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Abstract

Background: Patient safety in the intensive care unit (ICU) is one of the most critical issues, and unplanned extubation (UE)
is considered the most adverse event for patient safety. Prevention and early detection of such an event is an essential but difficult
component of quality care.

Objective: This study aimed to develop and validate prediction models for UE in ICU patients using machine learning.

Methods: This study was conducted in an academic tertiary hospital in Seoul, Republic of Korea. The hospital had approximately
2000 inpatient beds and 120 ICU beds. As of January 2019, the hospital had approximately 9000 outpatients on a daily basis.
The number of annual ICU admissions was approximately 10,000. We conducted a retrospective study between January 1, 2010,
and December 31, 2018. A total of 6914 extubation cases were included. We developed a UE prediction model using machine
learning algorithms, which included random forest (RF), logistic regression (LR), artificial neural network (ANN), and support
vector machine (SVM). For evaluating the model’s performance, we used the area under the receiver operating characteristic
curve (AUROC). The sensitivity, specificity, positive predictive value, negative predictive value, and F1 score were also determined
for each model. For performance evaluation, we also used a calibration curve, the Brier score, and the integrated calibration index
(ICI) to compare different models. The potential clinical usefulness of the best model at the best threshold was assessed through
a net benefit approach using a decision curve.

Results: Among the 6914 extubation cases, 248 underwent UE. In the UE group, there were more males than females, higher
use of physical restraints, and fewer surgeries. The incidence of UE was higher during the night shift as compared to the planned
extubation group. The rate of reintubation within 24 hours and hospital mortality were higher in the UE group. The UE prediction
algorithm was developed, and the AUROC for RF was 0.787, for LR was 0.762, for ANN was 0.763, and for SVM was 0.740.
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Conclusions: We successfully developed and validated machine learning–based prediction models to predict UE in ICU patients
using electronic health record data. The best AUROC was 0.787 and the sensitivity was 0.949, which was obtained using the RF
algorithm. The RF model was well-calibrated, and the Brier score and ICI were 0.129 and 0.048, respectively. The proposed
prediction model uses widely available variables to limit the additional workload on the clinician. Further, this evaluation suggests
that the model holds potential for clinical usefulness.

(J Med Internet Res 2021;23(8):e23508) doi: 10.2196/23508
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Introduction

Patient safety in the intensive care unit (ICU) is a critical issue.
Medical errors and adverse events can significantly impact
patient outcomes [1]. Medical errors are a common occurrence
in the ICU and airway-related accidents are the most frequent
[2]. Adverse events related to airway and mechanical ventilation,
such as unplanned extubation (UE), may lead to high rates of
morbidity and mortality [3].

UE is a critical adverse event in the ICU, necessitating
immediate action and treatment by the medical staff. In the
literature, UE incidence rates range from 0.5 to 35.8 per 100
ventilated patients [4,5]. Previous studies have revealed that
UE is associated with significant complications, such as airway
injury, prolonged respiratory distress, aspiration, and hypoxemia
[6]. Even after reintubation, UE remains associated with longer
ICU stays [7] and an increased risk of ventilator-associated
pneumonia [8].

Strategies to prevent UE include introducing a quality
improvement program and novel devices [9,10]. However, for
effective application of these tools, continuous screening and
early detection is necessary. An electronic health record
(EHR)-based prediction system could be an efficient and timely
tool to provide continuous screening and early detection.

The wide establishment of advanced EHR systems has facilitated
the development of machine learning prediction models [11].
These systems have shown substantial potential in predicting
complex clinical conditions, such as sepsis, readmission, and
cardiopulmonary resuscitation [12-14]. However, we were
unable to find published examples of machine learning
prediction models that were used for UE prediction. Therefore,
the objective of this study was to develop and validate machine
learning–based UE prediction models for patients in the ICU.

Methods

The Transparent Reporting of a multivariable prediction model
for Individual Prognosis Or Diagnosis (TRIPOD) statement
[15] was followed for reporting our multivariable prediction
model.

Study Setting and Data Source
A single-center, retrospective study was conducted based on
the EHR data of an academic tertiary hospital in Seoul, Republic
of Korea. Data from January 2010 to December 2018 were
extracted from the clinical data warehouse of the hospital, which
contained deidentified clinical data for research. The hospital

has approximately 2000 inpatient beds and 120 ICU beds. There
are two types of ICUs: a medical ICU and a surgical ICU. In
this study, 42 beds for the medical ICU and 70 beds for the
surgical ICU were included. As of January 2019, there were
approximately 9000 patients in the outpatient department and
250 patients in the emergency department on a daily basis. The
number of annual ICU admissions is approximately 10,000.

Study Population
The study population included patients who underwent
extubation in the ICU between January 1, 2010, and December
31, 2018. Patients under the age of 18 years and patients who
had multiple extubation episodes were excluded from the study.
Patients who had been on mechanical ventilation for less than
24 hours or for more than 2 weeks were also excluded: patients
with short mechanical ventilation periods had been admitted to
the ICU only for a short period of observation, and the ICU
protocol was to perform tracheostomy on patients by 2 weeks
from the intubation.

Outcome of Prediction Models
The risk prediction models used in this study had binary
outcomes. They dealt with either the occurrence or absence of
UE for an intubated ICU patient based on data from the last 8
hours.

Data Set
We constructed a data set containing UE risk factors based on
a literature review, which included the following: Confusion
Assessment Method for the ICU (CAM-ICU) [16], the
Richmond Agitation-Sedation Scale (RASS) [17], the Glasgow
Coma Scale (GCS), upper-limb motor power, lower-limb motor
power, the use of physical restraints, and work shifts. Because
intubated patients cannot be assessed through verbal response
due to the presence of an artificial airway, the verbal response
records in the GCS were not considered. All included variables
were routinely recorded by a nurse in the critical care flow sheet
in the ICUs. The patients’ baseline characteristics were also
included in the data set, consisting of age, sex, whether the
patient underwent surgery prior to ICU admission, intubation
location, and reason for ICU admission.

We split the data sets periodically for development and
validation. The data sets acquired between January 1, 2010, and
December 31, 2015, were used for development sets. The data
sets acquired between January 1, 2016, and December 31, 2018,
were used for validation sets.
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Data Preprocessing

Time-Window Setting
Features related to the CAM-ICU, the RASS, the GCS, and
limb motor powers changed over time in the data sets. We set
up a time window to consider the changing trends over time in
these time-series features. We calculated the average recording
intervals for each time-series feature and set 8 hours as the size
of our time window, which covered the longest interval among
them; as such, we expected that at least one change for all
time-series features would be considered in the 8-hour time
window. In addition, the characteristics of the clinical workflow
of the institution were reflected. In the ICU where the study

was conducted, nurses usually worked three shifts. We
considered the time point at which the change in the patient’s
condition could be sufficiently reflected in the EHR and, finally,
an 8-hour window was selected.

Defining Cases and Controls
A moving window with an 8-hour period was used to define
cases and controls. The case and control definitions using the
time window in the time-series data set is shown in Figure 1.
When the UE event occurred, the 8-hour time block, or window,
was annotated as a case. The 8-hour time block from ICU
admission to 24 hours prior to the UE event (control 1) and the
8-hour time block from ICU admission to planned extubation
event (control 2) were annotated as a control.

Figure 1. Case and control definitions using the time window in the time-series data set. ICU: intensive care unit.

Time-Series Feature Handling
Time-series features were preprocessed to derive the
representative values within an 8-hour time window. The values
recorded closest to the specific time point and the recording
frequencies over 8 hours prior to the time point were used as
the representative values. In addition, the maximum, minimum,
mean, and standard deviation values over 8 hours were
calculated for numerical features (eg, the RASS, the GCS, and
limb motor powers), and the recording frequencies for each
category over 8 hours were considered for categorical features
(eg, the CAM-ICU). We normalized the range of numerical
features using a standardization method, which makes them
have zero-mean and unit variance. We computed the parameters
for normalization in the development sets and applied them to
the full data sets.

Undersampling in the Data Sets
The number of UEs was scarce compared to planned extubation,
resulting in an imbalance between the case and control numbers.
To prevent overfitting of the control data, we undersampled the
control 1 group using a simple random-sampling method and
the control 2 group (ie, data from the planned extubation group)
using a proportional stratified-sampling method. The days when
the UE patients were on mechanical ventilation in the data sets
were categorized into four groups. Control 2 data were sampled
to thrice that of case data, while preserving the same proportion
of days on mechanical ventilation for UE patients, as shown in
Table 1. The sampled control data were independent, and the
ratio of case to control 1 to control 2 in the data sets was
approximately 1:1:3.
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Table 1. Detailed information about unplanned extubation (UE) patients on mechanical ventilation that was used when undersampling the control 2
group.

Value (n=248), n (%)Days on mechanical ventilation for UE patientsa

83 (33.5)1-2 days

53 (21.4)2-3 days

55 (22.2)3-5 days

57 (23.0)>5 days

aDays when UE patients were on mechanical ventilation in the data sets were categorized into four groups.

Handling of Missing Data
We excluded 0.35% of the data where the RASS, the GCS, and
limb motor powers were not recorded at least once in the whole
time-series data sets. In terms of the features, the nearest value
of the CAM-ICU was missing when there was no CAM-ICU
record after ICU admission, where the missing rate was 33.46%.
The missing data were assessed as missing not at random
because the CAM-ICU was introduced to the hospital in which
the study was conducted in late 2011 [18]. The CAM-ICU data
were available after the method was introduced to the hospital,
and there were many missing data at the beginning. We treated
these data as a separate category altogether [19]. No missing
data were estimated in the other features.

Feature Selection
Backward elimination, a stepwise approach, was used for feature
selection. The random forest (RF) algorithm was applied to all
the features, and the least important features, based on the
measured predictor importance, were excluded [20]. Finally, a
subset of features that optimized area under the receiver
operating characteristic curve (AUROC) values was selected
to develop the UE prediction models. AUROC scores that were
based on varying numbers of features selected are shown in
Multimedia Appendix 1. A total of 50 selected features as input
of the models and their importance values are shown in
Multimedia Appendix 2. The features and their importance
values are plotted in Multimedia Appendix 3.

Modeling

Machine Learning Models
The following models were used to develop the UE prediction
models: support vector machine (SVM), artificial neural network
(ANN), logistic regression (LR), and RF [21-24].

Parameter Tuning
The parameters for SVM with the radial basis function kernel,
LR, and RF models were tuned using grid search processes in
the development sets, where the parameters with the best
AUROC performance were selected. The hyperparameters for
ANN, such as the number of layers and nodes in each layer,
were tuned empirically. We used a five-layer network, with
hidden layers having three to five times more neurons compared
to the input features. For the activation function, a rectified
linear unit was used in the hidden layer and a sigmoid function
was used for the output layer [25]. To prevent the ANN from
overfitting, we applied L2 regularization and dropout
regularization [26,27]. The network was trained using mini-batch

gradient descent and optimized using the cross-entropy method
[28,29].

Validation
Initially, we conducted internal validation on the development
sets to quantify optimism in the predictive performance and
evaluate stability of the prediction model. Three repeated and
stratified 5-fold cross-validation techniques were used to
evaluate the internal validity of each model. In brief, the data
set was randomly divided into five parts of roughly equal size,
while preserving the ratio of cases and controls. When one part
was used for validation, the remaining four parts were used for
model training, where each prediction was summarized into the
AUROC. This procedure, as mentioned above, was repeated
three times.

Prior to validating the machine learning models based on the
validation sets, thresholds for each model were determined.
Three repeated and stratified 5-fold cross-validations were used
in the development sets to identify the best threshold. The mean
of 15 sensitivities and the mean of 15 specificities were
calculated at thresholds from 0 to 1 with 0.005 units. The
selected thresholds for each model had a mean sensitivity over
0.85, and the best threshold was identified to be the one with
the highest mean specificity. Finally, the models were applied
to the validation sets.

Statistical Analysis
Continuous variables were reported either as means and SDs
for normal distribution data or as medians and IQRs for
nonnormal distribution data. Categorical variables were reported
as frequencies and percentages. We used the t test, the chi-square
test, and the Wilcoxon rank-sum test to calculate the P values
between the groups, where P<.05 was considered statistically
significant.

The internal validation performance was evaluated through
means and 95% CIs of the AUROCs. The performance of each
model on the validation sets was evaluated with the AUROC,
along with sensitivity, specificity, negative predictive value
(NPV), positive predictive value (PPV), and the F1 score at the
selected threshold.

For performance evaluation of the prediction model, we used
a calibration curve, the Brier score [18,30], and the integrated
calibration index (ICI) [31]. The potential clinical usefulness
of the final model at the best threshold was assessed through a
net-benefit approach using a decision curve [32]. This helps in
determining if basing clinical decisions on a model is
recommended considering the harm that it might cause, if any,
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in clinical practice. For statistical analyses and modeling, R,
version 3.6.0 (The R Foundation) [33], and Python, version
3.6.6 (Python Software Foundation), were used [34]. The codes
for developing and validating the models are available online
[35].

Sample Size
The data sample for a diagnostic model should have an
appropriate size [36]. Since there was no previous study that
could directly be referred to, this study followed an often-used
“rule of thumb,” where the sample size ensured at least 10 events
per candidate predictor parameter [37,38]. The number of
presumed events per candidate predictor in this study was 15,
satisfying the rule.

Ethics Approval
The Institutional Review Board (IRB) of Samsung Medical
Center approved this study (IRB file No. 2019-09-025).

Results

Study Population
A total of 6914 extubation cases that had occurred between
January 1, 2010, and December 31, 2018, were included in the

study. The flow diagram of the participant selection process is
shown in Figure 2.

The basic characteristics of the included cases are listed in Table
2. During the study period, the occurrence of 248 UEs were
reported. There were more males than females in the UE group.
The UE group also had fewer surgical patients and a high
proportion of patients with physical restraints. Both ICU
mortality and hospital mortality were significantly higher in the
UE group than in the planned extubation group. Further, the
rate of reintubation within 24 hours was higher in the UE group.
However, no differences were noted between groups regarding
the length of mechanical ventilation.

Table 3 lists the characteristics of the development and
validation sets. In the case group, where a UE event occurred,
the recording frequency of the RASS over the last 8 hours, a
RASS score over 2, eye and motor responses of the GCS,
upper-limb motor power, lower-limb motor power, and the rate
of physical restraint use were higher than in the control group
for both the development and validation sets. The missing rate
of CAM-ICU data in the validation sets was noticeably lower
than in the development sets.

Figure 2. Flow diagram of the participant selection process. ICU: intensive care unit.
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Table 2. Basic characteristics and outcomes of the study population.

P valuePlanned extubation (n=6666)Unplanned extubation (n=248)Characteristics and outcomes

.9762.1 (14.9)62.2 (13.8)Age (years), mean (SD)

<.001Sex, n (%)

4319 (64.8)190 (76.6)Male

2347 (35.2)58 (23.4)Female

.32Cardiopulmonary resuscitation, n (%)

6377 (95.7)241 (97.2)No

289 (4.3)7 (2.8)Yes

<.001Surgery, n (%)

3471 (52.1)184 (74.2)No

3195 (47.9)64 (25.8)Yes

<.001Intubation location, n (%)

611 (9.2)33 (13.3)Emergency room

3997 (60.0)176 (71.0)Intensive care unit (ICU)

1298 (19.5)17 (6.9)Operating room

760 (11.4)22 (8.9)Ward or others

<.001Reason for ICU admission, n (%)

2459 (36.9)138 (55.6)Respiratory

909 (13.6)41 (16.5)Cardiovascular

2345 (35.2)38 (15.3)Perioperative

953 (14.3)31 (12.5)Others

<.001Use of physical restraint, n (%)a

4275 (64.1)96 (38.7)No

2391 (35.9)152 (61.3)Yes

<.001Work shift, n (%)

4121 (61.8)94 (37.9)Day (7 AM to 3 PM)

2123 (31.8)62 (25.0)Evening (3 PM to 11 PM)

422 (6.3)92 (37.1)Night (11 PM to 7 AM)

<.001ICU mortality, n (%)

5847 (87.7)198 (79.8)No

819 (12.3)50 (20.2)Yes

<.001In-hospital mortality, n (%)

4792 (71.9)150 (60.5)No

1847 (28.1)98 (39.5)Yes

<.001Reintubation within 24 hours, n (%)

6128 (91.9)149 (60.1)No

538 (8.1)99 (39.9)Yes

.172.9 (4.0)2.7 (3.3)Mechanical ventilation days, median (IQR)

.2925.0 (33.9)27.5 (32.3)Hospital days, median (IQR)

aUse of physical restraint indicates whether physical restraint was applied in a case when extubated.
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Table 3. Characteristics of the development and validation sets.

Validation sets (n=191)Development sets (n=1004)Characteristicsa

Control (n=152)Case (n=39)Control (n=795)Case (n=209)

63.71 (14.97)66.10 (13.13)61.85 (14.39)61.43 (13.86)Age (years), mean (SD)

Sex, n (%)

100 (65.8)31 (79.5)522 (65.7)159 (76.1)Male

52 (34.2)8 (20.5)273 (34.3)50 (23.9)Female

Surgery, n (%)

30 (19.7)5 (12.8)294 (37.0)52 (24.9)No

122 (80.3)34 (87.2)501 (63.0)157 (75.1)Yes

Intubation location, n (%)

24 (15.8)7 (17.9)61 (7.7)26 (12.4)Emergency room

107 (70.4)27 (69.2)541 (68.1)149 (71.3)Intensive care unit (ICU)

13 (8.6)2 (5.1)94 (11.8)15 (7.2)Operating room

8 (5.3)3 (7.7)99 (12.5)19 (9.1)Ward or others

Reason for ICU admission, n (%)

24 (15.8)2 (5.1)237 (29.8)36 (17.2)Respiratory

29 (19.1)11 (28.2)108 (13.6)30 (14.4)Cardiovascular

24 (15.8)2 (5.1)237 (29.8)36 (17.2)Perioperative

32 (21.1)3 (7.7)109 (13.7)28 (13.4)Others

Recording frequency, mean (SD)

0.99 (0.45)1.15 (0.43)0.55 (0.53)0.65 (0.63)Confusion Assessment Method for the Intensive Care Unit (CAM-ICU)

2.28 (2.72)3.69 (3.64)2.02 (2.84)3.75 (5.93)Richmond Agitation-Sedation Scale (RASS)

2.91 (1.74)2.59 (0.85)3.52 (2.16)3.38 (1.93)Glasgow Coma Scale (GCS)

2.79 (1.77)2.54 (1.05)3.18 (2.19)3.01 (1.79)Upper-limb motor power

2.79 (1.77)2.51 (1.05)3.17 (2.19)3.01 (1.79)Lower-limb motor power

0.59 (0.67)0.95 (0.69)0.61 (0.84)1.00 (1.07)Use of physical restraint

Nearest value of CAM-ICU, n (%)

48 (31.6)14 (35.9)148 (18.6)49 (23.4)Negative

57 (37.5)24 (61.5)151 (19.0)59 (28.2)Positive

38 (25.0)1 (2.6)135 (17.0)18 (8.6)Unable to access

9 (5.9)0 (0)361 (45.4)83 (39.7)Missing

Nearest value of RASS, n (%)

42 (28.2)2 (5.6)213 (26.9)20 (9.8)less than –2

43 (28.9)7 (19.4)166 (20.9)31 (15.1)–2 or –1

26 (17.4)9 (25.0)190 (24.0)51 (24.9)0

25 (16.8)4 (11.1)163 (20.6)60 (29.3)+1 or +2

13 (8.7)14 (38.9)61 (7.7)43 (21.0)more than +2

Nearest value of GCS, mean (SD)

3.04 (1.08)3.54 (0.68)2.93 (1.15)3.38 (0.93)Eye response

5.05 (1.60)5.79 (0.52)4.86 (1.71)5.49 (1.19)Motor response

Nearest value of upper-limb motor power, mean (SD)

2.99 (1.59)4.00 (0.76)3.04 (1.62)3.70 (1.31)Right

3.00 (1.59)4.10 (0.60)3.05 (1.62)3.72 (1.26)Left
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Validation sets (n=191)Development sets (n=1004)Characteristicsa

Control (n=152)Case (n=39)Control (n=795)Case (n=209)

Nearest value of lower-limb motor power, mean (SD)

2.59 (1.54)3.44 (1.05)2.59 (1.62)3.00 (1.48)Right

2.62 (1.56)3.44 (1.05)2.62 (1.61)3.03 (1.48)Left

Nearest value of use of physical restraint, n (%)

79 (52.0)13 (33.3)460 (57.9)84 (40.2)No

73 (48.0)26 (66.7)335 (42.1)125 (59.8)Yes

Work shift, n (%)

61 (40.1)16 (41.0)296 (37.2)78 (37.3)Day (7 AM to 3 PM)

38 (25.0)13 (33.3)242 (30.4)49 (23.4)Evening (3 PM to 11 PM)

53 (34.9)10 (25.6)257 (32.3)82 (39.2)Night (11 PM to 7 AM)

aFor time-series features, the recording frequency over 8 hours prior to the time point and the nearest value to the time point were derived.

Model Development and Assessment
A total of 50 features, selected through a recursive
feature-elimination technique among the 66 candidates, reflected
demographic characteristics and patterns of change in the
time-series data. The features, their importance scores, and their
variable types are listed in Multimedia Appendix 2. The list of
the selected features with their corresponding importance scores
are plotted in Multimedia Appendix 3.

We developed machine learning–based prediction algorithms
using RF, LR, ANN, and SVM. The average AUROCs and 95%
CIs for internal validation in the development sets were 0.732
(95% CI 0.705-0.759) for RF, 0.703 (95% CI 0.676-0.730) for
LR, 0.670 (95% CI 0.637-0.702) for ANN, and 0.689 (95% CI
0.668-0.710) for SVM.

For each model, the highest value of specificity among the
sensitivities over 0.85 was selected as the cutoff point of the
threshold. In terms of the machine learning models, the best
model was RF, with the highest performance values at the

selected threshold, where AUROC was 0.787 and sensitivity,
specificity, NPV, PPV, F1 score, and ICI were 0.949, 0.388,
0.967, 0.285, 0.438, and 0.048, respectively. The performance
values of the prediction models are listed in Table 4. The
models’ AUROCs are shown in Figure 3.

The performance of the best model was evaluated using the
Brier score, the ICI, and decision curve analysis. The calibration,
agreement between observed outcomes and predicted risk
probabilities, was assessed with the slope of the calibration
curve and the Brier score. The RF model was well-calibrated,
and the Brier score and ICI were 0.129 and 0.048, respectively.
The calibration curve of the best model is shown in Figure 4.
The decision curve compared the net benefit of the best model
and alternative approaches for clinical decision making. The
decision curve showed superior net benefit when the best model
was used compared to the alternative approaches of “predicting
all as a UE” or “predicting none as a UE” over a threshold
probability range of 6% to 78%. Our selected threshold was
14%, and it showed potentially superior clinical utility. The
decision curve of the best model is presented in Figure 5.

Table 4. Comparison of performance values of the prediction models.

ICIdF1 scorePPVcNPVbSpecificitySensitivityAUROCaModel

0.0480.4380.2850.9670.3880.9490.787Random forest

0.0250.4070.2590.9580.3030.9490.762Linear regression

0.0770.3830.2400.9460.2300.9490.763Artificial neural network

0.0500.3830.2430.9150.2830.8970.740Support vector machine

aAUROC: area under the receiver operating characteristic curve.
bNPV: negative predictive value.
cPPV: positive predictive value.
dICI: integrated calibration index.
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Figure 3. Receiver operating characteristic curves for all of the unplanned extubation prediction models. ANN: artificial neural network; AUROC:
area under the receiver operating characteristic curve; LR: linear regression; RF: random forest; SVM: support vector machine.

Figure 4. The calibration curve and the integrated calibration index (ICI) of the best model.
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Figure 5. The decision curve of the best model. UE: unplanned extubation.

Discussion

Principal Findings
For patient safety, prevention and early detection of clinical
error is an essential component of high-quality care [1]. The
proposed prediction model is expected to screen and monitor
ICU patients effectively when applied to the clinical setting. To
the best of our knowledge, this is the first machine
learning–based prediction model for UE incidents, and it is an
algorithm that predicts the UE within 1 hour, allowing clinical
staff to take appropriate action to prevent UE. In the previous
study, a simple LR-based statistical model was presented where
the data were not divided into training and test sets [39].

The limitation of the machine learning prediction model is
related to its ability to exhibit good performance in a real clinical
setting. Our study assessed the performance of the UE prediction
model; the best model demonstrated good calibration and net
benefit over a wide range of threshold probabilities. This
prediction model shows potentially superior clinical utility based
on decision curve analysis [40].

Comparison With Prior Work
Existing UE risk assessment tools and applications will have a
limited impact if they include additional work for the nurses,
such as requiring additional assessments or documentation tasks.
An EHR-based prediction algorithm can automatically calculate
the risk for clinical staff without any additional workload.

Alarm fatigue in the ICU is another major concern that disrupts
the workflow of the clinician and can significantly impact patient
safety [41]. The UE prediction model is intended to be used as
a screening tool for predicting potential UE events, otherwise
the false alarm rate would be high due to the low specificity
and PPV [42]. Therefore, clinician stakeholders would need to
be engaged in identifying ways to ensure that the alert is
integrated into the clinical workflow in a way that is actionable.
Clinicians should also be involved in setting appropriate
threshold values based on their practice, workflow, and purpose
for adopting the algorithm [43].

In previous studies, agitation was the most important factor
among patient-associated risk factors for UE incidence. The
incidence rate of UE varies according to the patient’s level of
consciousness, recording frequency, and age; in addition,
physical restraints were significant risk factors for UE
(Multimedia Appendix 2). Recording frequency is presented as
an important feature, and frequent recording of the patient’s
condition in clinical practice provides an interpretation that
improves predictions.

Further, this study revealed that the use of physical restraints
was higher in the UE group. Though physical restraints are
frequently used in ICUs to prevent UE [44,45], it can increase
the risk of UE [46]. A factor that can be attributed to this ironic
result is the use of restraints evoking delirium, which is related
to self-extubation [47]. However, the physical restraints may
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have been warranted as a safety measure, but insufficiently
applied and, therefore, unable to prevent UE.

Limitations
This study was retrospective and carried out in a single center.
To improve the model’s performance and for precise comparison
among machine learning–based models, comparatively large
clinical data sets and multicenter validation are required. All
developed models seemed to have similar performances,
assuming that small evaluation data sets caused this. Further,
prospective studies are required to verify the algorithm’s
performance.

There are limitations in terms of the number of small data sets
and random sampling for the control 2 group, resulting in a
biased sample. Although UE is a significant complication in
the ICU, its incident rate was reported to be low in the previous
studies. Thus, it is complicated to obtain large amounts of data
on events related to patient safety accidents. Obtaining ample
data is a crucial concern in machine learning. Validating a
prediction model requires a minimum of 100 events and 100
nonevents; however, our validation data set did not include 100
events. Instead, our study had 15 events per candidate predictor
in the development data set and satisfied the well-used “rule of
thumb.” Nevertheless, machine learning is possible with the

use of small data sets [48-50]. We conducted a stratified
undersampling method to avoid overfitting, and data were
sampled randomly. This method can potentially discard
important information or results in a biased sample.

In this study, we included short-term mortality (ie, ICU
mortality) and in-hospital mortality. We could not follow up on
deaths of patients after discharge. Further, we have not
considered long-term survival and correlation between
comorbidity and duration of mechanical ventilation.

Future Research
The models were developed retrospectively and carried out in
a single center; therefore, future prospective evaluation and
validation using other data sets are required.

Conclusions
We developed a machine learning prediction model for UE
patients. The best AUROC was 0.787, and the sensitivity was
0.949 at the selected threshold for the best model. The best
model was well-calibrated, and the Brier score and ICI were
0.129 and 0.048, respectively. The proposed prediction model
uses widely available variables to limit the additional workload
on the clinician. Further, this evaluation suggests that the model
holds potential for clinical usefulness.
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