 (0.01)65 (0.009)RF

60 (0.01)55 (0.09)60 (0.04)63 (0.007)ANN

60 (0.004)58 (0.01)59 (0.009)62 (0.008)LR

Cohort 3

96 (0.003)76 (0.003)83 (0.003)80 (0.005)SVM

86 (0.01)76 (0.003)81 (0.004)81 (0.01)AdaBoost

73 (0.01)75 (0.01)75 (0.006)75 (0.008)RF

69 (0.01)81 (0.03)68 (0.005)72 (0.007)ANN

70 (0.001)70 (0.01)77 (0.009)69 (0.001)LR

aItalics show the classifiers with the highest performance among the three cohorts.
bAUC: area under the curve.
cSVM: support vector machine.
dAdaBoost: adaptive boosting.
eRF: random forest.
fANN: artificial neural network.
gLR: logistic regression.

The classifiers performed differently across the three
cohorts—SVM offered the highest prediction performance for
short-term predictions, that is, for cohort 1, whereas AdaBoost
offered the highest performance for the remaining cohorts. The

SD across the different folds was nominal, confirming the
stability of the classifiers. Figure 4 shows the receiver operating
characteristic curves for the best models from each cohort.

Figure 4. Receiver operating characteristic curves for support vector machine, adaptive boosting, and adaptive boosting for the three cohorts, respectively
(left to right). AUC: area under the curve; ROC: receiver operating characteristic.
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To further investigate the prediction efficacy of the ML-based
classifiers, we evaluated the prediction performance of the
best-performing classifier for all three cohorts by testing the
prediction of graft failure events by a classifier trained for a
specific cohort with data from other cohorts, that is, testing the
classifier for cohort 2 with randomly selected data from cohorts
1 and 3. The underlying assumption is that the classifier should
not produce good prediction results for data from other cohorts.
As this evaluation considers survivors across progressive
cohorts, we used the F1 score to measure prediction
performance. A sound prediction model for cohort 2 will give

a high graft failure prediction score for data from cohort 1 but
a low prediction score for data from cohort 3, the rationale being
that the overlapping cohort 2 classifier is trained on graft failure
cases in both cohorts 1 and 2. Therefore, the prediction model
for cohort 2 should give a high prediction score for predicting
graft failures from year0 to year5, but when applied to cohort 3,
the cohort 2 prediction model would be unable to predict graft
failure as it has not been trained on cohort 3 data. Table 6
provides the cross-cohort prediction scores for the best
classifiers for each cohort.

Table 6. Prediction performance (F1 scores) for cross-cohort predictions using overlapped cohorts.

Cohort 3Cohort 2Cohort 1Model

0.290.420.6SVMa (cohort 1)

0.580.870.79AdaBoostb (cohort 2)

0.870.750.72AdaBoost (cohort 3)

aSVM: support vector machine.
bAdaBoost: adaptive boosting.

Results of Wilcoxon Signed-Rank Test
To determine if the prediction differences between the different
models were statistically significant, we used the Wilcoxon
signed-rank test to compare the scores between different models.
Because the best scores in each cohort were usually produced
by SVM and AdaBoost models, the Wilcoxon signed-rank test

was conducted with each combination of these models with the
other models.

Table 7 shows the results based on the F1 score, and the P values
between the models were quite small and less than the threshold
value of P=.05, confirming that the performance difference is
statistically significant.

Table 7. The results for Wilcoxon signed-rank test (F1).

P value (F1)Cohort

AdaBoost-ANNiAdaBoost-RFhSVM-RFf,gSVM-ANNd,eSVMa-AdaBoostb,c

.003.003.003.003.003Cohort 1

.03.003.003.003.003Cohort 2

<.001<.001<.001<.001<.001Cohort 3

aSVM: support vector machine.
bAdaBoost: adaptive boosting.
cHo (null hypothesis): SVM=AdaBoost; Ha (alternative hypothesis): SVM≠AdaBoost.
dANN: artificial neural network.
eHo: SVM=EANN; Ha: SVM≠EANN.
fRF: random forest.
gHo: SVM=RF; Ha: SVM≠RF.
hHo: AdaBoost=RF; Ha: AdaBoost≠RF.
iHo: AdaBoost=ANN; Ha: AdaBoost≠ANN.

Analysis of the Influence of Clinical Features Over
Time Toward Graft Status Prediction

Overview
The second objective of this research is to analyze the influence
of clinical features on the prediction of graft survival over
different periods. The intent was to understand the factors
responsible for graft survival at different periods after transplant.
The nonoverlapped cohorts (0-1 years, >1-5 years, and >5-17

years following a transplant) were used to ensure that there was
no cascading influence of the features over time. For comparison
purposes, we also examined the feature importance for
overlapping cohorts. The feature importance scores represent
the relative importance of the feature among all features, that
is, the total of all the features’ importance scores add up to
100%; hence, if one feature gains a higher importance score, it
will be at the expense of the importance score of other features.
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Figures 5 and 6 illustrate the individual feature importance
scores across all the nonoverlapped and overlapped cohorts,

respectively.

Figure 5. Changing relevance of features based on nonoverlapped time cohorts.

Figure 6. Changing relevance of features based on overlapped time cohorts.

In general, the top 10% of the important features remained
consistent in both the nonoverlapped and overlapped cohorts;
however, we note that the nonoverlapped cohorts identified a
larger group of important features. For instance, peak panel
reactive antibody (Pkpra) and pre-emptive recipient status

(Preemptive) had negligible importance in overlapping cohorts
but were important during the 2-5 years and 6-17 years in the
nonoverlapping cohorts. Table 8 shows the feature importance
across the three cohorts.
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Table 8. Ranking of the top-10 features across the time cohorts with feature importance scoresa.

Cohort 3Cohort 2Cohort 1, feature, relative
score (%)

Rank

Importance (%), rank
change

Feature, relative score
(%)

Importance (%), rank
change

Feature, relative score (%)

+77, +3RAGETXd (16)+100, +2ESRDDXSIMPc (18)HLAMMb (13)1

>+100, >+10RDM2f (16)–8, 0VINTAGE (11)VINTAGEe (12)2

–27, –2ESRDDXSIMP (13)–23, –2HLAMM (10)ESRDDXSIMP (9)3

>+100, +3FUNCTSTATh (12)+78, +6RAGETX (9)DRCMVg (8)4

–16, 0DAGE (5)50, +2DAGEj (6)DRRACEi (8)5

–25, 0DRRACE (3)–100, –1DRRACE (4)FUNCTSTAT (7)6

>+100, >+3ECDk (3)–75, –1FUNCTSTAT (4)DAGE (4)7

>–100, –6VINTAGE (2)+50, >+3PKPRAm (3)RCADl (4)8

–33, 0PREEMPTIVE (2)+50, >+1PREEMPTIVEn (3)RDM2 (3)9

0, 0RWT2 (2)–75, –6DRCMV (2)RAGETX (2)10

Rest (26)Rest (26)Rest (30)Rest (30)Rest (31)Rest

aImportance (%) and rank change is shown in italics.
bHLAMM: HLA antigen mismatch.
cESRDDXSIMP: simplified end-stage renal disease diagnosis.
dRAGETX: recipient age.
eVINTAGE: number of years on dialysis before transplant.
fRDM2: recipient diabetes status.
gDRCMV: donor-recipient cytomegalovirus.
hFUNCTSTAT: functional status of the recipient.
iDRRACE: donor-recipient race.
jDAGE: donor age.
kECD: expanded criteria donor.
lRCAD: recipient coronary artery disease.
mPKPRA: peak panel reactive antibody.
nPREEMPTIVE: pre-emptive transplant.
oRWT2: recipient weight.

Below, we analyze the importance of features in each cohort
and show the influence of features over time using
nonoverlapping cohorts.

Feature Importance for Cohort 1
According to the top features shown in Table 8, HLAMMs and
the number of years on dialysis before transplant (VINTAGE)
were the most important features with a relative importance of
over 10%. This observation has been confirmed in other studies
[32,36]. Donor-recipient CMV status, donor-recipient race,
end-stage renal disease diagnosis (ESRDDXSIMP), and
functional status of the recipient were ranked as having medium
importance with a relative score between 5% and 10%.
Donor-recipient race pairs and donor-recipient CMV pairs were
noted to have more predictive influence in cohort 1 than in the
other two cohorts.

Feature Importance for Cohort 2
Both HLAMMs and VINTAGE remained highly important in
cohort 2. In addition, ESRDDXSIMP was noted as a highly

important feature. Interestingly, we note that few features, such
as donor age and recipient age, were rather insignificant in
cohort 1 but were noted to be significant in both cohort 2 and
further in cohort 3.

Feature Importance for Cohort 3
ESRDDXSIMP showed a relative downward trend; however,
it remained a highly significant feature. Unlike earlier cohorts,
HLAMMs and VINTAGE were noted to not maintain their
importance in the long term, whereas the recipient’s status of
diabetes was noted to be the most important feature, along with
recipient age and their functional status. Donor age was noted
to maintain a medium importance score between 5% and 10%.

Figure 7 presents a heat map of the importance score to illustrate
the changing influence of the top 25 features across the three
cohorts. In addition to the top 10 features (Table 8), the heat
map details the contribution of relatively less important features.
It was interesting to see that few features (such as donor weight,
recipient weight, and donor hypertension) had static importance
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across the three cohorts. This indicates that although these
features were not deterministic for the cohorts, they possessed

a certain value for the prediction models.

Figure 7. Changing relevance of top 25 features over the three cohorts. AHD1: donor-recipient height difference; CIT: cold ischemia time; DAGE:
donor age; DHT100: donor height; DHTN2: donor hypertension; DONCREAT: donor creatinine level; DRACESIMP: donor race; DRCMV: donor-recipient
cytomegalovirus; DRRACE: donor-recipient race; DRWT: donor-recipient weight difference; DWT: donor weight; ECD: expanded criteria donor;
ESRDDXSIMP: simplified end-stage renal disease diagnosis; FUNCTSTAT: functional status of the recipient; HLAMM: number of HLA mismatches;
PKPRA: peak panel reactive antibody; PREEMPTIVE: preemptive transplant; RAGETX: recipient age; RCAD: recipient coronary artery disease;
RDM2: recipient diabetes; RHT2100: recipient height; RHTN: recipient hypertension; RRACESIMP: recipient race; RWT2: recipient weight; VINTAGE:
number of years on dialysis before transplantation.

Analysis of the values of categorical features provided novel
insights into the influence of a feature. Figure 8 presents a heat

map of the importance of the value of the categorical features
generated after transforming them into dummy features.
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Figure 8. Changing relevance of top 25 features (including dummy features) over the three cohorts. CIT: cold ischemia time; DAGE: donor age; DBMI:
donor BMI; DHT100: donor height; DONCREAT: donor creatinine level; DRCMV_2: Donor positive recipient positive; DRRACE_1: Donor white
recipient white; DWT: donor weight; ECD_0: Expanded criteria donor: no; ECD_1: Expanded criteria donor: yes; ESRDDXSIMP_2: End stage renal
disease: diabetes mellitus; ESRDDXSIMP_3: End stage renal disease: polycystic kidney disease; ESRDDXSIMP_4: End stage renal disease: hypertension;
FUNCTSTAT_1: Functional status of recipient: 100% no complaints; HLAMM _5: Number of human leukocyte antigen mismatches: 5; PKPRA: peak
panel reactive antibody; PREEMPTIVE_1: Preemptive transplant: yes; PREEMPTIVE_2: Preemptive transplant: no; RAGETX: recipient age; RBMI2:
recipient BMI; RDM2_0: Recipient diabetes: no; RDM2_1: Recipient diabetes: yes; RHT2100: recipient height; RWT2: recipient weight; VINTAGE:
number of years on dialysis before transplantation.
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Discussion

Principal Findings
The cross-cohort prediction results (Table 6) confirm the
efficacy of the classifiers—the prediction model for cohort 3
(ie, AdaBoost) correctly offers a high prediction score for data
from cohort 1 (72%) and cohort 2 (75%). The prediction model
for cohort 2 offers a high prediction score for cohort 1 data
(79%) but a low prediction score for cohort 3 (58%) data. The
classifier for cohort 1 (ie, SVM) gave low prediction scores for
data from cohort 2 (42%) and cohort 3 (29%). Interestingly, the
highest prediction score by a cohort-specific classifier was

always achieved for data from its respective cohort. The
prediction modeling results confirmed that the prediction models
were highly sensitive to their respective cohorts.

Comparing Prediction Performance With Prior Studies
We compared the prediction performance of our ML-based
prediction models with comparable organ transplant studies that
involved similar-sized observations and temporal windows.
Table 9 summarizes the findings of the two studies for each
cohort. There have been several other studies
[19,31,32,35,37,38] to predict the short-term graft status of
different organ transplants, but because of their small data set,
these do not serve as a meaningful comparison.

Table 9. Prediction scores of similar studies.

Our score (%)Score (%)MetricData setSizeModelStudyTime

8273AUCdUNOSc46,414ANNa and LRbLin et al [16]1 year

8263AUCUNOS15,580LRDag et al [23]1 year

6971C-indexeUNOS20,085NomogramTiong et al [39]5 years

6977AUCUNOS17,856ANNLin et al [16]5 years

8182AUCUNOS10,250ANNLin et al [16]7 years

8165C-indexSRTRf46,098ANNLuck et al [40]14 years

aANN: artificial neural network.
bLR: logistic regression.
cUNOS: United Network of Organ Sharing.
dAUC: area under the curve.
eC-index: concordance index.
fSRTR: Scientific Registry of Transplant Recipients.

When comparing our results with prior studies, it is noted that
although our cohort 2 prediction performance (ie, graft status
prediction over a 5-year period) is lower than that of Lin et al
[16], it was based on a much smaller data set that included
10,641 survivals and 7215 failures, whereas we analyzed 23,475
failures and 29,352 survivals. Similarly, Tiong et al [39]
analyzed a smaller sample of 20,085 living donor transplant
recipients to achieve a concordance index of 71%. Our cohort
3 prediction performance is marginally lower compared with
Lin et al [16], who predicted a 7-year graft survival with an
82% AUC score, whereas our cohort 3 prediction model covers
a much longer (17 years) temporal window and achieves a
comparable prediction score. Using a similar number of
transplants, Luck et al [40] achieved a much lower concordance
index between 63% and 66% for 14-years graft survival.

Limitations and Future Work
A limitation of our research lies in the removal of censored
instances. We removed all successful cases that were censored
before 8 years following transplant. Although this type of
approach has previously been used, including censored cases
is a potential consideration for future analyses.

Conclusions
Understanding the impact of donor and recipient factors that
predict short- and long-term kidney transplant allograft survival

is important for patients and providers. Kidney transplantation
is the optimal form of kidney replacement therapy, but kidney
allografts are a limited resource. In addition, the alternative to
kidney transplantation (ie, dialysis) is considerably costlier.

In this study, we present an ML-based framework to predict the
status of kidney allografts, based on donor-recipient features,
over a period of 17 years. We applied ML-based data analysis
methods for feature engineering to reduce data dimensionality,
develop prediction models for three distinct temporal cohorts,
and investigate the changing relevance of clinical features across
different temporal cohorts. We introduced the concept of
nonoverlapped cohorts to analyze the changing relevance of
features in three defined periods. In conclusion, our results
emphasize that ML can be effective in predicting graft survival
using donor and recipient factors that are routinely collected as
part of patient care. As a next step, we plan to incorporate the
prediction models into clinical care at the time of allocation;
models that best predict short- and long-term kidney graft
survival may be used as a pragmatic prognostic tool to aid
clinicians in maximizing the best possible matching of donors
and recipients while preserving existing allocation rules that
are used to promote equity [41].
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