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Abstract

Background: Virtual reality, augmented reality, and mixed reality make use of a variety of different software and hardware,
but they share three main characteristics: immersion, presence, and interaction. The umbrella term for technologies with these
characteristics is extended reality. The ability of extended reality to create environments that are otherwise impossible in the real
world has practical implications in the medical discipline. In ophthalmology, virtual reality simulators have become increasingly
popular as tools for surgical education. Recent developments have also explored diagnostic and therapeutic uses in ophthalmology.

Objective: This systematic review aims to identify and investigate the utility of extended reality in ophthalmic education,
diagnostics, and therapeutics.

Methods: A literature search was conducted using PubMed, Embase, and Cochrane Register of Controlled Trials. Publications
from January 1, 1956 to April 15, 2020 were included. Inclusion criteria were studies evaluating the use of extended reality in
ophthalmic education, diagnostics, and therapeutics. Eligible studies were evaluated using the Oxford Centre for Evidence-Based
Medicine levels of evidence. Relevant studies were also evaluated using a validity framework. Findings and relevant data from
the studies were extracted, evaluated, and compared to determine the utility of extended reality in ophthalmology.

Results: We identified 12,490 unique records in our literature search; 87 met final eligibility criteria, comprising studies that
evaluated the use of extended reality in education (n=54), diagnostics (n=5), and therapeutics (n=28). Of these, 79 studies (91%)
achieved evidence levels in the range 2b to 4, indicating poor quality. Only 2 (9%) out of 22 relevant studies addressed all 5
sources of validity evidence. In education, we found that ophthalmic surgical simulators demonstrated efficacy and validity in
improving surgical performance and reducing complication rates. Ophthalmoscopy simulators demonstrated efficacy and validity
evidence in improving ophthalmoscopy skills in the clinical setting. In diagnostics, studies demonstrated proof-of-concept in
presenting ocular imaging data on extended reality platforms and validity in assessing the function of patients with ophthalmic
diseases. In therapeutics, heads-up surgical systems had similar complication rates, procedural success rates, and outcomes in
comparison with conventional ophthalmic surgery.

Conclusions: Extended reality has promising areas of application in ophthalmology, but additional high-quality comparative
studies are needed to assess their roles among incumbent methods of ophthalmic education, diagnostics, and therapeutics.

(J Med Internet Res 2021;23(8):e24152) doi: 10.2196/24152
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Introduction

The rapid development of extended reality technologies has
necessitated recent efforts to define and draw lines between new
concepts and subgroups of extended reality applications [1].
Virtual reality has been defined as one in which our natural
surroundings are completely replaced with a 3D
computer-generated environment via wearable screens in the
form of head-mounted displays [2]. Augmented reality is a
superimposition of computer-generated content with limited
interactivity onto our visible surroundings. Mixed reality is
similar to augmented reality, except that the user is able to
interact vividly with computer-generated content [1]. Mixed
reality can be considered an amalgamation of the features of
both virtual reality and augmented reality, as both highly
interactive computer-generated objects and the real physical
world are integrated to dynamically coexist within a single
display [3,4]. Whereas virtual reality, augmented reality, and
mixed reality make use of a variety of different software and
hardware, these extended reality technologies share 3 main
characteristics: immersion, presence, and interaction [2,5].
Immersion refers to a perception of physical existence within
the extended reality environment, presence describes the
perception of connection to the environment, whereas
interaction is the ability to act and receive feedback within the
environment [2].

In medicine, the nascent influence of extended reality is
prevalent. Virtual reality platforms have been designed to teach
foundational subjects, such as human anatomy [6,7], and train
surgeons in complex surgical procedures [8-11]. Augmented
and mixed reality offer methods of visualizing intraoperative
procedures and diagnostic images with devices, such as Google
Glass (Google Inc) or Microsoft HoloLens (Microsoft Inc), that
have the potential to improve procedure safety and success
[12-14]. The ability of virtual reality to distract patients from
the physical environment also offers therapeutic approaches for
rehabilitation and for treating pain or psychiatric disorders
[15-17]. Likewise, ophthalmology has seen a growing influence
of extended reality. Ophthalmic graduate medical education in
the United States has seen an increase in the use of virtual eye
surgery simulators, from 23% in 2010 to 73% in 2018 [18,19].
Extended reality technologies have also been explored as a
method of therapy in ophthalmic diseases such as amblyopia
and visual field defects [20,21]. Although the versatility of
extended reality platforms can influence the practice of
ophthalmology, health care providers should be well informed
of the benefits and limitations of such technologies. This will
allow evidence-based decision making when adopting nascent
methods of ophthalmic education, diagnosis, and treatment. The
focus of this review was to systematically evaluate current
evidence of the efficacy, validity, and utility of the application
of extended reality in ophthalmic education, diagnostics, and
therapeutics.

Methods

Eligibility Criteria
We included studies evaluating the use of extended reality for
ophthalmic applications in education, diagnostics, and
therapeutics for eye care professionals and ophthalmic patients.
All study designs were included with the exception of systematic
reviews, case reports, and case series with ≤3 patients.
Non-English publications and publications on the technical
engineering of extended reality were excluded.

Search Methods
Three databases served as the source of our search—PubMed
MEDLINE, Embase, and Cochrane Register of Controlled
Trials. Search terms included “Virtual Reality,” “Augmented
Reality,” “Mixed Reality,” “Simulation,” “Simulated,” “3D,”
“Ophthalmology,” “Ophthalmic,” and “Eye.” The search was
performed on April 15, 2020. Publications from January 1, 1956
to April 2020 were searched without language or
publication-type restrictions. References in studies meeting the
eligibility criteria were searched to identify additional eligible
studies. EndNote X9 (2020; Clarivate Analytics) was used to
manage all identified publications and remove duplicates
(Multimedia Appendix 1). Search results were recorded
according to PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-analyses) guidelines [22].

Study Selection
Two authors (CWO and MCJT) read all titles returned by the
search. All abstracts of relevant titles and full texts of the
relevant abstracts were read by the same authors to evaluate
eligibility. Any uncertainties was resolved by discussion among
all authors.

Data Collection and Analysis
For each study that met eligibility criteria, the quality of study
was evaluated using Oxford Centre for Evidence-Based
Medicine (OCEBM) levels of evidence [23].

Information from each study was extracted, including aim,
design, population, sample size, extended reality technology
type, application, outcomes, and findings.

A number of eligible studies investigated the use of extended
reality educational training simulators as training and assessment
tools. Evidence of validity should be used to support the
appropriateness of interpretation of results from assessments of
performance using these simulators [24,25]. Validation is critical
to be able to trust the results of a given education tool, and
educators need evidence of validity to identify the appropriate
assessment tool to meet specific educational needs with finite
resources [26]. We chose a contemporary model of validity
[24], comprising 5 sources of validity evidence—Content,
Response process, Internal structure, Relationship to other
variables, and Consequences [25,27] (Multimedia Appendix
2), to evaluate the extent to which the validity of these
simulator-based assessments had been established by evidence.
Due to a high degree of heterogeneity between studies,
quantitative statistical analysis was not conducted.
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Results

General
A total of 12,490 unique records were identified. After screening
by title and abstract, 251 full-text publications were retrieved

for assessment for final eligibility. Of these, 164 were excluded,
and 87 studies met the final eligibility criteria (Figure 1). Of
these, 54 were relevant to the use of extended reality in
education, 5 were relevant to the use of extended reality in
diagnostics, and 28 were relevant to the use of extended reality
in therapeutics.

Figure 1. Flow Diagram showing inclusion process for identified records. XR: extended reality.

Education

Overview
Applications of extended reality in education included surgical
simulators (46/54), ophthalmoscopy simulators (6/54), and
optometry training simulators (2/54), with medical students,
optometry students, trainee, or trained ophthalmologists as
participants.

Surgical Simulators
Of 46 studies evaluating surgical simulators, the EyeSi surgical
simulator (VR Magic) was most commonly used (n=38). Others

included MicroVisTouch (ImmersiveTouch) (n=1), PixEye
Ophthalmic Simulator (SimEdge SA) (n=1), and 6 self-designed
simulators. The most common surgical procedure simulated in
these studies was cataract surgery (n=36), followed by
vitreoretinal procedures (n=9), laser trabeculoplasty (n=1), and
corneal laceration repair (n=1).

Of the 46 studies, 24 were studies that evaluated the efficacy
of surgical simulators using evaluations of surgical performance
on real patients, objective assessments by subspecialty experts,
or simulator-based metrics as outcome measures. There were
14 [28-47] studies that used surgical performance on real
patients as outcome measures, of which 4 were randomized
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trials [48-51] (Table 1); these randomized trials compared the
use of virtual reality ophthalmic surgical simulators with
conventional methods of surgical training. Objective assessment
metrics of participants’ surgical performance on real patients
were evaluated by subspecialty experts. All studies [48,50,51],
except one [49], showed that simulator-training resulted in
surgical performance significantly superior to that of
conventional training methods in terms of quality, time

efficiency, efficacy, or complication rates. In particular,
Deuchler et al [50] found that warm-up simulation training
improved performance for surgeons who had not operated for
a significant period of time. Daly et al [49] showed that residents
who underwent EyeSi training were significantly slower at
performing their first continuous curvilinear capsulorhexis than
participants who underwent wet-lab training but achieved similar
surgical performance scores.

Table 1. Randomized trials evaluating efficacy of surgical simulators in improving surgical performance on real patients.

FindingsPopulationSimulated taskControl group
training

Intervention group trainingDesign

(OCEBMa level)

Study

Simulator training was
significantly more time ef-
ficient (time efficiency in-
dex of 0.59 vs 0.28,
P<.05), and resulted in a
trend of greater photocoag-
ulation efficiency (dura-
tion/impact index of 0.040
vs 0.028)

Eye residentsRetinal photo-coagu-
lation

Real patients
(n=4)

Laser photocoagulation
simulator (n=5)

Randomized trial
(2b)

Peugnet
(1998) [48]

Wet-lab trained residents
significantly faster than
EyeSi-trained residents
(P=.038)

Eye residentsContinuous curvilin-
ear capsulorhexis

Wet lab (n=10)EyeSi (n=11)Randomized trial
(2b)

Daly
(2013) [49]

EyeSi warm-up improved
surgical performance sig-

nificantly (GRASISb score
of 1.0 vs 0.5, P=.0302)

Surgeries by
vitreoretinal
surgeons

Pars plana vitrecto-
my

No warm-up
(n=12)

EyeSi warm-up (n=9)Randomized trial
(1b)

Deuchler
(2016) [50]

VR-trained students had
lower rates of inadvertent
corneal/iris burns (4.5% vs
34.0%, P=.01), delivery
misses (8% vs 55%,
P=.001), overtreatment
and undertreatment (7% vs
46%, P=.015)

Medical stu-
dents

Argon laser trabecu-
loplasty

Didactic, wet lab
(n=23)

PixEyes simulator (n=24)Randomized trial
(2b)

Alwadani
(2012) [51]

aOCEBM: Oxford Centre for Evidence-Based Medicine.

There were 10 nonrandomized studies [28-37] that evaluated
the EyeSi simulator for cataract surgery training (Table 2).
Thomsen et al [28] and la Cour et al [29] demonstrated
statistically significant improved Objective Structured
Assessment of Cataract Surgical Skill Scores (OSACSS) in
novice surgeons after training with the EyeSi cataract module.
Roohipoor et al [30] found significant correlations between
residents’ EyeSi simulator-based scores and their eventual
surgery count and Global Rating Assessment of Skills in

Intraocular Surgery scores. The other 7 studies [31-37]
investigated the relationship between EyeSi simulator use and
complication rates in cataract surgery on real patients, of which
6 studies [31-36] showed that the use of the EyeSi simulator
was associated with reduced complication rates. McCannel et
al [37] found that EyeSi capsulorhexis training was not
associated with lower vitreous loss rates overall but was
associated with higher nonerrant continuous curvilinear
capsulorhexis-associated vitreous loss.
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Table 2. Nonrandomized trials evaluating efficacy of surgical simulators in improving surgical performance on real patients.

FindingsParticipants and
cataract surgeries, (n)

Outcome measureComparison or control
group

Design

(OCEBMa level)

Study

Novices and less-experienced surgeons
showed significant improvements in the
operating room (32% and 38% improve-
ment, P=.008 and P=.018 respectively)
after EyeSi training

Cataract surgeons (19)OSACSSbBefore EyeSi useCohort (2b)Thomsen
(2017a) [28]

EyeSi training resulted in significantly
improved surgical performance in less-
experienced surgeons. Skill-transfer be-
tween modules was not demonstrable

Cataract surgeons (19)OSACSSBefore EyeSi useCohort (2b)La Cour
(2019) [29]

Significant correlations between residents’
EyeSi simulator-based scores and their
eventual surgery count and GRASIS
scores

Ophthalmology resi-
dents (30)

GRASISdN/AcCohort (2b)Roohipoor
(2017) [30]

EyeSi training resulted in significantly
lower procedure duration (P=.002), per-
centage power (P=.001), and nonsignifi-
cantly fewer intraoperative complications

Surgeries by ophthal-
mology residents
(592)

Phaco time, per-
centage power,
complications

No EyeSi useCohort (3b)Belyea (2011)
[31]

EyeSi training resulted in nonsignificantly
fewer posterior capsule tears and shorter
learning curves

Surgeries by ophthal-
mology residents
(1000)

Incidence of poste-
rior capsule tears,
operation duration

No EyeSi useCohort (2c)Pokroy (2013)
[32]

Residents with EyeSi access had a signifi-
cant reduction in posterior capsule rupture
rates (4.2% vs 2.6%, Difference in Propor-
tions 1.5%, 95% CI 0.5-2.6%, P=.003).
Posterior capsule rupture rates significant-
ly lower after access to EyeSi (3.5% to
2.6%, Difference in proportions 0.9%,
95% CI 0.4-1.5%, P=.001)

Surgeries by ophthal-
mology residents
(17831)

Posterior capsule
rupture rates

No EyeSi accessCohort (2b)Ferris (2020)
[33]

EyeSi training resulted in significantly
fewer complications (12.86 vs 27.14%,
P=.031)

Surgeries by ophthal-
mology residents
(140)

Complication ratesNo EyeSi useCohort (2b)Lucas (2019)
[34]

EyeSi training resulted in significantly
fewer complications (2.4 vs 5.1%, P=.037)

Surgeries by ophthal-
mology residents
(955)

Complication ratesNo EyeSi useCohort (2b)Staropoli
(2018) [35]

EyeSi training resulted in significantly
lower errant continuous curvilinear capsu-
lorhexis rates (5.0 vs 15.7%, P<.001)

Surgeries by ophthal-
mology residents
(1037)

Errant continuous
curvilinear capsu-
lorhexis rates

Reduced EyeSi useCase series (4)McCannel
(2013) [36]

EyeSi training was not associated with
lower vitreous loss rates or less retained
lens material but was associated with

higher vitreous loss in nonerrant CCCse

Surgeries by ophthal-
mology residents
(1037)

Vitreous loss rates,
retained lens mate-
rial

Reduced EyeSi useCase series (4)McCannel
(2017) [37]

aOCEBM: Oxford Centre for Evidence-Based Medicine.
bOSACCS: Objective Structured Assessment of Cataract Surgical Skill Score.
cN/A: not applicable.
dGRASIS: Global Rating Assessment of Skills in Intraocular Surgery.
eCCC: continuous curvilinear capsulorhexis.

Seven studies [38-44] investigated the efficacy of the EyeSi
surgical simulator (n=6) or a self-made augmented reality
microsurgery simulator (n=1) by evaluating participants’
surgical performance on the same simulators using
simulator-based metrics (Table 3 and Table 4). Selvander et al
[40] used the OSACSS and Objective Structured Assessment
of Technical Surgical Skills (OSATS).

Three studies were randomized trials [38-40] (Table 3).
Thomsen et al [39] investigated if there could be interprocedural
transfer of skills and found that residents with simulated cataract
surgery training did not perform significantly better than those
without (simulator score with training: mean 381, SD 129 vs
simulator score without training: mean 455, SD 82, P=.262) at
the vitreoretinal surgery module. Selvander et al [40] had a
similar aim and found that training on the capsulorhexis or
cataract navigation training module on the EyeSi did not
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significantly improve performance at the other
(OSACSS—training: 8, no training: 8, P=.64; OSATS
score—training: 7, no training: 10, P=.52); however, repeated
practice with each module significantly improved
simulator-based scoring for the respective modules. Bergqvist
et al [38] found that medical students who trained with simulated
cataract surgery had higher overall simulator scores and fewer

complications than those who did not train on the simulator.
These trials suggest that simulator training improves
performance only for the specific procedure being trained. The
other 4 studies [41-44] were prospective cohort studies or case
series (Table 4) that demonstrated that extended reality surgical
training resulted in significant improvements on subsequent
simulator-based performance scores.

Table 3. Randomized trials evaluating efficacy of surgical simulators in improving surgical performance as measured by the same simulator.

Simulated taskParticipantsControl groupIntervention groupDesign

(OCEBMa level)

Study

Cataract surgeryMedical studentsNo EyeSi training (n=10)EyeSi training
(n=10)

Randomized trial
(1b)

Bergqvist
(2014) [38]

Cataract surgery, vitreoretinal surgeryEye residentsNo EyeSi use (n=6)EyeSi training (n=6)Randomized trial
(2b)

Thomsen
(2017b) [39]

Capsulorhexis, cataract navigationMedical studentsEyeSi capsulorhexis
training first (n=18)

EyeSi cataract navi-
gation training first
(n=17)

Randomized trial
(2b)

Selvander
(2012) [40]

aOCEBM: Oxford Centre for Evidence-Based Medicine.

Table 4. Nonrandomized trials evaluating efficacy of surgical simulators in improving surgical performance as measured by the same simulator.

FindingsSimulated taskParticipantsSurgical simulatorDesign

(OCEBMa level)

Study

EyeSi training resulted in significantly
improved scores (P<.001) among resi-
dents, especially for capsulorhexis and
antitremor

Cataract surgeryEye residents (n=17)EyeSiCase series (4)Saleh (2013a)
[41]

EyeSi training resulted in significantly
improved course scores for both domi-
nant (33.4 vs. 46.5; P<.05) and nondom-
inant hands (28.9 vs. 47.7; P<.001) and
faster performance times (P<.001)

CapsulorhexisMedical students, eye
residents (n=14)

EyeSiCase series (4)Gonzalez-Gonza-
lez (2016) [42]

EyeSi training resulted in significantly
improved capsulorhexis scores
(P=.001)

Capsulorhexis moduleOphthalmologists
(n=16)

EyeSiCohort (2b)Bozkurt (2018)
[43]

There was significant improvement in
micromanipulation performance scores
after simulator-training

Internal limiting
membrane peeling

Unspecified (n=47)Microsoft
HoloLens

Case series (4)Ropelato (2020)
[44]

aOCEBM: Oxford Centre for Evidence-Based Medicine.

Three randomized trials investigated the effect of extended
reality surgical simulator training on surgical performance in
the wet lab (Table 5). Surgical performance was assessed using
objective outcomes. Feldman et al [46] and Feudner et al [47]
showed that training on the EyeSi simulator significantly

improved wet-lab performance for corneal laceration repair and
capsulorhexis, respectively, while Jonas et al [45] showed that
training on a self-made virtual reality simulator improved
wet-lab performance for pars plana vitrectomies.
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Table 5. Studies evaluating efficacy of surgical simulators in improving surgical performance in the wet lab.

Outcome measure toolParticipantsControl groupIntervention groupDesign (OCEBMa

level)

Study

Amount of vitreous removed, retinal
lacerations, residual retinal detach-
ment, duration

Medical students, eye
residents

No simulator training
(n=7)

Simulator training
(n=7)

Randomized trial
(2b)

Jonas (2003) [45]

Corneal Laceration Repair Assess-
ment

Medical studentsNo EyeSi training
(n=8)

EyeSi training (n=8)Randomized trial
(2b)

Feldman (2007)
[46]

Scoring based on capsulorhexis
video

Eye residentsNo EyeSi training
(n=31)

EyeSi training
(n=31)

Randomized trial
(1b)

Feudner (2009)
[47]

aOCEBM: Oxford Centre for Evidence-Based Medicine.

Of 46 studies, 20 studies evaluated the validity of surgical
simulator-based assessments (Multimedia Appendix 3). Most
validity studies achieved an OCEBM level of evidence of 2b,
corresponding to exploratory cohort studies with good reference
standards. The most common source of validity evidence was
Relationship with other variables, addressed in 19 of 20 studies
(95%). Studies achieved this by statistically evaluating the
relationship between surgical performance on the simulator and
participants’ levels of expertise. Content validity was addressed
in 18 studies (90%), Response process was addressed in 9
studies (45%), Internal structure was addressed in 5 studies
(25%), and Consequences was addressed in 2 studies (10%).
Only 2 of 20 (10%) studies addressed all 5 sources.

Of these 20 studies, 12 assessed surgical performance using
simulator-based scoring only [39,43,52-61], 6 studies compared
simulator-based scores with video-based scoring (OSACSS,
OSATS, or motion-tracking software) [62-67], and 2 studies
used video-based scoring only [40,68].

For the EyeSi surgical simulator, most studies found that the
surgical performance of experienced participants was
significantly better than that of less-experienced participants.
Sikder et al [52] found that intervening surgical experience
significantly improved capsulorhexis performance on the
MicroVisTouch cataract surgery simulator. Lam et al [62]
showed that in a self-made phacoemulsification simulator, more
experienced participants attained significantly higher scores in
all main procedures and completed tasks significantly faster.

Five studies [69-73] assessed the perception of ophthalmologists
and medical students toward surgical simulators using
user-reported outcome measures. These studies achieved
OCEBM evidence levels of 4 (n=4) and 2b (n=1). Users found
the EyeSi and a novel virtual reality continuous curvilinear
capsulorhexis simulator to be useful in improving surgical skill,
confidence, and understanding, while providing a safe and
realistic alternative for training.

Ophthalmoscopy Simulators
Six studies [74-79] evaluated the use of extended reality as a
tool for education in ophthalmoscopy. Simulators used were
the EyeSi Augmented Reality Direct (n=1) and Binocular
Indirect (n=3) ophthalmoscopy simulators, and 2 novel
self-made direct ophthalmoscopy simulators comprising the
HTC Vive Virtual Reality-Head-Mounted Display (n=1) and
the RITECH II Virtual Reality-Head-Mounted Display (n=1).

Two randomized trials [74,75], with OCEBM evidence levels
2b, assessed the efficacy of the EyeSi Binocular Indirect
Ophthalmoscopy simulator. Both studies showed that
participants who trained with the EyeSi Binocular Indirect
Ophthalmoscopy simulator performed significantly better than
participants who underwent conventional training.

Three studies [75-77], with OCEBM evidence levels of 2b,
assessed the validity of the EyeSi Binocular Indirect
Ophthalmoscopy simulator (n=2) and the EyeSi Binocular Direct
Ophthalmoscopy simulator (n=1) for training and assessment.
All studies demonstrated Relationships with other variables as
a source of validity evidence and found that participants with
more experience had significantly higher ophthalmoscopy
evaluation scores. Content validity was addressed in all studies.
Only 1 study [77] addressed Internal structure by evaluating
internal consistency between simulator modules and evaluated
Consequences by calculating a pass or fail score.

Two user perception studies [78,79] found that medical students
felt that self-assembled virtual reality direct ophthalmoscopy
simulators were usable and useful in improving ophthalmoscopy
skills.

Optometry Training Simulators
Two studies [80,81] evaluated the preliminary user experience
of an augmented reality optometry simulator comprising a
head-mounted display, a slit-lamp instrument, and a simulated
eye, which allowed the simulation of optometry training tasks.
User studies involving undergraduate optometry students
showed that the simulator was feasible in simulating foreign
body removal as a training task with a high level of user
satisfaction.

Diagnostics

Overview
Five studies evaluated the use of extended reality for the
production of immersive and interactive content for diagnostic
applications. Two studies evaluated the use of extended reality
to display ocular imaging data [82,83], and 3 studies [84-86]
evaluated the validity of extended reality as a simulation tool
for the functional assessment of patients with ophthalmic
diseases.
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Ocular Imaging
Two case series, which achieved OCEBM evidence levels of
4, evaluated the presentation of ocular imaging modalities in
virtual reality and augmented reality environments.

Maloca et al [82] tested the feasibility of displaying optical
coherence tomography images in a virtual reality environment
with a virtual reality-head-mounted display. A user perception
survey involving 57 participants found it to be well tolerated
with minimal side-effects. Berger et al [83] demonstrated
feasibility for a method of direct overlay of photographic and
angiographic fundus images onto a real-time slit lamp fundus
view in 5 participants.

Simulators for Functional Assessment
Three studies evaluated the use of extended reality simulators
for the functional assessment of patients with ophthalmic
diseases. The studies achieved OCEBM levels of evidence of
4.

Goh et al [84] trialed the use of the Virtual Reality Glaucoma
Visual Function Test with a smartphone paired with the Google
Cardboard head-mounted display to assess the visual function
of glaucoma patients and found that stationary test person scores
demonstrated criterion and convergent validity, corresponding
to Relationship with other variables.

Ungewiss et al [85] compared the assessment of driving
performance in a driving simulator with that in a real vehicle
in patients with glaucoma (n=10), hemianopia (n=10), and
normal controls (n=20) and found that patients with hemianopic
and glaucoma performed worse than healthy controls on the
driving simulator, demonstrating Relationship with other
variables as a source of validity evidence.

Jones et al [86] evaluated the use of a head-mounted display to
simulate visual impairment in glaucoma using virtual reality
and augmented reality and found it able to replicate and
objectively quantify functional impairments associated with
visual impairments. When the simulated visual field loss was
inferior, impairments were noted to be significantly greater than
those noted when the simulated visual field loss was superior,
which was consistent with previous experiences of real patients
with glaucoma [87-89].

Therapeutics

Overview
A total of 28 studies evaluated the use of extended reality in
therapeutics. These studies evaluated heads-up surgery (n=21),
binocular treatment of amblyopia (n=2), functional improvement
for the visually impaired (n=4), and an aid for achromatopsia
(n=1).

Heads-up Surgery
Heads-up surgery involves the use of a 3D camera to capture
images from a stereomicroscope for presentation on a 3D
display. Of 21 studies [90-110], the most common heads-up
surgical system evaluated was NGENUITY 3D (Alcon
Laboratories) (n=12), followed by TrueVision 3D HD System
(TrueVision Systems Inc) (n=2), TRENION 3D HD (Carl Zeiss
Meditec) (n=1), MKC-700HD and CFA-3DL1 (Ikegami) (n=1),

Digital Microsurgical Workstation (3D Vision Systems) (n=1),
TIPCAM 1S 3D ORL endoscope (Karl Storz) (n=1). Surgical
procedures included vitreoretinal procedures (n=17), cataract
surgery (n=5), scleral buckle (n=1), and endoscopic lacrimal
surgery (n=1).

Six studies had OCEBM evidence levels of 2b, corresponding
to randomized trials (n=4) and cohort studies (n=2). There were
15 studies with OCEBM evidence levels of 4, corresponding
to case series, case-control studies, or poor-quality cohort
studies.

The 4 randomized trials [90-93] demonstrated noninferiority of
heads-up surgery in comparison with conventional microscope
surgery in postoperative outcomes and complications. Qian et
al [90] performed phacoemulsification and intraocular lens
implantation and reported no significant difference in mean
surgery time, postoperative mean endothelial cell density
between conventional surgery (n=10) and heads-up surgery
(n=10). Talcott et al [91] performed pars plana vitrectomies and
showed that compared with conventional surgery (n=16),
heads-up surgery (n=23) significantly increased macular peel
time (14.76 minutes vs 11.87 minutes, P=.004) but not overall
operative time. There was no significant difference in visual
acuity (logarithm of the minimum angle of resolution) or change
from baseline, and no clinically significant intraoperative
complications. Romano et al [92] randomized 50 eyes to the
use of an unspecified heads-up surgical system (n=25) and
conventional surgery (n=25) for 25-gauge pars plana vitrectomy;
there was no significant difference in mean operation duration.
Surgeons and observers were significantly more satisfied
(P<.001) using the heads-up system. Kumar et al [93]
randomized 50 patients to macular hole surgery with an
unspecified heads-up system (n=25) and conventional macular
hole surgery (n=25); there were no significant differences in
postoperative visual acuity, macule hole indices, surgical time,
total internal limiting membrane peel time, number of flap
initiations, and macular hole closure rates. Microscope
illumination intensity (heads-up: 100%; conventional: 45%)
and endoillumination was significantly lower in heads-up
surgery (heads-up: 40%; conventional: 13%).

The other 17 studies [94-110] were case series or cohort studies
(Multimedia Appendix 4). They reported experiences with
different heads-up surgical systems with various surgical
procedures and assessed a few common outcomes with the
following findings.

Of studies comparing heads-up surgical systems with
conventional surgery, most reported procedural success or
success that was not significantly different from that of
conventional surgery. There were no significant differences in
mean procedural durations, postoperative visual acuity, or
improvements in visual acuity. The minimum required
endoillumination was lower in heads-up surgery than that in
conventional surgery. Zhang et al [94] found a significantly
lower mean minimum required endoillumination for heads-up
surgery than that for conventional surgery (10% vs 35%, 598.7
vs 1913 lx, P<.001). Matsumoto et al [95] operated safely and
successfully on 74 eyes with an endoillumination intensity of
3% using a heads-up system. No study reported major
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perioperative complications or significant differences in
complication rates between heads-up surgery and conventional
surgery. Users preferred heads-up surgery to conventional
surgery.

Binocular Treatment of Amblyopia
Two studies [21,111] evaluated the efficacy of the use of
extended reality for interactive and immersive binocular
treatment for amblyopia. Lee et al [111] randomized 22 children
with amblyopia (mean age 8.7 years, SD 1.3) to treatment with
virtual reality videogaming on an unspecified virtual
reality-head-mounted display (n=7), virtual reality videogaming
and Bangerter foil (n=5), or Bangerter foil only (n=10),
achieving an OCEBM evidence level of 2b. Two of 7 (29%) of
patients in the virtual reality videogaming group, and 2 of 5
(40%) patients in the virtual reality videogaming with Bangerter
foil group gained more than 0.2 in logarithm of the minimum
angle of resolution of vision. Ziak et al [21] trialed the use of
the Oculus Rift virtual reality head-mounted display for
dichoptic virtual reality video gaming in treating 17 adults with
amblyopia, achieving an OCEBM evidence level of 4. There
was a significant improvement in mean amblyopic eye visual
acuity (logarithm of the minimum angle of resolution: from
mean 0.58, SD 0.35 to mean 0.43, SD 0.38; P<.01). Mean
stereoacuity also improved significantly from 263.3 s of arc to
176.7 s of arc (P<.01).

Functional Improvement for Visual Disorders
Five case series studies [20,112-115] evaluated the use of
extended reality technologies to improve the function of patients
with visual impairment and disorders. All reached an OCEBM
evidence level of 4.

Two studies evaluated the use of digital spectacles (DSpecs) to
improve mobility in a total of 43 patients with peripheral visual
field deficits [20,112]. DSpecs work by capturing, relocating,
and resizing video signals to fit within a patient’s visual field
in real time using augmented reality technology. DSpecs enabled
patients with visual field defects to have improved object
identification, hand-eye coordination, and walking mobility.

Sanchez et al [113] evaluated Augmented Reality Tags for
Assisting the Blind, an augmented reality system which helps
the user determine the position of indoor objects by generating
an audio-based representation of space. Blind participants
perceived Augmented Reality Tags for Assisting the Blind to
be a useful tool for assisting orientation and mobility tasks.

Tobler-Ammann et al [114] evaluated the use of virtual reality
exercise games to encourage exploration of neglected space in
patients with visuospatial neglect after stroke. Cognitive and
spatial exploration skills trended toward improvement after the
use of virtual reality exercise games and continued improving
at follow-up in 5 of 7 participants. Adherence rates were high,
and there were no adverse events.

Melillo et al [115] evaluated the efficacy of an augmented reality
wearable improved vision system for patients with color vision
deficiency. The system captures and remaps colors from the
environment and displays it to the user via a head-mounted
display. The system significantly improved Ishihara Vision Test

scores in participants with color vision deficiency (mean score
5.8 vs 14.8, P=.03).

Discussion

Although a wide range of clinically evaluated ophthalmic
applications of extended reality were identified, we
predominantly focused on the following domains: education,
diagnostics, and therapeutics. In education, simulators
demonstrated efficacy and validity in improving surgical and
ophthalmoscopy skills. In diagnostics, extended reality devices
demonstrated proof-of-concept in displaying ocular imaging
data and validity in assessing the function of patients with
glaucoma. In therapeutics, heads-up surgical systems were found
to be efficacious and safe alternatives to conventional
microscope surgery. The overall evidence, however, for the
utility of these applications is limited. Only 8 of 87 (9%) studies
had OCEBM levels of evidence of 1b, which represented
randomized trials with a narrow confidence interval, while 79
of 87 (91%) studies had OCEBM levels of evidence ranging
from 2b to 4 (cohort studies, case-control studies, and case
series). For extended reality applications only evaluated by 1
or 2 studies, this limited evidence makes it difficult to
extrapolate their utility in a wider context.

The acquisition of motor skills, as described by the Fitts–Posner
3‐Stage Theory [116] and the Dreyfus and Dreyfus model
[117], progresses from an initial cognitive phase, in which
learners attempt to understand, to an associative phase, in which
they modify movement strategies based on feedback, to a final
autonomous phase, in which motor performance is fluid.
Advances in surgical simulation technology have provided
options to augment or replace traditional methods without
compromising training efficiency and patient safety. Although
most randomized trials [38,39,45-47] showed that
simulator-trained groups performed better than those who had
no training at all, only 3 studies [48,49,51] drew comparisons
between simulator-trained participants and participants trained
with conventional methods of surgical training such as wet-lab
materials and real patients. The performance of simulator-trained
inexperienced surgeons was superior to that of conventionally
trained inexperienced surgeons only in the laser-based
procedures [48,51]. Where intraocular surgery was concerned,
the performance of simulator-trained inexperienced surgeons
was comparable, but not superior, to that of wet-lab trained
inexperienced surgeons. Moreover, they required a longer
duration to complete the procedures [49]. This could be
attributed to the fact that the instruments used in wet-lab training
were identical to those used in the operating room, whereas
surgical simulators may not have been able to emulate all tactile
and ergonomic aspects of ophthalmic surgery. This suggests a
continued role for wet-lab training, at least until simulators can
closely replicate the full surgical experience.

It has been shown that practicing complex motor task skills is
most effective in multiple short training sessions spaced over
time with variable tasks [118]. Simulation-based training allows
for this, and most efficacy studies [37,39,40] demonstrate that
extended reality surgical simulators were able to improve
surgical performance in the specific procedure for which the
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participants were trained; however, the same studies found little
evidence of a crossover effect—that these improvements were
applicable to other surgical procedures—suggesting that
simulator training is highly specific. It is possible that intense
focus on solitary surgical steps can result in lack of skill
development in others [37], and the transfer of surgical skills
thus cannot be anticipated when planning surgical training
curriculum. Nonetheless, simulation training appears to reduce
complications for both surgically naive and less experienced
surgeons and to improve performance for experienced ones who
have had a hiatus in undertaking procedures.

Studies evaluating ophthalmoscopy simulators found that
simulator training can improve both direct and indirect
ophthalmoscopy skills. In comparison with surgical simulators,
ophthalmoscopy simulators are not as widely adopted in
ophthalmic training curricula. One possible reason lies in the
nature of the simulated task. Surgery performed by
inexperienced novices risks harming the patient, whereas
ophthalmoscopy constitutes a minor inconvenience to a patient
in terms of discomfort and time. The availability of surgical
simulators with efficacy and validity may be more of a necessity
than ophthalmoscopy simulators.

Validity is the cornerstone upon which educational assessments
depend to be appropriately justified in their application and
without which the purpose of assessments in education will
have little intrinsic meaning [25]. Most validity studies on
educational simulators only addressed 1 or 2 sources of validity
evidence. The presence of more studies addressing all sources
of validity evidence would facilitate more robust interpretation
of assessment scores in ophthalmic training.

In diagnostics, visualizing ocular imaging data, such as optical
coherence tomography, fundus photography, and angiography
in virtual reality and augmented reality can reveal important
intraocular spatial relationships [119,120] and allow for
interactive exploration of imaging data to aid education,
understanding of diseases, clinical assessment, and therapy.
These studies [119,120] demonstrated proof-of-concept, but
more studies are needed to evaluate their efficacy and accuracy
for clinical use. Extended reality applications also demonstrated
validity evidence and feasibility in objectively assessing
functional limitation and driving performance of glaucoma and
hemianopic patients. The scope of their application, however,
is currently limited by the small number of studies and low
number of sources of validity evidence. While extended reality
was able to simulate the visual environment, it was unable to
account for nonvisual cues, such as sound and touch, that
patients with ophthalmic disease might rely upon in daily
function.

In therapeutics, heads-up surgery allowed for better
visualization, better ergonomics, and reduced endoillumination
intensities than those in traditional microscope surgery without
compromising outcomes. Widespread adoption of heads-up
surgery, however, is limited by a few factors. First, the comfort
of assistant surgeons and anesthetists has been shown to be
reduced due to the positioning of the heads-up display [94,96].
Second, the learning curve of heads-up surgery has yet to be
studied comprehensively. Talcott et al [91] reported that

surgeons had higher ease of use with the traditional microscope
than with the NGENUITY 3D visualization system, showing
that the preference for heads-up surgery was not unanimous.
Additional experience with heads-up displays can guide
ophthalmic surgeons in transitioning from traditional
microscopes to these novel systems.

It has been shown that nonstereoscopic, nonimmersive binocular
treatment is a promising approach in treating children with
amblyopia, with positive outcomes in amblyopic eye visual
acuity and stereoacuity [121,122]. Likewise, in our review, we
found that stereoscopic immersive dichoptic stimulation
conferred the same benefits onto amblyopic patients with
amblyopia. The 2 studies included in our review reported high
adherence rates [21,111], while there have been studies on
nonimmersive dichoptic stimulation reporting lower adherence
rates [123,124]. Although there has been no study comparing
immersive dichoptic stimulation with nonimmersive dichoptic
stimulation, we postulate that immersive dichoptic stimulation
can engender better patient adherence and adherence to binocular
treatment. Before immersive binocular treatment can be
recommended over standard binocular treatment or even over
conventional occlusion therapy, additional comparative studies
are needed to determine if they would be appropriate
replacements or adjuncts to conventional therapy. A cost-benefit
analysis would also be important, given that conventional
therapy is affordable yet still efficacious.

Extended reality applications are not without adverse effects.
Studies have shown that viewing of 3D displays can induce
objective changes to accommodative function, convergence,
refractive errors, and tear films [125-130] and subjective
symptoms such as asthenopia, motion sickness, fatigue, and
head or neck discomfort [131]. Techniques such as discrete
viewpoint control have been shown to potentially ameliorate
these adverse effects, but they are not yet widely adopted [132].
Most studies in our review did not evaluate the incidence of
adverse effects induced by the extended reality set-ups. While
there is growing anticipation for the adoption of extended reality,
more research is needed to ascertain if these adverse effects will
significantly affect the efficacy of ophthalmic applications and
shape user safety guidelines.

The cost of extended reality technologies will also be a major
concern for potential users. One study [133] in 2013 estimated
that the EyeSi surgical simulator would save the average US
ophthalmic residency program $4980 yearly in nonsupply costs
based on time saved in the operating room, requiring 34 years
to recoup the simulator’s cost price. Another study [134] in
2013 found that nonsupply cost savings from EyeSi use were
higher in larger residency programs, but still insufficient to
recoup costs at 10 years. These cost-analyses, however, do not
make comparisons with conventional methods of ophthalmic
surgical training. The ability of extended reality surgical
simulators to simulate surgical scenarios that are otherwise
impossible to replicate in a wet lab, such as posterior polar
cataracts, specific clock hours of zonulysis, or a shallow anterior
chamber, may represent intangible cost-savings in ophthalmic
pedagogy with respect to additional time spent supervising
surgeons and operating room staff, resources, and schedule. The
availability of such comparisons might help to better define the

J Med Internet Res 2021 | vol. 23 | iss. 8 | e24152 | p. 10https://www.jmir.org/2021/8/e24152
(page number not for citation purposes)

Ong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


role of an extended reality simulator in surgical training from
the perspective of cost.

Extended reality promises utility in many areas of application
by overcoming the limits of the unalterable physical
environment. In ophthalmic surgical education, extended reality
surgical simulators demonstrate efficacy and validity in
improving surgical performance. Before surgical simulators can
be considered to be a competitive alternative to traditional
ophthalmic surgical training, 2 main barriers need to be
addressed—cost and the need for additional high-quality
comparative studies. Until these issues are addressed, surgical
simulators can only play a supporting role in surgical training
programs, despite their versatility and ability to provide

quantitative feedback. In therapy, extended reality heads-up
surgical systems have already seen popular use in ophthalmic
surgery, with the literature showing that this type of system
provides an efficacious and safe platform for surgical
visualization. Other diagnostic and therapeutic applications
mainly demonstrate proof-of-concept, with a lack of robust
comparative evidence. Additional comparative studies with
designs that allow a high level of evidence should be encouraged
to explore the efficacy of extended reality in these varied
ophthalmic applications. As extended reality is a nascent
technology, we predict that it will only continue to demonstrate
value and offer novel alternatives in ophthalmic education,
diagnostics, and therapy.
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