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Abstract

Background: Posttraumatic epilepsy (PTE) is a common sequela after traumatic brain injury (TBI), and identifying high-risk
patients with PTE is necessary for their better treatment. Although artificial neural network (ANN) prediction models have been
reported and are superior to traditional models, the ANN prediction model for PTE is lacking.

Objective: We aim to train and validate an ANN model to anticipate the risks of PTE.

Methods: The training cohort was TBI patients registered at West China Hospital. We used a 5-fold cross-validation approach
to train and test the ANN model to avoid overfitting; 21 independent variables were used as input neurons in the ANN models,
using a back-propagation algorithm to minimize the loss function. Finally, we obtained sensitivity, specificity, and accuracy of
each ANN model from the 5 rounds of cross-validation and compared the accuracy with a nomogram prediction model built in
our previous work based on the same population. In addition, we evaluated the performance of the model using patients registered
at Chengdu Shang Jin Nan Fu Hospital (testing cohort 1) and Sichuan Provincial People’s Hospital (testing cohort 2) between
January 1, 2013, and March 1, 2015.

Results: For the training cohort, we enrolled 1301 TBI patients from January 1, 2011, to December 31, 2017. The prevalence
of PTE was 12.8% (166/1301, 95% CI 10.9%-14.6%). Of the TBI patients registered in testing cohort 1, PTE prevalence was
10.5% (44/421, 95% CI 7.5%-13.4%). Of the TBI patients registered in testing cohort 2, PTE prevalence was 6.1% (25/413, 95%
CI 3.7%-8.4%). The results of the ANN model show that, the area under the receiver operating characteristic curve in the training
cohort was 0.907 (95% CI 0.889-0.924), testing cohort 1 was 0.867 (95% CI 0.842-0.893), and testing cohort 2 was 0.859 (95%
CI 0.826-0.890). Second, the average accuracy of the training cohort was 0.557 (95% CI 0.510-0.620), with 0.470 (95% CI
0.414-0.526) in testing cohort 1 and 0.344 (95% CI 0.287-0.401) in testing cohort 2. In addition, sensitivity, specificity, positive
predictive values and negative predictors in the training cohort (testing cohort 1 and testing cohort 2) were 0.80 (0.83 and 0.80),
0.86 (0.80 and 0.84), 91% (85% and 78%), and 86% (80% and 83%), respectively. When calibrating this ANN model, Brier
scored 0.121 in testing cohort 1 and 0.127 in testing cohort 2. Compared with the nomogram model, the ANN prediction model
had a higher accuracy (P=.01).

Conclusions: This study shows that the ANN model can predict the risk of PTE and is superior to the risk estimated based on
traditional statistical methods. However, the calibration of the model is a bit poor, and we need to calibrate it on a large sample
size set and further improve the model.
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Introduction

Background
Traumatic brain injuries (TBIs) reduce patient quality of life
and result in high morbidity and mortality [1]. TBI can also lead
to a range of sequelae, the most common being posttraumatic
epilepsy (PTE), which accounts for 4% to 9% of all epilepsy
cases [2-5]. Population-based and cohort studies estimate the
overall incidence of PTE ranges from 5% to 50%, especially
among war veterans, who receive more penetrating TBIs than
civilians [6-12]. Previous literature concludes that the incidence
of PTE increases with the severity of TBI [5-7], and the vast
majority of PTE appears within the first 2 years after TBI and
rises in the following 30 years [3,13].

Because of the high incidence and adverse effects of PTE,
clinicians need to identify and better manage those patients at
high risk. PTE risk factors such as TBI severity, brain contusion,
subdural hematoma, neurosurgery, and early posttraumatic
seizure (PTS) are reported by multiple regression methods, etc
[14-17]. These results are expressed as risk ratios or odds ratios,
but they are inconvenient to use. A lot of TBI patients received
antiepileptic prophylaxis to prevent PTE. While clinical trials
have shown that antiepileptic prophylaxis within 7 days of TBI
reduces the incidence of early seizure attacks, a reduction in
PTE has not been seen [18,19]. The negative results of these
studies may be due to blind selection of the study population
and insufficient follow-up time. In addition, antiepileptic
prophylaxis for patients with low risk would add financial
burden and side effects, so it is necessary for clinicians to
identify those at high risk of PTE. However, so far there are no
reliable tools to predict the risk of PTE; if we can predict this
via the web, it will be of great significance in the realization of
precision medicine [20]. Artificial neural network (ANN) is a
form of artificial intelligence that can mimic the problem-solving
process of the human brain and generate a mathematical
algorithmic model that can handle the nonlinear relationship
between variables [21]. ANN is one of the most commonly used
methods of supervising machine learning, consisting of 3 layers
of neurons: an input layer of independent variables, a hidden
layer for processing information, and an output layer for the
probability of an outcome. ANN-based risk predictive models
have several advantages; they can capture nonlinear relationships
among input variables, making them ideal candidates for
classifying complex diseases [22,23] such as identifying
high-risk transient ischemic attack or minor stroke [24] and
assisting in precision medicine for COVID-19 [25]. Compared
with logistic regression models, ANN models can predict a
complex relationship between variables and are more accurate
in classifying the dependent variable [26].

Aim and Research Questions
To date, no published papers have focused on predicting PTE
after TBI through ANN. To investigate this problem, we applied
ANN to analyze demographic, clinical, and radiological data
from TBI patients to achieve accurate prediction of PTE for
individual patients, thereby recognizing PTE patients as early
as possible, which might be helpful for further antiepileptogenic
intervention studies through identifying the suitable target
population. In our previous study, we had built a nomogram
model to predict PTE based on the same population, and we
wondered whether the ANN model outperformed it.

Methods

Design
The study had a retrospective cohort design, and the West China
Hospital of Sichuan University Ethics Committee approved this
study (no. 2019-936). Subjects or their proxies gave informed
verbal consent to participate in this study.

Participants
This ANN predictive model was developed on a retrospective
registry of TBI patients at the West China Hospital (a tertiary
referral center in Sichuan province, China) from January 1,
2011, to December 31, 2017. These subjects were the training
cohort. The model was also tested in 2 external cohorts
registered at Chengdu Shang Jin Nan Fu Hospital (testing cohort
1, n=421) and Sichuan Provincial People’s Hospital (testing
cohort 2, n=413) between January 1, 2013, and March 1, 2015.
All patients were diagnosed with TBI, which was defined as
any hospital discharge with a primary or secondary diagnosis
of trauma to the head. According to the International Statistical
Classification of Diseases and Related Health Problems, Tenth
Revision (ICD-10), patient records of those diagnosed with
traumatic brain injury (S06.902), cerebral concussion (S06.001),
subdural hematoma (S06.501), epidural hematoma (S06.401),
traumatic subarachnoid hemorrhage (S06.601), skull fracture
(liner or depressed fracture; S02.902), traumatic intracranial
hemorrhage (S06.806), brain contusion (S06.201), diffuse axonal
injury (S06.204), and open or closed TBI (S06.911) were
extracted from the electronic medical record database.

We included all patients with complete demographic, clinical,
and radiological data to determine TBI, PTS, and PTE.

The inclusion criteria were (1) brain injury was caused by an
external force, (2) clinical diagnosis of TBI, (3) TBI occurred
between January 1, 2011, and December 31, 2017, for West
China Hospital patients and for Chengdu Shang Jin Nan Fu
Hospital and Sichuan Provincial People’s Hospital patients from
January 1, 2013, to March 1, 2015, (4) complete trauma-related
data were available in medical records, and (5) patients or their
relatives agreed to participate in this study (Figure 1).
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Figure 1. Study cohort. ANN: artificial neural network; TBI: traumatic brain injury

The following patients were excluded: (1) patients who had
epilepsy or seizures before TBI; (2) patients who had a previous
TBI or had second or subsequent episodes of TBI; (3) patients
with other conditions that can cause seizure, such as
cerebrovascular disease, brain tumors, encephalitis, brain
surgery, and other chronic diseases; (4) patients whose general
condition was poor or who had other conditions that may lead
to epileptic seizures before PTS or PTE came out during
follow-up.

Data and Data Collection
Formally trained neurologists extracted the necessary data for
model building from the hospital records of patients. The table
included the general condition (age, sex, length of hospital stay,
previous history), the clinical and radiological data of TBI
(mechanism of TBI, severity of TBI, clinical manifestations,
treatments, brain CT performed at initial presentation), and the
seizure onset information during their hospitalization (early

PTS and immediate PTS). Variables used to construct the
predictive model and how we defined and classified them are
listed in Table 1.

With the new definition proposed by the International League
Against Epilepsy and the International Bureau for Epilepsy,
epilepsy requires at least 2 unprovoked (or reflex) seizures
occurring more than 24 hours apart and one unprovoked (or
reflex) seizure and a probability of further seizures similar to
the general recurrence risk (at least 60%) after 2 unprovoked
seizures, occurring over the next 10 years [27]. PTS was defined
as a single, nonrecurrent convulsive episode that fits in 1 of 3
categories according to the time of seizure onset: immediate
PTS, occurring in the first 24 hours following injury; early PTS,
occurring more than 24 hours following injury and within 7
days; and late PTS, occurring more than 1 week after trauma.
In our study, PTE refers to one or more recurrent seizures
occurring more than 1 week after TBI, including late PTS.
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Table 1. Comparison of demographic data between the posttraumatic epilepsy and non–posttraumatic epilepsy patients in the training cohort.

P valuePTE (n=166)Non-PTEa (n=1135)Total (n=1301)Variable

————bDemographic data

.03133 (82.6)850 (74.6)983 (75.6)Sex, male, n (%)

.1940.41 (19.09)37.79 (24.4)38.12 (23.82)Age (years), mean (SD)

<.0120 (12.4)77 (24.3)297 (22.8)≤15, n (%)

—54 (33.5)304 (26.7)358 (27.5)16-40, n (%)

—74 (46.0)373 (32.7)447 (34.4)41-64, n (%)

—13 (8.1)186 (16.3)199 (15.3)≥65, n (%)

.0865.6 (25.5)72.37 (21.98)71.49 (22.54)Follow-up (months), mean (SD)

————Clinical characteristics

.0088.17 (3.40)12.22 (3.58)11.72 (3.8)GCSc score, mean (SD)

<.00126 (16.1)768 (67.4)794 (61)13-15, n (%)

—37 (23)190 (16.7)227 (17.4)9-12, n (%)

—98 (60.9)182 (16)280 (21.5)3-8, n (%)

<.00125.91 (29.63)12.31 (22.17)14 (23.64)LOHd (days), mean (SD)

<.00193 (57.8)293 (25.7)386 (29.7)Neurological deficits, n (%)

<.001121 (75.2)545 (47.8)666 (51.2)LOCe, n (%)

<.001———LOC time, n (%)

—30 (18.6)782 (68.6)812 (62.4)0-30 minutes

—17 (10.6)96 (8.4)113 (8.7)31 minutes-24 hours

—114 (70.8)262 (23)376 (28.9)>24 hours

.06———Etiology of TBIf , n (%)

—84 (52.5)445 (39)529 (40.7)MVAg

—14 (8.7)121 (10.6)135 (10.4)Violence

—35 (21.7)341 (29.9)376 (28.9)Fall ≤1 m

—28 (17.4)233 (20.4)261 (20.1)Fall >1 m

<.001———Treatment, n (%)

—49 (30.4)602 (52.8)651 (50)Conservative

—104 (64.6)468 (41.1)572 (44)Neurological surgery

—8 (5)78 (6)78 (6)Puncture

————Neuroimaging results, n (%)

<.00193 (57.8)455 (39.9)548 (42.1)SDHh

.00436 (22.4)386 (33.9)422 (32.4)EDHi

<.00192 (57.1)318 (27.9)410 (31.5)ICHj

.0456 (34.8)280 (24.6)336 (25.8)SAHk

<.00127 (16.8)68 (6)95 (7.3)DAIl

<.001———Contusion site, n (%)

—41 (25.5)679 (59.6)720 (55.3)None

—80 (49.7)160 (14)240 (18.4)Frontotemporal lobe

—40 (24.8)301 (26.4)341 (26.2)Other

.005———Fracture, n (%)
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P valuePTE (n=166)Non-PTEa (n=1135)Total (n=1301)Variable

—70 (43.5)634 (55.6)704 (54)No

—79 (49.1)408 (35.8)487 (37.4)Liner

—12 (7.5)98 (8.6)110 (8.5)Depressed

.6011 (6.8)68 (6)79 (6.1)Open

————PTSm and PTE, n (%)

.872 (1.2)11 (1)13 (1)IPTSn

<.00135 (21.7)39 (3.4)74 (5.7)EPTSo

———166 (12.8)PTE

———97 (7.5)Risk of PTE within 1 year

———145 (11.1)Risk of PTE within 5 years

———166 (12.8)Risk of PTE within 8 years

———28 (2.2)PTE in mild TBI

———39 (3.0)PTE in moderate TBI

———99 (7.6)PTE in severe TBI

aPTE: posttraumatic epilepsy.
bNot applicable.
cGCS: Glasgow Coma Scale.
dLOH: length of hospital stay.
eLOC: loss of consciousness.
fTBI: traumatic brain injury.
gMVA: motor vehicle accident.
hSDH: subdural hematoma.
iEDH: epidural hematoma.
jICH: intracranial hemorrhage.
kSAH: subarachnoid hemorrhage.
lDAI: diffuse axonal injury.
mPTS: posttraumatic epilepsy.
nIPTS: immediate posttraumatic seizure.
oEPTS: early posttraumatic seizure.

Follow-Up and Data Collection
All participants were followed for at least 1 year to monitor for
seizures. Among the participants who were unable to understand
the survey, we interviewed their close relatives and their general
practitioner. The follow-up investigations contain the general
condition of the patient (whether there was cachexia or other
diseases that can lead to misdiagnosis of PTE), the occurrence
of seizures (when did the first seizure attack appear after
discharge from the hospital), the type and frequency of seizures
(the clinical manifestations and frequency of epileptic seizures),
and the treatment condition (whether they took antiepileptic
drugs and the drug dosage). If patients or their caregivers
reported a seizure attack, neurologists in our team would
interview them face-to-face and determined the diagnosis by
the definition of PTE according to their clinical manifestations
and electroencephalogram results. The main outcome measure
was the incidence of PTE.

Statistical Analysis

ANN Model
The most common 3-layer multilayer perceptron ANN model
was employed in this study (Figure 2). The input layer
incorporated 21 independent variables (Table 1). We performed
5 rounds of model learning and validation (step 1) and calculated
the average area under the curve (AUC) using the results of 5
model validations, which represented an estimate of the accuracy
of the model. Model test (step 2) was performed in another 2
sets.

Step 1: Model Development and Validation

We developed the ANN model using the Keras framework with
Python 3.6 programming language (Python Software
Foundation). The learning algorithm was back-propagation.
Back-propagation can minimize the loss function by iteratively
updating the weights between neurons, maximizing the
predictive power of the ANN model for the main results. We
constructed a cost-sensitive support vector machine
classification prediction mode by setting those factors related
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to PTE as input variables and PTE as an output variable. Given
the small sample size, we used a 5-fold cross-validation to
validate the ANN models to avoid overfitting [28,29]. The
training dataset was randomly divided into 5 folds, and we
performed 5 rounds of training and validation of the ANN
models. During the 5-fold cross-validation process, 4 folds were
the training subsets and the remaining fold was the validation
subset, each of which was used only once as a validation set.

We first obtained the model index from 5-fold cross-validation,
selected the hyperparameters through training, and then retrained
the full amount of training data with the optimal parameters of
the optimal model. After many attempts, we finally identified
43 (2 × 21 + 1) hidden neurons with 5000 training rounds to
train the entire training set. The model began to enter the
overfitting phase when the number of training rounds exceeded
5000 epochs.

Figure 2. Optimal network architecture of the artificial neural network: a multilayer perceptron.

Step 2: Model Test

The predictive performance of the final ANN model was
evaluated using 2 external testing datasets (Shang Jin Nan Fu
Hospital and Sichuan Provincial People’s Hospital) unknown
to the training models. The testing datasets were used for final
model evaluation after cross-validation process, model fit, and
probability calibration. After setting the ANN hyperparameters,
we started to train the neural network with the full amount of
training data and stopped training after reaching 5000 times.

The test datasets are predicted for about 50 times using a trained
neural network, and the results of each prediction were recorded.

Evaluating Prediction Accuracy
The performance of the ANN model was measured by its
accuracy, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV). Since the primary
outcome was a binary variable (PTE or not), area under the
receiver operating characteristic curve (ROC), referred to as
AUC, was used to assess the accuracy of this predictive model.
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The average precision, equivalent to the area under the
precision-recall curve, was measured for evaluating model
performance. The 95% confidence intervals were determined
by 50 rounds of model testing (random sampling in the test
dataset, learning and verification, and then repeat multiple
times). Model calibration was assessed in 2 testing cohorts by
calculating Brier scores to examine how well the model
predicting PTE frequencies matched the observed one.

Statistical analysis was performed using SPSS (version 22.0,
IBM Corp). Independent sample t tests were used to compare
quantitative data with a normal distribution; otherwise the
Mann-Whitney U test was applied. The results were presented
as mean and standard deviation or interquartile range. The
incidence rates were expressed in percentile; to examine
associations of categorical and quantitative prognostic factors
with the development of PTE, the Fisher exact test and
Mann-Whitney U test were applied, respectively. In our previous
work, by using the rms package in R (version 3.5.1, R
Foundation for Statistical Computing), a nomogram was
formulated with 7 independent risk factors of PTE founded with
multivariate Cox proportional hazards regression analysis based
on the cohort of West China Hospital. We compared the
prediction accuracy of ANN model with nomogram model [30]
using a DeLong test. P values reported are 2-tailed, and a value
P<.05 was considered significant.

Results

Patient Characteristics
A total of 2135 patients were included in this study. Between
January 1, 2011, and December 31, 2017, 1301 subjects from
West China Hospital were enrolled as the training cohort, and
the prevalence of PTE was 12.8% (166/1301, 95% CI
10.9%-14.6%). From January 1, 2013, to March 1, 2015, 421

patients from Shang Jin Nan fu Hospital were testing cohort 1,
and the prevalence of PTE was 10.5% (44/421, 95% CI
7.5%-13.4%). A total of 413 patients from Sichuan Provincial
People’s Hospital were testing cohort 2, and the prevalence of
PTE was 6.1% (25/413, 95% CI 3.7%-8.4%). The prevalence
of PTE among 3 cohorts had significant difference (P=.001).

The comparison of demographic data, clinical manifestation,
and radiological results between the PTE- and non-PTE groups
in the training cohort was listed in Table 1. Significant
differences were found in many variables, including sex, age
group, length of hospital days, etiology of TBI, loss of
consciousness time, treatment, subdural hematoma, intracranial
hemorrhage, diffuse axonal injury, contusion load, contusion
site, fracture, and early PTS (both P<.001 for all variables).
There was no significant difference in follow-up time,
subarachnoid hemorrhage, epidural hematoma, open TBI, and
intermediate PTS between patients with PTE and non-PTE.

ANN Predictive Model Performance
The ANN prediction model incorporated 21 features from each
patient in the training cohort to predict whether an individual
would develop PTE. In the training cohort, the mean AUC of
the ANN model was 0.907 (95% CI 0.889-0.924), the sensitivity
and specificity were 0.80 and 0.86, the PPV and NPV were 91%
and 86%, which means 91% of patients who developed PTE
and 86% of patients who did not develop PTE were exactly
predicted by the ANN model. When testing the ANN model
with datasets from Shang Jin Nan Fu Hospital and Sichuan
Provincial People’s Hospital, the AUCs were 0.867 (95% CI
0.842-0.893) and 0.859 (95% CI 0.826-0.890), sensitivity was
0.83 and 0.80, specificity was 0.80 and 0.84, PPV was 85% and
78%, and NPV was 80% and 83%. The greater the value of the
AUC, the better the performance of the model, which means
higher predictive accuracy in this study. Figure 3 shows the
ROC of the training cohort and 2 testing cohorts.
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Figure 3. Evaluation of artificial neural network prediction model accuracy using receiver operating characteristic. ANN: artificial neural network;
AUC: area under curve.

In addition, the average precision of the ANN prediction model
in training cohort was 0.557 (95% CI 0.510-0.620), while the
average precision was 0.470 (95% CI 0.414-0.526) in testing
cohort 1 and 0.344 (95% CI 0.287-0.401) in testing cohort 2
(Figure 4). Similar to AUC, the larger the average precision
value, the better the prediction accuracy. However, unlike the
ROC, the area under the precision-recall curve was less than

0.5, which did not mean that the prediction performance of the
model was poor. An asymmetric data distribution (ie, the number
of negative, or non-PTE, events is much more than the number
of positive, or PTE, events) leads to a low overall decrease in
average precision and will have a great impact on the
precision-recall curve but no effect on the AUC curve [31].
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Figure 4. Evaluation of the artificial neural network prediction model accuracy using precision-recall curves. ANN: artificial neural network; AP:
average precision.

Brier scores were calculated to evaluate the calibration of the
ANN prediction model. With the Brier score, we can know the
calibration of the prediction model [32]. It ranges from 0 to 1;
the lower the Brier score, the better the calibration, so the ideal
Brier score is 0, indicating the prediction is completely accurate
[33]. When testing our ANN prediction model, the Brier scores
were 0.121 in testing cohort 1 and 0.127 in testing cohort 2.
Figure 5 shows the calibration plots that compare the proportion
of PTE patients predicted by the ANN model with the actual

observed rate of PTE. The diagonal curve represents a perfectly
calibrated prediction, and the calibration curve should be as
close to this diagonal curve as possible. In our study, the
calibration curves in the 2 testing groups were a little far away
from the diagonal curve, and we needed to calibrate this ANN
prediction model with a large-sample dataset. Table 2 showed
the performances of the ANN model on the training and 2 testing
sets.
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Figure 5. Risk calibration curves for artificial neural network prediction model in two testing cohorts. A curve closer to the dotted diagonal line indicates
better calibration, with corresponding lower Brier score. ANN: artificial neural network.

Table 2. Performances of artificial neural network on training and two testing sets.

Testing cohort 2Testing cohort 1Training cohortIndicator

0.859 (0.826-0.890)0.867 (0.842-0.893)0.907 (0.889-0.924)AUCa (95% CI)

0.800.830.80Sensitivity

0.840.800.86Specificity

0.344 (0.287-0.401)0.470 (0.414-0.526)0.557 (0.510-0.620)APb (95% CI)

788591PPVc, %

838086NPVd, %

0.1270.121—eBrier score

aAUC: area under the curve.
bAP: average precision.
cPPV: positive predictive value.
dNPV: negative predictive value.
eNot applicable.

Compared With Nomogram Prediction Model
In our previous work, we built a nomogram model to predict
the risk of PTE with the same training cohort through R
statistical analysis [30]. The AUC of this nomogram prediction
model was 0.859 (95% CI 0.826-0.891) and sensitivity and
specificity were 0.867 and 0.738, respectively. Compared with
the traditional nomogram prediction model, the AUC value of
the ANN prediction model was higher (0.907, 95% CI

0.889-0.924; P=.01), which indicated the ANN model had a
higher prediction accuracy.

Discussion

Principal Findings
ANN is applied to develop a risk prediction model and is
superior to traditional prediction models. In this study, we
developed a PTE predictive model using ANN methods, which
involved 21 predictors (listed in Table 1). In the training cohort,
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the ANN model had an accuracy of 0.907, average precision of
0.557, sensitivity of 0.80, specificity of 0.86, PPV of 91%, and
NPV of 86%. For testing cohort 1 (testing cohort 2), this model
had an accuracy of 0.867 (0.859), average precision of 0.470
(0.344), sensitivity of 0.83 (0.80), specificity of 0.80 (0.84),
PPV of 85% (78%), NPV of 80% (83%), and Brier score 0.121
(0.127), suggesting that this ANN model was valuable. To our
knowledge, this is also the first study to develop a
high-performance PTE-predictive ANN model based on other
studies and risk factors available in clinical practice.

Advantages of the ANN Model
ANN models are able to model nonlinear relationships between
input and output variables in a high-dimensional dataset and
select the optimal model with high accuracy. ANN models have
been widely used to predict the occurrence of hypertension [34]
and mortality in patients with stroke [35]. ANN models excelled
in many ways compared to conventional statistical methods;
for example, they have higher classification accuracy and a
better ability to analyze nonlinear relations and handle correlated
independent variables [26].

Existing PTE prediction models are mainly risk scoring models
built by traditional statistical methods. In our previous work,
we set up a nomogram model to predict the risk of PTE. This
model consisted of 7 risk factors (sex, TBI severity, duration
of loss of consciousness time, subdural hematoma, early PTS,
contusion site, and treatment) found in multivariable Cox
proportional hazards regression analysis based on the same
training cohort (West China Hospital). Our results showed that
the AUC of this nomogram prediction model was 0.859 (95%
CI 0.826-0.891), lower than the ANN model. In addition, with
multivariable logistic regression and based on 9 significant risk
factors (subdural hematoma, contusion load, craniotomy,
craniectomy, seizure during acute hospitalization, duration of
posttraumatic amnesia, preinjury mental health
treatment/psychiatric hospitalization, intraparenchymal
fragment, and preinjury incarceration), Ritter et al [36]
constructed prognostic models to predict PTS during different
times following TBI. Their results indicated that the corrected
concordance statistics (equal to AUC) were 0.599, 0.747, and
0.716 for acute hospitalization, year 1, and year 2 models,
respectively. In our study, we established an ANN model for
PTE prediction using comprehensive data from training and 2
sets of tests that achieved AUC of 0.907, 0.867, and 0.859,
respectively, higher than the existing models. In addition, Ritter
et al [36] tested their model against subjects selected in bootstrap
samples, while our ANN model was tested by the other 2 cohorts
who were unaware of the training process. Our prediction model
outperforms the abovementioned predictive models built by
logistic regression method, which suggests that the ANN models
have superiority and rationality in solving complex nonlinear
relationships.

The new ANN model based on demographic and clinical data
can be used as a simple screening tool to identify individuals
at high risk of PTE after TBI. The predictors included in the
model are common and available in routine practice. Beyond
that, this model was tested by 2 cohorts and its performance
was good, indicating that it might be applicable to the general

population. In our study, we input 21 variables into the ANN
model to predict the risk of PTE; all of these variables were
mentioned in previous studies, while only some factors were
considered as predictors of PTE by logistic regression. The
ANN method has the advantage of feature selection over
conventional statistical methods; when more factors are taken
into account, the prediction is more accurate.

Impact of the ANN Model in the Future
The ANN model has higher prediction accuracy and can
contribute to future clinical decisions. It helps clinicians identify
patients with high risk of PTE, so doctors follow them more
closely after discharge and follow up more frequently for more
precise personal management. Furthermore, the new model is
also conducive to the selection of the target group for PTE
prevention study. For example, by applying presumed data, a
provider could estimate a TBI patient’s risk of PTE in the future.
By studying the high-risk population predicted by the ANN
model, it may be easier to find useful preventive measures. In
addition, the ANN model can help clinicians conduct some trials
on antiepileptic drug withdrawal. If according to the ANN
model, the patient’s PTE risk is low and meets the withdrawal
criteria, the clinician may try to withdraw the patient’s
antiepileptic drug, which will reduce the financial burden and
adverse effects of antiepileptic drugs.

Limitations
However, there were some limitations to this study. First, we
developed the ANN model using epidemiological data, mainly
including demographic data, clinical manifestation, and
radiological results, regardless of relevant laboratory data such
as electroencephalogram. Second, this was a retrospective study
that was prone to bias, and some of the factors in other studies
have not been collected, such as whether a patient was mentally
ill. Third, most of the factors included were dichotomous
variables rather than continuous variables. The lack of
dose-response relationship between exposure levels of these
risk factors and PTE may not reveal their true relationships with
PTE. Fourth, the ANN model relied more on computers and
specific programs, so its application was not as convenient and
simple as nomogram models for the clinicians [37].

Despite these shortcomings, as far as we know, this is the first
study using ANN to predict the risk of PTE after TBI. Our
results indicated that ANN analysis may be more accurate in
predicting the incidence of PTE for individual patients than
traditional statistical methods, and therefore the ANN model
could help determine the use of antiepileptic drugs for individual
TBI patients.

Conclusions
In conclusion, our study was the first one to develop an ANN
with a higher level of accurate prediction of PTE than the
nomogram prediction model and other models constructed by
multilogical regression. With the new ANN model, we can
identify TBI patients at high risk of PTE as early as possible,
and the model-predicted risk probability is significant for the
selection of study population to determine the beneficial
prevention and management of these PTE patients.
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NPV: negative predictive value
PPV: positive predictive value
PTE: posttraumatic epilepsy
PTS: posttraumatic seizure
ROC: receiver operating characteristic curve
TBI: traumatic brain injury
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