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Abstract

Background: Genealogical information, such as that found in family trees, is imperative for biomedical research such as disease
heritability and risk prediction. Researchers have used policyholder and their dependent information in medical claims data and
emergency contacts in electronic health records (EHRs) to infer family relationships at a large scale. We have previously
demonstrated that online obituaries can be a novel data source for building more complete and accurate family trees.

Objective: Aiming at supplementing EHR data with family relationships for biomedical research, we built an end-to-end
information extraction system using a multitask-based artificial neural network model to construct genealogical knowledge graphs
(GKGs) from online obituaries. GKGs are enriched family trees with detailed information including age, gender, death and birth
dates, and residence.

Methods: Built on a predefined family relationship map consisting of 4 types of entities (eg, people’s name, residence, birth
date, and death date) and 71 types of relationships, we curated a corpus containing 1700 online obituaries from the metropolitan
area of Minneapolis and St Paul in Minnesota. We also adopted data augmentation technology to generate additional synthetic
data to alleviate the issue of data scarcity for rare family relationships. A multitask-based artificial neural network model was
then built to simultaneously detect names, extract relationships between them, and assign attributes (eg, birth dates and death
dates, residence, age, and gender) to each individual. In the end, we assemble related GKGs into larger ones by identifying people
appearing in multiple obituaries.

Results: Our system achieved satisfying precision (94.79%), recall (91.45%), and F-1 measures (93.09%) on 10-fold
cross-validation. We also constructed 12,407 GKGs, with the largest one made up of 4 generations and 30 people.

Conclusions: In this work, we discussed the meaning of GKGs for biomedical research, presented a new version of a corpus
with a predefined family relationship map and augmented training data, and proposed a multitask deep neural system to construct
and assemble GKGs. The results show our system can extract and demonstrate the potential of enriching EHR data for more
genetic research. We share the source codes and system with the entire scientific community on GitHub without the corpus for
privacy protection.

(J Med Internet Res 2021;23(8):e25670) doi: 10.2196/25670
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Introduction

Anthropologists often use oral interviews, historical records,
genetic analysis, and other means to obtain genealogical
information and draw family trees. When combined with a
detailed medical history and social and economic relationships,
family trees are considered the x-ray of the family and have
been used by clinicians to assess disease risk, suggest treatments,
recommend changes in diet and other lifestyle habits, and
determine a diagnosis. In the United States, the Medicare Access
and CHIP Reauthorization Act of 2015 [1] and Meaningful Use
program [2] have incentivized the growing adoption of
electronic health records (EHR) with the goal to improve the
quality of health care delivery systems. Consequently, a vast
amount of EHR data has become available for research purposes
in the past decade. However, most EHR systems today do not
capture the family relationships between patients by design.
Nor do they capture the death information unless patients die
in the health care system or the EHR system is linked to external
death registries. Constructing family trees for patients becomes
an urgent need to unlock the full potential of EHR data in
understanding disease and trait heritability, evaluating
individuals’ health risks, and exploring environmental effects
on human health.

Early exploratory works have combined EHR data and family
trees for biomedical research. For instance, Mayer et al [3] used
twin or multiple relationships to assess the concordance rates
for muscular dystrophy and fragile X syndrome in the twin
cohort. Schalkwyk et al [4] conducted interviews with family
members to build 3-generation family trees with medical
chronologies and demonstrated their use in deciding the services
required for the psychological well-being of all family members.
Wang et al [5] combined diagnosis codes and dependent
coverage under medical plans to estimate the heritability and
familial environmental patterns of 149 diseases and inferred the
genetic and environmental correlations between 29 complex
diseases [5]. Similarly, Polubriaginof et al [6] built more than
595,000 family trees from emergency contact information in a
large EHR system and then estimated the heritability of 500
traits.

Constructing high-quality large family trees has been
challenging. Historically, only famous politicians, philosophers,
scientists, religious groups, or royal families were tracked
elaborately by genealogists. For such reason, large databases
of family trees rarely existed, despite their research value.
Recently, a few studies automated family tree collection using
innovative informatics approaches. For instance, Mayer and
colleagues [3] used shared dates of birth and last names, in
addition to home addresses, billing accounts, and keywords of
“twin” and “triplet” in unstructured clinical notes to identify a
cohort of 19,226 twins or multiples in an extensive health care
delivery system. Wang et al [5] inferred 128,989 nuclear families
from a large medical claims database covering one-third of the
US population based on dependent coverage. Polubriaginof et
al [6] used the emergency contact information of 3,550,598
patients from three large EHR systems in New York City to
build 595,000 pedigrees. However, these indirect sources, like
dependent coverage and emergency contact, have inherent

limitations for inferring genealogical information: they do not
differentiate biological from nonbiological relationships and
they cover only limited types and numbers of family
relationships. More specifically, medical insurance in the United
States is limited to a beneficiary’s spouse and dependents up to
age 26 years. Most patients only provided one or two emergency
contacts rather than their whole families in their medical records.
Missing relationships could be substantial.

Inspired by the work of Tourassi et al [7] and Yoon et al [8],
we began to explore online obituaries as a novel data source for
the automatic extraction of genealogical information. Obituaries
generally cover many more family members with more detailed
and accurate descriptions of their family relationships.
Nowadays, local newspaper and funeral service companies often
publish obituaries on internet, making the cost of obtaining
obituaries minimal. In our previous work, we developed and
evaluated a new method of name entity recognition (NER) for
extracting family members’ names and relation classifications
(RCs) for classing the pairs of names among family members
mentioned in online obituaries [9]. In this work, we advanced
our previous work in the following 5 aspects: (1) for the NER
task, we processed more entity types, including people’s name,
age, residence, and dates of birth and death; (2) for RC, we also
matched residence entity and related people (in the previous
work, we only extracted the family relationships among people
entity); (3) we parsed two kinds of special language patterns in
obituaries, last name distributive and name with parentheses;
(4) all the triplets of family relationships were integrated to
build the enriched family trees with additional rule-based
inference; and (5) in terms of training data, we normalized the
family relationships (see details in Data section).

Traditionally, NER and RC were considered two separate tasks
for information extraction. NER sought to extract named entities
mentioned in unstructured text into predefined categories,
whereas RC classified the relations between those extracted
entity mentions. Researchers built natural language processing
(NLP) pipelines with multiple modules to accomplish specific
tasks. However, such modular separation suffered from 3 major
issues leading to suboptimal results: (1) errors from the NER
propagated to RC, (2) it was computationally redundant and
time-consuming as the system had to pair up every two named
entities to classify their relations, and (3) the pipeline model
could not take full advantage of the knowledge inhabitant in
the relationships of 2 or more named entities. For instance, if
the system detected a live in relationship between two named
entities in obituaries, the first entity is likely to be a person’s
name and the second entity is likely to be a location.

Thus, we look at multitask models that can simultaneously
handle multiple related tasks and optimize their learning abilities
by sharing the knowledge learned in all or some of the tasks
[10]. In 2008, Collobert [11] introduced a single neural network
architecture that solved NLP tasks such as part-of-speech
tagging, chunking, named entity recognition, semantic role
identification, and semantically similar word grouping using
one language model. Recently, there are 3 prevailing solutions
for multitask NLP models. The most popular solution establishes
a common neural network presentation space for all tasks
followed by task-specific classifiers [12,13]. The second
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proposes novel neural network architecture for multiple tasks.
Sun et al [14] used graph convolutional networks to enhance
interaction between entity and relation. Bhatia et al [15]
proposed a hierarchical encoder-decoder NER model and adopt
a shared encoder followed by separate decoders for NER and
RC tasks. The third focuses on customized tagging schema. For
instance, Zheng et al [16] proposed a novel tagging schema for
long short-term memory (LSTM) models that simultaneously
identified named entities and extracted relationships in a corpus
of New York Times news. In addition, Dixit et al [17] introduced
a span-level solution to handle NER and RC together. Zheng
et al [18] introduced a hierarchical solution that combines an
encoder-decoder LSTM module for NER with a convolution
neural network for RC.

In this work, we first updated our annotated corpus by defining
a family relationship map to normalize various family relations
(see details in Data section). We also used data augmentation
technology to generate more synthetic data (sentences), in order
to address the imbalanced training data issue and boost the
performance on rare classes [19]. After that, we proposed an
end-to-end information extraction system based on a
multitasking solution. The end-to-end system included a
knowledge inference layer for gender inference based on name
and relationship mentioning. In the end, we constructed family
trees centered on the deceased. These family trees contained
many family members with detailed information, including age,
gender, death date, birth date, and residence. We named such
enriched family trees genealogical knowledge graphs (GKGs).
These GKGs could be linked to external EHR data in Minnesota

by personally identifiable information (PII), in a similar way
as Sauver et al [20] did. We empirically estimated the upper
bound of the mapping precision could be around 80% to 90%.
It would significantly enhance the power of EHR data to study
disease and trait heritability, evaluate an individual’s health
risks, and explore environmental effects on the human health.

Methods

Data
We collected 12,407 obituaries published from October 2008
to September 2018 from 3 funeral services websites and 1 local
newspaper in the Twin Cities area, metropolitan
Minneapolis–Saint Paul. Our data sources were limited to openly
available obituaries. Considering the PII embedded in online
obituaries, we decided to take a cautious and conservative
position in our work by marking up the last name of any real
people with the symbol XX (see more details on privacy
protection in the Discussion section). After data cleaning, we
randomly sampled 1700 obituaries for annotation. We developed
the annotation guideline and trained 3 annotators to annotate
each of the 1700 obituaries independently. The interannotator
agreement measured by F-1 was 82.80% [9]. Table 1 shows the
summary statistics of the annotated corpus. There were two
unique language patterns in obituaries, namely last name
distributive and name with parentheses (see Table 2 for
examples). These patterns might be due to the word limitation
when the family paid for publishing an obituary in printed
newspapers. They required special treatment, as described in
the next session of end-to-end system.

Table 1. Summary statistics of the annotated corpus.a

CountSpecial language patternsCountDeceased personCountCorpus

4954Last name distributive1551Full name28,317Sentences

7504Name with parentheses1379Age27,108Names

5993Spouse’s name1557Death date25,557Family relationship

1511Previous last name1368Birth date7161Residence

————b7954Name-residence pair

aAll counts are the number of occurrences except for the full name of the deceased. Considering all obituaries have structured metadata giving the full
names of the deceased more precisely, we only annotate and extract the first-time mention of a full name of the deceased in an obituary. Spouse’s name
and previous last name are 2 categories in the content name with parentheses.
bNot applicable.

Table 2. Examples of unique language patterns in obituaries.

ExplanationExampleLanguage pattern

XX is also the last name for Addison.He is survived by grandsons Addison and Owen XX.Last name distributive

Names with parentheses

Starr is the maiden name for Isabel XX.Anne was born March 20, 1952, to William and Isabel
(Starr) XX.

Previous last name

Dale’s wife is Mary, and Bruce’s wife is Diana.Survived by her sons, Dale (Mary) and Bruce (Diana).Spouse’s name

In this work, we made two improvements in the corpus
annotations. First, we created a family relationship map that
normalized various family relationship mentions to 71 family

relationship groups. For example, there were many mentions
of “born to (name),” “daughter of (name),” and “son of (name)”
in obituaries, which were equivalent to express the parent of
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the deceased. We grouped them into the “parent” relation.
Similarly, we treated “married to” the same way as the “spouse
(of)” relation. Figure 1 shows the family relationship map,

consisting of 8 generations and 71 normalized family
relationships. The numbers in parentheses were the number of
occurrences of a specific family relationship in our corpus.

Figure 1. Family relationship map in the obituary corpus.

It was observed that some family relationships, such as
granduncle, uncle-in-law, and half-sister had small numbers of
cases that was not sufficient to train a high-performance neural
network model. Therefore, we used data augmentation
technology [19] to expand the corpus and alleviate the
imbalanced data issue. We first introduced wi, the weight of
relation i:

Where ci stood for the count of annotated sentences with relation
i, and n was 71, the count of all family relationship groups
defined in the family relationship map. For each family
relationship i, the number of training sentences to be generated,
gi, was computed as follows:

Where N was the total number of all human annotated sentences
and    was the user-defined ratio for data augmentation.
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Essentially we generated more synthetic sentences to ensure
each family relationship had no less than 200 examples, with
the constraint that the count ratios of all family relationships
remain as close as possible to those in the original training data.

After deciding gi, 2 steps were performed to generate extra
sentences. First, we randomly chose gi sentences from the raw
corpus and replaced one of the raw family relationship tokens
in these sentences with relationship word i. Second, we
randomly chose one of the following operations introduced by
Wei and Zou [19] to generate the final augmented sentences:

• Synonym replacement: randomly replace n non–stop words
with their synonyms in the sentence

• Random insertion: randomly insert a word’s synonym
before or after the chosen non–stop word in the sentence

• Random swap: randomly swap 2 non–stop words in the
sentence

• Random deletion: randomly remove a non–stop word in
the sentence

The 4 entity types of interest in this work, name, residence, birth
date and death date, are exempt from the changes. It should also
be noted that the generated sentences could not be guaranteed
to be grammatically and semantically correct. However, for

neural network models, such sentences, when created with
appropriate α, were demonstrated to improve models’
generalizability as noisy training data.

End-to-End System
Figure 2 illustrates our end-to-end system. It took a list of
segmented sentences in an obituary as the input and generated
a GKG centered around a deceased person. Its core was a
multitask system that combined common parameter sharing
across different modules and custom tagging schemes. The
multitask solution promised better performance, as it used more
supervision information and understood data from different
views [21]. The 4 modules were (1) named entity recognition
and relation classification through a joint training model and
customized tagging scheme, (2) matching locations to people’s
name, (3) a parser for resolving last name distributive, and (4)
a parser for resolving names with parentheses. These 4 modules
shared the same model parameters, as they were trained jointly
using one common weighted loss function. Among these
modules, module 2 needed the extracted names and locations
from module 1 as inputs. Module 5 was added as an independent
rule-based layer for gender inference and age, date of death,
and birth inference. Eventually, the results of these modules
were combined to construct the GKGs.
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Figure 2. End-to-end extraction system to parse obituaries and generate genealogical knowledge graphs.

Module 1: Joint NER and RC
This module aimed to extract family members’ names,
relationships, and additional attributes of people (residence,
age, death date, birth date). Gender was usually not explicitly
mentioned in the obituaries, so we inferred the gender in module
5. We adopted a customized tagging scheme (shown in Figure
3) when annotating the training data. Each tag consisted of 2
parts. The first part indicated the type of an entity, and the
second part illustrated the position of the word in the entity. As
shown in Figure 3, “sister_B,” “sister_I,” “sister_E,” and
“Age_S” indicated the beginning, the inside, and the end of a
sister entity and a single-word entity of age, respectively. In the
system, the deceased was the default baseline entity for all
family relationship triplets. In the sentence shown in Figure 3,
for example, “Robert” was the name of the deceased person

(we knew it from the obituary metadata and the context of the
entire obituary). After annotation, we obtained three triplets
(Robert, sister, Eva Katherine XX), (Robert, brother, Stanley),
and (Robert, brother, Terry XX). The calculating process was
as follows:

For each input token xi, we used BERT [22] as a common

encoder to obtain each hidden representation hi
common. Then

hi
common were sent into one LSTM classifier to obtain each tag

T1i ∈ T1, where T1 was the result set of module 1, and w1 and
b1 were parameters for training.
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Figure 3. Tagging scheme for simultaneously extracting entities and kinship. S: single; B: begin; I: inside; E: end.

Module 2: Matching Locations to People
After identifying the residence entities (eg, Rochester in Figure
3), we need to match them with specific people. To do so, we

used 3 inputs, all extracted names T1
name ∈ T1, all extracted

residences T1
residence ∈ T1, and common representation hi

common.
This module followed by a co-reference solution [23]. We
defined the process as follows:

where v1i
name denoted the vector of one name entity t1i

name ∈
T1

name, v1j
residence denoted the vector of one residence entity

t1j
residence ∈ T1

residence, [] denoted concatenate, * denoted dot
product, w2 and b2 were one linear layer parameters for training,
T2k ∈ T2 was the matching result for each pair of name and
residence, and T2 was the final selected pair of name and
residence.

Module 3: Judging Last Name Distributive
We identified 2 special language patterns in obituaries, last
name distributive and names with parentheses, as shown in
Table 2. Resolving these language patterns was helpful for
extracting and constructing high-quality GKGs. The task of
module 3 was to decide for each token in an input sentence if
the last name distributive existed by assigning each token with
a binary tag of yes OR no. When we cotrained module 3 with
other modules, these tags would concatenate with other modules’
tags for joint training. In the sentence in Figure 3, for example,
“Stanley” and “Terry” shared the same last name of “Johnson.”
Therefore, in module 3, “Stanley” was assigned a label
“brother_S_yes” and “Terry Johnson” was given 2 tags
“brother_B_yes” and “brother_E_yes.” This way, the module
would extract 2 full names, Stanley Johnson and Terry Johnson,
instead of Stanley and Terry Johnson. The detailed computing
process was as follows:

where w4 and b4 were parameters for training, T4i ∈ T4 was the
result for each name, and T4 was the result set of module 3.

Module 4: Recognizing Names With Parentheses
Module 4 was a 3-class classifier to determine whether there
was a parenthesis in a name, and if so, whether it referred to a
previous last name or the name of spouse. The computing
process was the same as module 3, which took the input of

hi
common and output the tags of 3 classes (“no parenthesis,”

“previous last name,” and “spouse’s name”).

Module 5: Rule-Based Inference Layer
This module aimed to infer age, death date, and birth date for
the deceased and gender for both the deceased and their family
members. First, if an obituary mentioned any 2 attributes out
of age, birth date, and death date for the deceased, we calculated
the third one. Second, we used both family relationship keyword
and name to infer gender. If a family relationship keyword (eg,
son, daughter, nephew) suggested gender, we would add the
gender tag accordingly. Otherwise, when the family relationship
keyword (eg, spouse and parent) did not tell the gender, we used
an external human name knowledge base to match the most
likely gender with names. For instance, “Tom” and “Emily”
indicated male and female, separately.

After constructing the GKGs from each obituary by modules 1
to 5, we assembled the extracted GKGs into bigger ones by
matching PII, including people’s names, residence, birth date,
death date, and family relationship.

Joint Training Loss
We minimized the negative log likelihood loss of the generated
tags for the first 4 modules (module 5 is a rule-based inference
layer that did not require training). For module k (k=1, 2, 3, 4),
the loss function was defined as follows:

Where B was the batch size, ls was the length of input sentence

sentences, ys
i and ps

i were the true tag and the normalized
probability of the predicted tag for an input token I, and    was
a hyperparameter. P(O) was the indicator function that
determined which part of equation 10 was used to calculate the
loss. If the current tag was not “O” (other), the hyperparameter
   would decide the weight of the loss function. It was defined
as follows:

In the end, we combined all four loss functions L1, L2, L3 and
L4 together, using different weighting parameters λk into the
final loss function, which was optimized for the entire training
as follows:
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Evaluation Metrics
We performed 10-fold cross-validation by randomly selecting
10% of the annotated data for validation and the remaining for
training. It is worth noting that the augmented data were only
used for training models. Extracted GKGs consists of outputs
from modules 1 to 5. They were measured by averaged
performance of all modules except module 5 due to this
rule-based inference module lacking a gold standard. For
modules 1 to 4, we used precision, recall, and F-1 measure for
evaluation, which were computed as follows:

In module 1, the outputs were entity mentions with extra entity
and relation types. We defined an extracted mention as true
positive instances only if the mention’s boundary, entity type,
and relation tags were exactly matched with the gold annotation.
The instances of false positive were predicted mentions that do
not precisely match with gold annotation boundaries, entity, or
relation types. False negative instances were those existing in
the gold annotation but not recognized by the model.

In module 2, true positive instances were defined as pairs of
name and location that matched exactly. If either name or
location was wrong, the pair would be considered a false
positive. False negative referred to the name-location pairs
missed by our system.

Module 3 and module 4 were formulated as generic
classification tasks, so we used common definitions of false
negative, false positive, and true positive. For all modules,
evaluation metrics were precision, recall, and F-1 measure.

Results

Table 3 illustrates the performance of modules 1 to 4 with
ablation experiments in terms of macroaveraged and
microaveraged precision, recall, and F-1 measure (without data
augmentation). A macroaverage is the arithmetic average of the
computed metrics for all classes and a microaverage sums up
all true positive, true negative, false positive, and false negative
instances before computing the final precision, recall, or F-1
measure for all classes. Macroaveraged metrics are often used
for evaluation, particularly when there are extremely imbalanced
classes, as no single class should largely dominate the results.

As shown in Table 3, we can see that module 1, which
constructed the nodes and edges of the GKGs, achieved
macroaveraged precision, recall, and F-1 measure of 83.85%,
83.05%, and 83.44%, respectively (see the third row of the
macroaveraged performance). If we did not consider the effects
of imbalanced data, the microaveraged precision, recall, and
F-1 measure were even better, reaching 95.42%, 93.52%, and
94.46%, respectively (see the third row of the microaveraged
performance). The macroaveraged results were much worse
than the microaveraged results because the dominating classes
had above-average performance. The minority classes, although
having below-average performance, did not affect the
microaveraged results much due to their small count numbers.
For example, uncle-in-law, granduncle, and cousin-in-law had
just 1 case in our corpus (see Figure 1). These relations affected
the macroaveraged metrics more negatively. The performances
for modules 2, 3, and 4 had similar patterns.

We also observed the benefits of multitask models through
ablation experiments. Extra information gained from modules
3 and 4 seemed to improve module 1 in both macroaveraged
precision, recall, and F-1 measure (2.17%, 3.12%, 2.64%,
respectively) and microaveraged precision, recall, and F-1
measure (1.27%, 1.12%, and 1.19%, respectively). Modules 1
and 3 improved the performance of module 4 by 2.76%, 1.32%,
2.08% for macroaveraged precision, recall, and F-1 measure,
respectively, and 2.51%, 1.7%, 2.13% for microaveraged
precision, recall, and F-1 measure, respectively. Similarly,
modules 1 and 4 helped to improve the macro/micro precision,
recall, and F-1 of module 3 by 2.74%, 1.00%, 1.88%,
respectively. And modules 1, 3, and 4 improved module 2 by
1.10%, 5.17%, and 3.49% in macro/micro averaged precision,
recall, and F-1 measure.

It should be noticed that module 2 seemed not helpful in
improving the overall performance of each module. For module
1, the macroaveraged and microaveraged F-1 measure dropped
by 1.41% (compare the first and third row of the macroaverage
section of Table 3) and 1.03% (compare the third and third row
of the microaverage section) after introducing module 2 into
the end-to-end system . Other modules had similar effects when
included in module 2. This phenomenon was named negative
transfer. It meant that although module 2 significantly benefited
(F-1 measure raised from 75.08% to 78.57%), other modules
were negatively affected. Liu et al [24] and Wang et al [25] also
observed and discussed similar negative transfer effects. We
talk about negative transfer further in the Discussion section.
In our system, the solution for avoiding the negative transfer
was that module 1, 3, 4 would be cotrained and module 2 would
be separated from the whole system for training. In such a way,
each module could benefit the most from the joint training
method.
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Table 3. Model performance of each module with ablation experiments.

Microaveraged performanceMacroaveraged performanceModule and ablation test

F1(%)R (%)P (%)F1c (%)Rb (%)Pa (%)

Module 1

93.2792.4094.1580.8079.9381.68Baseline

93.4392.7994.0882.0381.9982.07Joint training (module 2, 3, & 4) + negative transfer

94.4693.5295.4283.4483.0583.85Joint training (module 3 & 4)

Module 2

———d75.0868.4383.17Baseline

———78.5773.6084.27Joint training (module 1, 3, & 4)

Module 3

———90.8192.0189.64Baseline

———91.3091.1291.48Joint training (module 1, 2, & 4) + negative transfer

———92.6993.0192.38Joint training (module 1 & 4)

Module 4

93.0395.2190.9692.6494.7490.65Baseline

94.3096.3192.3794.0295.7692.34Joint training (module 1, 2, & 3) + negative transfer

95.1696.9193.4794.7296.0693.41Joint training (module 1 & 3)

aP: precision.
bR: recall.
cF1: F-1 measure.
dThe microaveraged and macroaveraged performances are the same for module 2 and module 3 because they are both binary classification tasks. All
results shown are from the curated corpus without data augmentation.

We also adopted data augmentation technology to expand our
corpus, aiming to improve the relation extraction performance
for family relations (module 1) with too few training examples.
By synonym replacement, random insertion, random swap, and
random deletion, we augmented the training data to ensure every
relation had no less than 200 training examples. However, the
automated data augmentation method introduced new noise.
We tested a different augmentation ratio (α) to find the best
balance. As shown in Figure 4, when the augmentation ratio
was set to 40%, the extra synthetic data in training benefited
our model most. It was worth noting that the augmentation data
were only used in training for module 1, and we still evaluated
our system with real, nonsynthetic test data. Figure 4 shown
that the best macroaveraged and microaveraged F-1 measures
achieved 89.14% and 95.55%, respectively, for module 1. With
augmented module 1, our whole system achieved the best
macroaveraged performances, 92.59% (precision), 90.05%
(recall), and 91.30% (F-1 measure), and the best microaveraged
metrics were 94.79% (precision), 91.45% (recall), and 93.09%
(F-1 measure). These results confirmed that data augmentation
technology can alleviate the problem of imbalanced data.

After extracting GKGs from all obituaries, we assembled them
into bigger ones by matching available PII, including name,
gender, age, residence, and birth date. Considering obituaries
usually provide detailed PII for the deceased but not for their
family members and relatives, we did fuzzy matching for the
relatives. That is, if the mentioning of 2 people in 2 different
obituaries are likely to refer to the same person based on 1 or
more shared piece of PII, we would assemble 2 GKGs into 1.
In the end, we had 319 GKGs assembled into 149 bigger GKGs
after processing all 12,407 downloaded obituaries. Among those
319 obituaries, 22.3% (71/319) had 1 shared PII item, 8.5%
(27/319) had 2, and 69.3% (221/319) had more than 2. We
manually evaluated those 149 assembled GKGs and confirmed
that 71.8% (107/149) were correct, 12.1% (18/149) were wrong,
and 16.1% (24/149) were uncertain. We acknowledge that this
rule-based matching method is limitedly useful for the selected
geographic location of the Twin Cities area in Minnesota. It
might be more error prone to apply to the entire country or other
densely populated areas with high population mobility. So we
did not include the assembly function in the end-to-end system
but kept it as an additional resource for cautious users.
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Figure 4. Comparing the F-1 measures of raw corpus and augmented corpus.

Figure 5 shows one example of assembled GKG from 3
obituaries. It contained 4 generations and 30 people. Figure 6
is the corresponding gold standard result conducted from manual
validation. It can be seen that the assembled GKG missed the
state name Minnesota for Dorothy and Patrick’s residences and
one family member, Joe, who was Lynne’s husband (missing
parts are shown in dashed boxes). In the original obituary, the
sentence mentioning Lynne and Joe’s relation was “...he
proposed...they began 54 years of happy life,” and our system
failed to capture this subtle language. The successful assembly
of multiple obituaries also demonstrated the feasibility of linking
family relations extracted from obituaries to EHRs to support

genetic research like linkage analysis and disease risk prediction.
Meanwhile, it should be noticed that even though obituaries
inherently contained rich genealogical information and the
system extracts the GKGs with high accuracy, the GKGs should
not always be equated to pedigrees used by genealogists.
Although it is common to declare blood or nonblood
relationships in obituaries due to data specialty (detail analysis
for the slippery slope of genealogy issue shown in the
Discussion section), we cannot guarantee people always declare
the difference of blood or nonblood and always list all of their
family members for various reasons.
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Figure 5. An example of an assembled genealogical knowledge graph. We removed last names for privacy protection. The symbol ? means we are not
sure which children nodes belong to which parent nodes.

Figure 6. The gold standard family tree constructed from manual curation corresponding to Figure 5.

Discussion

Principal Findings
In this work, we proposed an end-to-end system to construct
GKGs from online obituaries, aiming at supplementing EHR
data for genetic research. This system achieves microaveraged
precision of 94.79%, recall of 91.45%, and F-1 measure of
93.09% after data augmentation technology. The work exploits
the large availability of obituaries on the internet, which are
consistent with the vital records and census records and more
reliable and comprehensive than dependent information from
medical insurance and emergency contact in EHR systems [5,6].
We demonstrate an efficient system to automatically build large
GKGs from 10 years’ online obituaries in the Twin City area,

Minnesota. Furthermore, by identifying individuals, we explore
integrating related GKGs into bigger GKGs and manually
validating the integrated results. The results show the feasibility
of identifying individuals by extracted information, including
residence, age, gender, birth, and death dates. We compute
similarities between GKGs to further merge them into more
complete GKGs. In the future, the similarity computing
techniques could assist mapping the GKGs to the EHRs.

In this work, we use publicly available obituaries. The
Association of Internet Researchers, in partnership with their
Ethical Working Committee, formulated general principals to
guide online research [26]. While this document presents the
overarching ethical considerations relevant to social
media–based research, a comprehensive determination of ethical
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principles and best practices has yet to be developed.
Furthermore, debate continues as to whether some forms of
social media–based research, namely analysis of existing textual
archives (strictly speaking, online obituaries are not social
media, but they have similar characteristics as a data source for
biomedical research), fall within the parameters of human
subject research or constitute an alternative form of humanistic
inquiry [27]. Considering the PII embedded in online obituaries,
we decided to take a cautious and conservative position in our
work by marking up the last name of any real people mentioned
in the paper.

As a novel data source, obituaries are informative for
constructing family trees. It is hard to obtain such rich
genealogical information from other data sources, but there are
caveats to their use as genealogical data. First, semantic
ambiguity occurs in obituaries as it occurs in many other types
of human writing. For example, it is not uncommon to see
statements like “...survived by two sons, Marshal and Paul XX
and daughter Daisy, and four grandchildren Denny, Gary, Cecil,
and Alina.” In this case, it is impossible to tell the exact parents
for each of the 4 grandchildren Denny, Gary, Cecil, and Alina.
All we know is that their parents are Marshal XX, Paul XX,
and Daisy. Additional data sources like birth certificate registries
can be helpful in this case.

A second point worth discussing is the slippery slope of
genealogy. Compared with medical insurance and emergency
contact information [5,6], a statement of nonblood relationship

is more common in obituary data due to their specificity. As
shown in Figure 1, for child relationship the ratio for nonblood
versus blood is 483:5472 (there are 25 mentions of child-in-law,
99 of daughter-in-law, 105 of son-in-law, 151 of stepchild, 48
of stepdaughter, and 55 of stepson compared with 2489 cases
of child, 1399 of daughter, and 1584 of son). A similar ratio
can be observed in nonblood parent relationship. This advantage
could be helpful for alleviating the problem of the slippery slope
of genealogy. However, it is still worth mentioning that not all
people make such distinctions in obituaries.

In addition, Figure 7 displayed the related statistics aimed at
showing potential data bias. We plotted the distribution of age
(at death), average number of mentioned family members, and
marital status of the deceased for all GKGs extracted from
12,407 downloaded obituaries. As shown in Figure 7, the age
distribution of the deceased is consistent with public health data
(73.9% of the deceased died at the ages of 70 to 100 years). The
average numbers of mentioned family members seem similar
for different age groups; only those died in the 0 to 10 and 100
to 110 age groups had relatively smaller family size (≤15);
87.6% of the GKGs indicated that the deceased was married at
least once. We did not interpret the results too deeply because
we did not have a good understanding of the sample bias.
Meanwhile, it was noticed that people who had complete and/or
affluent families tended to publish obituaries. Although these
data biases would not affect the performance of our extraction
system, the fact that extracted GKGs may be biased should be
considered when researchers are using them in other research.

Figure 7. Left: distribution of average numbers of mentioned family members. Right: age and marital status of the deceased person in 12,407 extracted
genealogical knowledge graphs.

Technically, the data used in the research are very imbalanced,
in which 14 rare relationships have fewer than 10 instances. We
adopted the augmentation technology to enhance system
performance. For example, in the relationships half-sister,
grandchild-in-law, and grandson-in-law, their F-1 measures
increased from 20.0%, 30.0%, and 35.71% to 66.67%, 50.0%,
and 71.43%, respectively. Next step, we plan to experiment
with additional few-shot (extremely imbalanced)–based
information extraction and mate learning to improve the system
[28,29].

In our end-to-end solution, the performance of module 2 was
obviously inferior to the other modules. Besides the error

propagation problem (module 2 need the results from module
1), the task of module 2 was a semantic matching resolution
problem, which is still challenging in the NLP community. In
addition, we currently have curated an obituary corpus in
English to train the neural network models. To expand to other
languages, a new corpus in those specific languages and new
gender inference rules would need to be curated. There is some
cross-language transfer research in the NLP community which
suggests neural models trained on an English corpus can help
to build NLP models in other languages by reducing training
data and training time. Sometimes such transfers even provide
more robust models with better performance [30,31].
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In our end-to-end solution, module 2 currently is the bottleneck.
This module suffered significantly from negative transfer.
Generally speaking, when a task or domain was joined with
data of no relatedness or similarity, the added data would
become noise rather than useful information. It remains
challenging to quantitatively measure the relatedness or
similarity among different tasks or domains [32]. Therefore,
most transfer learning solutions rely on empirical methods and
do not account for negative transfer effects. In this work, we
considered module 2, which matched locations to people, as
strongly related to other modules that extracted locations or
people and paired them. Unfortunately, the experiment results
showed negative transfer still occurred. One possible explanation
was about the different natures of tasks in modules 1, 2, 3, and
4. Module 2 was a classification task with 2 entity mentions as
the input and a class tag as the output. All other modules were
sequence tagging tasks, where the whole sentence was the input
and tags for all tokens of an input sentence were output. Another
possible reason was that the task of module 2 was much more
challenging than the others. Modules 1, 3, and 4 all had a higher
than 90% microaveraged F-1 measure when we tested them
individually, while module 2 had a 75.08% microaveraged F-1
measure. In addition, module 2 needed inputs from module 1.
The errors of module 1 would propagate to module 2. How to
improve module 2 and alleviate its negative transfer and error
propagation is what we plan to focus on methodologically in
the future.

Besides the performance benefits shown in the Result section,
the multitask solution is also faster to train. We use a single
V100 GPU in this study. For the traditional pipeline model, one
round 10-fold cross-validation experiment costs about 240 hours
in total. However, the multitask model with all 4 modules
together takes only 150 hours. For module 1, the training process
took about 70 epochs to achieve an F-1 measure of 80% when

being trained independently. The multitask method takes less
than 5 epochs to achieve the same level of F-1 measure.

Limitations
The first limitation of our work is the existing potential data
bias. Our data are collected from online obituary websites. In
such conditions, people who had intact and/or affluent families
tended to publish obituaries. The second limitation is that our
system is mainly for English obituaries. Modules 2 and 3 are
designed for 2 English writing patterns.

Conclusions
GKGs have great potential to enhance many medical research
fields, especially combined with EHR data. We believe a
high-quality, large-scale genealogical information database will
have significant research meaning. In this work, we presented
a new corpus with a predefined family relationship map and
augmented training data and proposed a multitask deep neural
system to construct and assemble GKGs. With the data
augmentation technology, the system achieved microaveraged
precision, recall, and F-1 measure of 94.79%, 91.45%, and
93.09%, respectively, and macroaveraged precision, recall, and
F-1 measure of 92.59%, 90.05%, 91.30%, respectively. Based
on such promising results, we developed PII-matching rules to
assemble large GKGs, demonstrating the potential of linking
GKGs to EHRs. The system is capable of generating a large
number of GKGs to support related research, like genetic
research, linkage analysis, and disease risk prediction. We share
the source codes and system with the entire scientific community
on GitHub, without the corpus for privacy protection [33].

In the future, we will improve the performance of our system
further and match GKGs with more medical information, like
EHR databases. With the massive obituary data freely available
on the internet or other textual data that contain genealogical
information, our ultimate goal is to accelerate large-scale disease
heritability research and clinical genetics research.

Acknowledgments
This work has been supported by grant 2018YFC0910404 from the National Key Research and Development Program of China,
grant 61772409 from the National Natural Science Foundation of China; grant 61721002 from the Innovative Research Group
of the National Natural Science Foundation of China, and grant IRT_17R86 from the Innovation Research Team of the Ministry
of Education, Project of China Knowledge Centre for Engineering Science and Technology.

Conflicts of Interest
None declared.

References

1. Casalino LP. The Medicare Access And CHIP Reauthorization Act and The corporate transformation of American medicine.
Health Aff (Millwood) 2017 May 01;36(5):865-869. [doi: 10.1377/hlthaff.2016.1536] [Medline: 28461353]

2. Blumenthal D, Tavenner M. The "meaningful use" regulation for electronic health records. N Engl J Med 2010 Aug
5;363(6):501-504. [doi: 10.1056/NEJMp1006114] [Medline: 20647183]

3. Mayer J, Kitchner T, Ye Z, Zhou Z, He M, Schrodi SJ, et al. Use of an electronic medical record to create the marshfield
clinic twin/multiple birth cohort. Genet Epidemiol 2014 Dec 22;38(8):692-698 [FREE Full text] [doi: 10.1002/gepi.21855]
[Medline: 25250975]

4. Van Schalkwyk GJ, Tran E, Chang K. The impact of Macao’s gaming industry on family life. China Perspectives 2006
Apr 01:1. [doi: 10.4000/chinaperspectives.603]

J Med Internet Res 2021 | vol. 23 | iss. 8 | e25670 | p. 13https://www.jmir.org/2021/8/e25670
(page number not for citation purposes)

He et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://dx.doi.org/10.1377/hlthaff.2016.1536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28461353&dopt=Abstract
http://dx.doi.org/10.1056/NEJMp1006114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20647183&dopt=Abstract
http://europepmc.org/abstract/MED/25250975
http://dx.doi.org/10.1002/gepi.21855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25250975&dopt=Abstract
http://dx.doi.org/10.4000/chinaperspectives.603
http://www.w3.org/Style/XSL
http://www.renderx.com/


5. Wang K, Gaitsch H, Poon H, Cox NJ, Rzhetsky A. Classification of common human diseases derived from shared genetic
and environmental determinants. Nat Genet 2017 Sep;49(9):1319-1325 [FREE Full text] [doi: 10.1038/ng.3931] [Medline:
28783162]

6. Polubriaginof FCG, Vanguri R, Quinnies K, Belbin GM, Yahi A, Salmasian H, et al. Disease heritability inferred from
familial relationships reported in medical records. Cell 2018 Jun 14;173(7):1692-1704 [FREE Full text] [doi:
10.1016/j.cell.2018.04.032] [Medline: 29779949]

7. Tourassi G, Yoon H, Xu S. A novel web informatics approach for automated surveillance of cancer mortality trends. J
Biomed Inform 2016 Jun;61:110-118 [FREE Full text] [doi: 10.1016/j.jbi.2016.03.027] [Medline: 27044930]

8. Yoon H, Tourassi G, Xu S. Residential mobility and lung cancer risk: data-driven exploration using internet sources. Lect
Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2015;9021:464-469 [FREE Full
text] [doi: 10.1007/978-3-319-16268-3_60] [Medline: 26618206]

9. He K, Wu J, Ma X, Zhang C, Huang M, Li C, et al. Extracting kinship from obituary to enhance electronic health records
for genetic research. 2019 Presented at: Proceedings of the Fourth Social Media Mining for Health Applications (#SMM4H)
Workshop & Shared Task; 2019; Florence p. 1-10 URL: https://aclanthology.org/W19-3201.pdf [doi: 10.18653/v1/w19-3201]

10. Caruana R. Multitask learning. Mach Learn 1997;28(1):41-75. [doi: 10.1007/978-1-4615-5529-2_5]
11. Collobert R, Weston J. A unified architecture for natural language processing. Proc 25th Int Conf Mach Learn 2008:160-167.

[doi: 10.1145/1390156.1390177]
12. Li F, Zhang M, Fu G, Ji D. A neural joint model for entity and relation extraction from biomedical text. BMC Bioinformatics

2017 Mar 31;18(1):198 [FREE Full text] [doi: 10.1186/s12859-017-1609-9] [Medline: 28359255]
13. Verga P, Strubell E, McCallum A. Simultaneously self-attending to all mentions for full-abstract biological relation extraction.

2018 Presented at: Proc 2018 Conf North Am Chap Assoc Comput Linguist; 2018; New Orleans p. 872-884. [doi:
10.18653/v1/n18-1080]

14. Sun C, Gong Y, Wu Y, Gong M, Jiang D, Lan M, et al. Joint type inference on entities and relations via graph convolutional
networks. 2020 Presented at: Proc 57th Ann Mtg Assoc Comput Linguist; 2020; Florence p. 1361-1370. [doi:
10.18653/v1/p19-1131]

15. Bhatia P, Celikkaya B, Khalilia M. Joint entity extraction and assertion detection for clinical text. 2019 Presented at: Proc
57th Ann Mtg Assoc Comput Linguist; 2019; Florence p. 954-959. [doi: 10.18653/v1/p19-1091]

16. Zheng S, Wang F, Bao H, Hao Y, Zhou P, Xu B. Joint extraction of entities and relations based on a novel tagging scheme.
2017 Presented at: Proc 55th Ann Mtg Assoc Comput Linguist; 2017; Vancouver p. 1227-1236 URL: https://aclanthology.
org/P17-1113.pdf [doi: 10.18653/v1/p17-1113]

17. Dixit K, Al-Onaizan Y. Span-level model for relation extraction. 2019 Presented at: Proc 57th Ann Mtg Assoc Comput
Linguist; 2019; Florence p. 5308-5314 URL: https://aclanthology.org/P19-1525.pdf [doi: 10.18653/v1/p19-1525]

18. Zheng S, Hao Y, Lu D, Bao H, Xu J, Hao H, et al. Joint entity and relation extraction based on a hybrid neural network.
Neurocomputing 2017 Sep;257:59-66. [doi: 10.1016/j.neucom.2016.12.075]

19. Wei J, Zou K. EDA: easy data augmentation techniques for boosting performance on text classification tasks. 2019 Conf
Empir Methods Nat Lang Process 9th Int Jt Conf Nat Lang Process Proc Conf Association for Computational Linguistics
2020:6382-6388 [FREE Full text] [doi: 10.18653/v1/d19-1670]

20. St Sauver JL, Grossardt BR, Yawn BP, Melton LJ, Rocca WA. Use of a medical records linkage system to enumerate a
dynamic population over time: the Rochester epidemiology project. Am J Epidemiol 2011 May 01;173(9):1059-1068
[FREE Full text] [doi: 10.1093/aje/kwq482] [Medline: 21430193]

21. Clark K, Luong M, Manning C, Le QV. Semi-supervised sequence modeling with cross-view training. 2018 Presented at:
Proc 2018 Conf Empir Methods Nat Lang Proc; 2018; Brussels p. 1914-1925. [doi: 10.18653/v1/d18-1217]

22. Devlin J, Chang M, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding
(bidirectional encoder representations from transformers). 2019 Presented at: NAACL-HLT; 2019; North Stroudsburg p.
4171-4186 URL: https://nlp.stanford.edu/seminar/details/jdevlin.pdf [doi: 10.18653/v1/N19-1423]

23. Lee K, He L, Lewis M, Zettlemoyer L. End-to-end neural coreference resolution. 2017 Presented at: EMNLP 2017 Proc
2017 Conf Empir Methods Nat Lang Proc; 2017; Copenhagen p. 188-197 URL: https://aclanthology.org/D17-1018.pdf
[doi: 10.18653/v1/d17-1018]

24. Liu S, Liang Y, Gitter A. Loss-balanced task weighting to reduce negative transfer in multi-task learning. Proc AAAI Conf
Artific Intell 2019 Jul 17;33(01):9977-9978 [FREE Full text] [doi: 10.1609/aaai.v33i01.33019977]

25. Wang Z, Dai Z, Poczos B, Carbonell J. Characterizing and avoiding negative transfer. 2019 Presented at: Proc IEEE Comput
Soc Conf Comput Vis Pattern Recognit IEEE Computer Society; .?11294; 2019; Long Beach p. 11285-11294 URL: https:/
/openaccess.thecvf.com/content_CVPR_2019/papers/
Wang_Characterizing_and_Avoiding_Negative_Transfer_CVPR_2019_paper.pdf [doi: 10.1109/cvpr.2019.01155]

26. Bender J, Cyr AB, Arbuckle L, Ferris LE. Ethics and privacy implications of using the internet and social media to recruit
participants for health research: a privacy-by-design framework for online recruitment. J Med Internet Res 2017 Apr
06;19(4):e104 [FREE Full text] [doi: 10.2196/jmir.7029] [Medline: 28385682]

27. Denecke K, Bamidis P, Bond C, Gabarron E, Househ M, Lau AYS, et al. Ethical issues of social media usage in healthcare.
Yearb Med Inform 2015 Aug 13;10(1):137-147 [FREE Full text] [doi: 10.15265/IY-2015-001] [Medline: 26293861]

J Med Internet Res 2021 | vol. 23 | iss. 8 | e25670 | p. 14https://www.jmir.org/2021/8/e25670
(page number not for citation purposes)

He et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://europepmc.org/abstract/MED/28783162
http://dx.doi.org/10.1038/ng.3931
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28783162&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(18)30525-7
http://dx.doi.org/10.1016/j.cell.2018.04.032
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29779949&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(16)30018-1
http://dx.doi.org/10.1016/j.jbi.2016.03.027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27044930&dopt=Abstract
http://europepmc.org/abstract/MED/26618206
http://europepmc.org/abstract/MED/26618206
http://dx.doi.org/10.1007/978-3-319-16268-3_60
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26618206&dopt=Abstract
https://aclanthology.org/W19-3201.pdf
http://dx.doi.org/10.18653/v1/w19-3201
http://dx.doi.org/10.1007/978-1-4615-5529-2_5
http://dx.doi.org/10.1145/1390156.1390177
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1609-9
http://dx.doi.org/10.1186/s12859-017-1609-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28359255&dopt=Abstract
http://dx.doi.org/10.18653/v1/n18-1080
http://dx.doi.org/10.18653/v1/p19-1131
http://dx.doi.org/10.18653/v1/p19-1091
https://aclanthology.org/P17-1113.pdf
https://aclanthology.org/P17-1113.pdf
http://dx.doi.org/10.18653/v1/p17-1113
https://aclanthology.org/P19-1525.pdf
http://dx.doi.org/10.18653/v1/p19-1525
http://dx.doi.org/10.1016/j.neucom.2016.12.075
https://arxiv.org/abs/1901.11196
http://dx.doi.org/10.18653/v1/d19-1670
http://europepmc.org/abstract/MED/21430193
http://dx.doi.org/10.1093/aje/kwq482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21430193&dopt=Abstract
http://dx.doi.org/10.18653/v1/d18-1217
https://nlp.stanford.edu/seminar/details/jdevlin.pdf
http://dx.doi.org/10.18653/v1/N19-1423
https://aclanthology.org/D17-1018.pdf
http://dx.doi.org/10.18653/v1/d17-1018
https://ojs.aaai.org/index.php/AAAI/article/view/5125/4998
http://dx.doi.org/10.1609/aaai.v33i01.33019977
https://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Characterizing_and_Avoiding_Negative_Transfer_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Characterizing_and_Avoiding_Negative_Transfer_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_Characterizing_and_Avoiding_Negative_Transfer_CVPR_2019_paper.pdf
http://dx.doi.org/10.1109/cvpr.2019.01155
https://www.jmir.org/2017/4/e104/
http://dx.doi.org/10.2196/jmir.7029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28385682&dopt=Abstract
http://www.thieme-connect.com/DOI/DOI?10.15265/IY-2015-001
http://dx.doi.org/10.15265/IY-2015-001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26293861&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


28. Jamal M, Qi G. Task agnostic meta-learning for few-shot learning. Proc IEEE Comput Soc Conf Comput Vis Pattern
Recognit. 2019. URL: https://openaccess.thecvf.com/content_CVPR_2019/papers/
Jamal_Task_Agnostic_Meta-Learning_for_Few-Shot_Learning_CVPR_2019_paper.pdf [accessed 2021-07-13]

29. Gao T, Han X, Zhu H, Liu Z, Li P, Sun M, et al. FewRel 2.0: towards more challenging few-shot relation classification.
2019 Presented at: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP); 2019; Hong Kong p. 6251-6256. [doi:
10.18653/v1/d19-1649]

30. Lin Y, Chen C, Lee J, Li Z, Zhang Y, Xia M, et al. Choosing transfer languages for cross-lingual learning. 2019 Presented
at: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics; 2019; Florence p. 3125-3135
URL: https://aclanthology.org/P19-1301.pdf [doi: 10.18653/v1/p19-1301]

31. Ruder S, Søgaard A, Vuli I. Unsupervised cross-lingual representation learning. 2019 Presented at: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts; 2019; Florence p. 31-38 URL: https:/
/aclanthology.org/P19-4007.pdf [doi: 10.18653/v1/p19-4007]

32. Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng 2010 Oct;22(10):1345-1359 [FREE Full text]
[doi: 10.1109/tkde.2009.191]

33. Genealogical knowledge graph. URL: https://github.com/KaiHe-better/Genealogical-Knowledge-Graph [accessed 2021-07-19]

Abbreviations
EHR: electronic health records
GKG: genealogical knowledge graph
LSTM: long short-term memory
NER: name entity recognition
NLP: natural language processing
PII: personally identifiable information
RC: relation classification

Edited by R Kukafka; submitted 11.11.20; peer-reviewed by Z Ben-Miled, H Salmasian, M Torii; comments to author 15.12.20; revised
version received 26.01.21; accepted 21.06.21; published 04.08.21

Please cite as:
He K, Yao L, Zhang J, Li Y, Li C
Construction of Genealogical Knowledge Graphs From Obituaries: Multitask Neural Network Extraction System
J Med Internet Res 2021;23(8):e25670
URL: https://www.jmir.org/2021/8/e25670
doi: 10.2196/25670
PMID:

©Kai He, Lixia Yao, JiaWei Zhang, Yufei Li, Chen Li. Originally published in the Journal of Medical Internet Research
(https://www.jmir.org), 04.08.2021. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete
bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license
information must be included.

J Med Internet Res 2021 | vol. 23 | iss. 8 | e25670 | p. 15https://www.jmir.org/2021/8/e25670
(page number not for citation purposes)

He et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://openaccess.thecvf.com/content_CVPR_2019/papers/Jamal_Task_Agnostic_Meta-Learning_for_Few-Shot_Learning_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Jamal_Task_Agnostic_Meta-Learning_for_Few-Shot_Learning_CVPR_2019_paper.pdf
http://dx.doi.org/10.18653/v1/d19-1649
https://aclanthology.org/P19-1301.pdf
http://dx.doi.org/10.18653/v1/p19-1301
https://aclanthology.org/P19-4007.pdf
https://aclanthology.org/P19-4007.pdf
http://dx.doi.org/10.18653/v1/p19-4007
http://www-edlab.cs.umass.edu/cs689/reading/transfer-learning.pdf
http://dx.doi.org/10.1109/tkde.2009.191
https://github.com/KaiHe-better/Genealogical-Knowledge-Graph
https://www.jmir.org/2021/8/e25670
http://dx.doi.org/10.2196/25670
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

