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Abstract

Background: The COVID-19 pandemic began in early 2021 and placed significant strains on health care systems worldwide.
There remains a compelling need to analyze factors that are predictive for patients at elevated risk of morbidity and mortality.

Objective: The goal of this retrospective study of patients who tested positive with COVID-19 and were treated at NYU (New
York University) Langone Health was to identify clinical markers predictive of disease severity in order to assist in clinical
decision triage and to provide additional biological insights into disease progression.

Methods: The clinical activity of 3740 patients at NYU Langone Hospital was obtained between January and August 2020;
patient data were deidentified. Models were trained on clinical data during different parts of their hospital stay to predict three
clinical outcomes: deceased, ventilated, or admitted to the intensive care unit (ICU).

Results: The XGBoost (eXtreme Gradient Boosting) model that was trained on clinical data from the final 24 hours excelled
at predicting mortality (area under the curve [AUC]=0.92; specificity=86%; and sensitivity=85%). Respiration rate was the most
important feature, followed by SpO2 (peripheral oxygen saturation) and being aged 75 years and over. Performance of this model
to predict the deceased outcome extended 5 days prior, with AUC=0.81, specificity=70%, and sensitivity=75%. When only using
clinical data from the first 24 hours, AUCs of 0.79, 0.80, and 0.77 were obtained for deceased, ventilated, or ICU-admitted
outcomes, respectively. Although respiration rate and SpO2 levels offered the highest feature importance, other canonical markers,
including diabetic history, age, and temperature, offered minimal gain. When lab values were incorporated, prediction of mortality
benefited the most from blood urea nitrogen and lactate dehydrogenase (LDH). Features that were predictive of morbidity included
LDH, calcium, glucose, and C-reactive protein.

Conclusions: Together, this work summarizes efforts to systematically examine the importance of a wide range of features
across different endpoint outcomes and at different hospitalization time points.

(J Med Internet Res 2021;23(7):e29514) doi: 10.2196/29514
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Introduction

The first cluster of SARS-CoV-2 cases was reported in Wuhan,
Hubei Province, China, on December 31, 2019. With symptoms
remarkably similar to pneumonia, the disease quickly traveled
around the world, earning its pandemic status by the World
Health Organization on March 11, 2020. Although the first
wave has since passed for the hardest-hit regions, such as New
York City and most of Asia, a resurgence of cases has already
been reported in Europe and a record number of new cases has
been tallied in the Midwest and rural United States. As of
November 12, 2020, the United States alone logged its highest
tally to date, with a 317% growth over the preceding 30 days
[1]. COVID-19 is far from seeing the end of its days and there
remains a compelling need to prioritize care and resources for
patients at elevated risk of morbidity and mortality.

Previous work building machine learning models used patient
data from Tongji Hospital in Wuhan, China [2,3]; Zhongnan
Hospital in Wuhan, China [4]; Mount Sinai Hospital in New
York City, United States [5]; and NYU (New York University)
Family Health Center in New York City, United States [6].
Surprisingly, clinical features that were selected varied widely
across studies. For example, while McRae et al’s two-tiered
model [6] that was trained on 701 patients in New York City
to predict mortality was based on actual age, C-reactive protein
(CRP), procalcitonin, and D-dimer, Yan et al’s model [2] that
was trained on 485 patients from Wuhan selected lactate
dehydrogenase (LDH), lymphocyte count, and CRP as the most
predictive for mortality. Variations in selected features differed
greatly, even when trained to predict similar outcomes on data
from patients of the same city. Yao et al’s model [3] was trained
on 137 patients from Wuhan, and the final model relied on 28
biomarkers to predict morbidity. Given the differences among
prior models, some of which were driven by domain-specific
knowledge, we decided to systematically examine the
importance of a wide range of features across different endpoint
outcomes and at different hospitalization time points.

This study analyzed retrospective polymerase chain reaction
(PCR)–confirmed data from inpatients with COVID-19 that
were collected at NYU Langone Hospital, spanning from
January 1 to August 7, 2020, to predict three sets of clinical
outcomes: alive versus deceased, ventilated versus not
ventilated, or intensive care unit (ICU) admitted versus not ICU
admitted. The clinical information of 3740 patient encounters
included demographic data (ie, age, sex, insurance, past
diagnosis of diabetes, and presence of cardiovascular
comorbidities), vital signs (ie, SpO2 [peripheral oxygen
saturation], pulse, respiration rate, temperature, systolic blood
pressure, and diastolic blood pressure), and the 50 most
frequently ordered lab tests in our data set. Models were
developed using two methods: logistic regression with feature
selection using the least absolute shrinkage and selection
operator (LASSO) [7] and gradient tree boosting with XGBoost
(eXtreme Gradient Boosting) [8]. An explainable algorithm,
such as logistic regression, provides easy-to-interpret insights
into the features of importance. Conversely, the larger model

capacity of XGBoost better handles data complexities to explore
the extent to which predictive performance can be optimized.
Together, this study aimed to provide a holistic survey of the
clinical underpinnings of disease etiology for patients with
COVID-19 admitted to NYU Langone Hospital. In addition,
we sought to explore the prospects of building models that are
sufficiently competent to be effective decision support tools.

Methods

Ethics Statement
An ethics exemption and a waiver were confirmed through the
Institutional Review Board (IRB) at NYU Grossman School of
Medicine. An IRB self-certification form was completed to
ensure that the subsequent research did not fall under human
subject research; therefore, no IRB approval was required. The
deidentified COVID-19 NYU Langone Database was stripped
of all unique identifiers prior to receiving data. In addition, all
dates were shifted by an arbitrary number of days for each
patient. These safeguards ensured that patient data could not be
reidentified; thus, they were not subject to Health Insurance
Portability and Accountability Act (HIPAA) restrictions on
research use and did not require IRB approval.

Data Collection
The clinical activity of patients at NYU Langone Hospital was
obtained from Epic—electronic medical record
system—between January 1 and August 7, 2020. The data were
stripped of all unique identifiers (medical record numbers,
names, etc) and actual dates were shifted by an arbitrary number
of days for each patient, which ensured that no data were subject
to HIPAA restrictions and, thus, did not require IRB approval.

Clinical Data Preprocessing and Cleaning

Overview
Our data set contained 206,677 patients who were tested for
COVID-19, of which 12,473 (6.0%) tested positive (Multimedia
Appendix 1). Not all patients who tested positive sought hospital
care, and without vital signs or lab values, these patients were
excluded from analysis. In addition, a majority of the 175,507
patients diagnosed with COVID-19 did not receive in-house
PCR tests, which makes it difficult to distinguish which hospital
encounters were related to seeking COVID-19 treatment. Thus,
only patients for which we could confirm a positive PCR test
as reported by NYU Langone Hospital were included. The time
stamp of the first encounter in which a PCR test returned a
positive result was used as the starting date for each patient,
and the ending date was determined by either the time of
discharge for that encounter or the time of death. The clinical
features that were collected for each patient, along with their
definitions and additional processing steps, are described in the
following subsections.

Categorical Features
The categorical features collected for each patient are listed in
Textbox 1.
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Textbox 1. Categorical features.

Binned ages—to comply with Health Insurance Portability and Accountability Act restrictions on research use, exact patient ages were removed and
binned into predefined ranges, as determined by the Data Handling Committee:

• 0-17 years

• 18-44 years

• 45-64 years

• 65-74 years

• 75+ years

Gender:

• 0 for female

• 1 for male

Insurance type:

• 0 for preferred provider organization

• 1 for exclusive provider organization, health maintenance organization, point-of-service-plan, indemnity, Medicare, Medicare managed care, no
fault, and workers’ compensation

• 2 for Medicaid and Medicaid managed care

Diabetes:

• 1 for any past diagnosis mentioning diabetes

• 0 otherwise

Cardiovascular comorbidities:

• 1 for any of the following ICD-10 (International Statistical Classification of Diseases and Related Health Problems, 10th Revision) diagnosis
codes: I10-I16 (hypertensive diseases), I20-I25 (ischemic heart diseases), I50 (heart failure), I60-I69 (cerebrovascular diseases), and I72 (other
aneurysms)

• 0 otherwise

Continuous Features
For each of the following continuous features (Textbox 2),
multiple periodic measurements were recorded for each patient
by vital signs monitors. Measurements were binned into 24-hour

windows that began from time of hospitalization. Within each
window, values were averaged. Values were then standardized
to a mean of 0 and variance of 1. For each day, encounters
without all features listed in Textbox 2 were removed and were
not imputed.

Textbox 2. Continuous features.

• SpO2 (peripheral oxygen saturation) (%)

• Pulse (bpm [beats per minute])

• Respiration rate (bpm)

• Temperature (°F)

• Systolic blood pressure (mm Hg)

• Diastolic blood pressure (mm Hg)

Outcomes
The outcomes for each patient are listed in Textbox 3.
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Textbox 3. Patient outcomes.

Living status:

• 0 for alive

• 1 for dead

Ventilation at any point during hospitalization:

• 0 for no (did not receive any form of ventilation or only received noninvasive treatments; eg, nasal cannula, nonrebreather mask, etc)

• 1 for yes (received mechanical ventilation treatment)

Intensive care unit admission for any duration during hospitalization—criteria determined by medical triage team, balanced between disease severity
and hospital resource availability:

• 0 for no

• 1 for yes

Lab Data Selection and Cleaning
Lab tests with at least 50% completeness during the first 24
hours for all encounters were considered. Of the 54 lab tests
meeting these requirements, the estimated glomerular filtration
rate—non-African and African American—was removed due
to the formula’s dependency on lab features already selected
(ie, creatinine). In addition, the placeholders for ordering a
complete blood count with differential test and a COVID-19
PCR test were also removed. Missing lab values were imputed
using the multivariate imputation by chained equations
algorithm. Five imputations were generated using predictive
mean matching. After imputation, lab values were shifted up
by 1 and log-transformed. Model-building approaches that
incorporated lab features had individual models built for each
imputation.

Feature Selection and Model Building
All models were trained with a training data to validation data
ratio split of 90:10. Features for logistic regression were selected
using LASSO and optimized for a penalty parameter that was
1 standard error above the minimum deviance for additional
shrinkage. The XGBoost parameters were identified using a
hyper-parameter search within the following constraints:
nrounds=1000; η=0.3, 0.1, or 0.01; max_depth=2, 3, 4, 5, 6, 7,
or 8; min_child_weight=0 to 1, by 0.1 increments; and γ=0 to
1, by 0.1 increments. To account for class imbalance,
sample-weighted loss was employed when calculating the loss.

For models that were trained on the final day of discharge or
death, the performance on predicting outcomes in all preceding
days was evaluated on the entire data set rather than just a 10%
subset. Data from previous days were not used in the training
of these endpoint models and, thus, can all serve as validation
data.

Time Series Modeling
In each feature setting, all variables were combined and missing
values at each time point were imputed with the immediate

previous value (ie, forward filling). After imputation, time points
with incomplete feature measurements were discarded, and each
patient record was segmented into nonoverlapping sequences
of length 8. Patients were randomly assigned to training,
validation, and testing groups in an 8:1:1 ratio for three
independent splits. All models were implemented in Python 3.6
(Python Software Foundation) with built-in units in TensorFlow
2 and Keras [9]. Logistic regression was fit as a neural network
with the sigmoid output node immediately after the input layer.
For multilayer perceptron (MLP), recurrent neural network
(RNN), gated recurrent unit (GRU), and long short-term memory
(LSTM) models, a hidden layer of size 8 was added, and the
time series models (ie, RNN, GRU, and LSTM) were unrolled
over eight time points and trained with true labels provided at
each step. Five randomly initialized models were trained for all
architectures on each training, validation, and testing split.
Model performance was evaluated based on all single time point
predictions and reported as a mean value across all splits.

Data Availability
The data that support the findings of this study were obtained
from the Medical Center Information Technology (MCIT) at
NYU Langone Health, but restrictions apply to the availability
of these data and, therefore, they are not publicly available due
to specific institutional requirements.

Results

More than half of all patients in our data set were over the age
of 65 years, with pediatric patients (0-17 years) having the
lowest representation (Figure 1A and Multimedia Appendix 2).
Generally, the proportion of deceased patients increased with
age, peaking at 38.5% (422/1097) for those 75 years and over,
15.9% (193/1211) for those 45 to 64 years, and 0% for pediatric
patients. Most patients who were either ventilated or admitted
to the ICU belonged to the 65-to-74-years age group, followed
by those 45 to 64 years and 75 years and over.
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Figure 1. Overview of the clinical data set. A. Patient ages were binned by predefined ranges and the ratio of outcomes compared across age groups.
B. For each patient, hospitalization stay was normalized by length of stay and segmented into 5% windows. Within each window, all values for the
measured clinical variable were averaged. Each line is colored by the six possible outcomes. ICU: intensive care unit; SpO2: peripheral oxygen saturation.

Aggregation of values for commonly acquired clinical metrics
over normalized time courses offered meaningful insights into
disease progression. Each patient’s hospitalization stay was
segmented into 5% windows, and clinical metrics were averaged
within each bin (Figure 1B). We first examined the difference
of average vital sign measurements between cohorts with
different outcomes. The value of SpO2 was statistically different

for all three outcome comparisons in the first 5% of
hospitalization time (Wilcoxon test: P<.001, P<.001, and
P<.001). Over the clinical time course, the difference in SpO2

averages increased the most for those who would become
deceased, followed by those who were ICU admitted and
ventilated. Differences in respiration rate followed a similar
adverse trend, with breaths per minute increasing the most for
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those who would become deceased, followed by those who were
ventilated and ICU admitted. The divergence was present even
after accounting for overlapping deceased patients. When
considering the subset of patients who survived, ventilated
patients had 2.91 more breaths per minute (Wilcoxon test:
P<.001), and ICU-admitted patients had 2.90 more breaths per
minute (Wilcoxon test: P<.001). At the beginning of the time
course, differences in temperature were small (0.05 °F, 0.11 °F,
and 0.06 °F, respectively) and not statistically significant for
those who would become deceased (Wilcoxon test: P=.13), but
differences were statistically significant for those who were
ventilated (Wilcoxon test: P<.001) or were admitted to ICU
(Wilcoxon test: P<.001). Pulse differences at the beginning
were not significantly different for those who were ventilated
(Wilcoxon test: P=.29) but were significantly different for those
who would become deceased (Wilcoxon test: P<.001) and ICU
admitted (Wilcoxon test: P<.001). Systolic and diastolic blood
pressure values were continuously lower for patients with worse
outcomes in this data set.

To assess the effectiveness of these vital signs to triage clinical
outcomes, only data collected in the first 24 hours after
admission were initially considered. Specifically for the
ventilation outcome, respiration rates and SpO2 levels may be
influenced by the time point when mechanical ventilation was
administered. Of 3740 encounters, 7.0% (262/3740) were
ventilated within the first 24 hours of admission. To assess the
bias that early administration of mechanical ventilation during
the first 24 hours may have on respiration rate and SpO2 levels,
the distribution of values was compared against a filtered subset
containing only values recorded prior to the start of ventilation.
At the per-encounter level, the difference in respiration rates
(Wilcoxon test: P=.26; Multimedia Appendix 3, plot A) and
SpO2 levels (Wilcoxon test: P=.20; Multimedia Appendix 3,
plot B) were not significantly different. Given (1) that 93.0%
(3478/3740) of encounters were not influenced by early

ventilation treatment, (2) the insignificant difference in
distributions, and (3) the desire to keep feature selection
consistent across models, all values recorded within the first 24
hours were included. For each encounter, continuous features
with multiple recordings (ie, SpO2, pulse, respiration rate,
temperature, systolic blood pressure, and diastolic blood
pressure) were averaged and then standardized to a mean of 0
and a standard deviation of 1.

For logistic regression, features were selected using LASSO
with 10-fold cross-validation. Grid search was used to optimize
XGBoost parameters (Multimedia Appendix 4). When trained
on data from the first 24 hours, the logistic model had area under
the curve (AUC) performances of 0.79, 0.80, and 0.77;
specificities of 59%, 78%, and 79%; and sensitivities of 86%,
74%, and 68%, respectively (Figure 2A). XGBoost performed
similarly, with AUC performances of 0.80, 0.80, and 0.77;
specificities of 59%, 83%, and 69%; and sensitivities of 86%,
70%, and 77%, respectively (Figure 2B).

In both logistic regression and gradient tree boosting settings,
features of importance varied across clinical outcomes (Figure
2C). For logistic regression models of the three outcomes,
respiration rate, SpO2, and cardiovascular comorbidity were
among predictive features, but age groups were selected only
for predicting mortality. For boosting tree models, feature
importance measures showed that respiration rate was
consistently the most important feature for all three outcomes,
and the age category 18 to 44 years was the second most
important feature only for vital status. Respiration rate and SpO2

were important for predicting all three outcomes. Differences
in temperature were not strongly predictive in any cohort in
either model; this finding and temperature’s insignificant
difference in the deceased outcome group together suggest that
its role in screening for increased disease severity may not be
dependable.
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Figure 2. Predictive performance using clinical data from the first 24 hours. A. Receiver operating characteristic (ROC) curve and precision-recall
curve (PRC) for logistic regression model. B. ROC curve and PRC for XGBoost (eXtreme Gradient Boosting) model. C. Coefficient weights for the
logistic model are recorded on the left. Model performance gains for XGBoost are listed on the right. AUC: area under the curve; AUPRC: area under
the precision-recall curve; Dbp: diastolic blood pressure; ICU: intensive care unit; Resp: respiration rate; Sbp: systolic blood pressure; SpO2: peripheral
oxygen saturation; Temp: temperature.

The 50 most frequently collected lab values and their relative
importance were also studied. A t-distributed stochastic neighbor
embedding plot (Figure 3A) suggests lack of clustering among
lab features and overall low correlation (Figure 3B) in pairwise
comparisons (|μ|=0.08; |σ|=0.10). Local pockets of correlation

(|r|≥0.83) were identified between hemoglobin, hematocrit, and
red blood cell count; absolute neutrophils and white blood cell
count; and bilirubin direct and bilirubin total. Each of these sets
measures variables that are clinically interdependent and, thus,
expected.
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Figure 3. Overview of lab features collected in the first 24 hours. A. A t-distributed stochastic neighbor embedding plot based on previously collected
clinical features and new lab values. B. Pairwise Pearson correlation heat map. Alt: alanine aminotransferase; Ast: aspartate aminotransferase; Dbp:
diastolic blood pressure; ICU: intensive care unit; Inr: international normalized ratio; Ldh: lactate dehydrogenase; rbc: red blood cell; Resp: respiration
rate; Rdw-cv: red cell distribution width–coefficient of variation; Rdw-sd: red cell distribution width–standard deviation; Resp: respiration rate; Sbp:
systolic blood pressure; SpO2: peripheral oxygen saturation; Temp: temperature.

Incorporating lab features into the predictive models marginally
improved performance. Logistic regression had AUC
performances of 0.83, 0.81, and 0.78; specificities of 68%, 70%,
and 69%; and sensitivities of 85%, 83%, and 74%, respectively
(Figure 4A). The XGBoost model performed better, with AUC
increasing to 0.84, 0.79, and 0.78; specificities of 71%, 72%,

and 65%; and sensitivities of 83%, 73%, and 78%, respectively
(Figure 4B). For logistic regression, blood urea nitrogen (BUN)
and albumin were among the lab features (Figure 4C) that were
predictive of mortality. The XGBoost model found the most
performance gain from BUN and LDH. Feature importance for
predicting ventilation or ICU admission differed between
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models. For ventilation, logistic regression selected calcium,
glucose, and CRP with large absolute coefficient values, while
XGBoost identified calcium, glucose, CRP, and LDH as
important features. For those admitted to ICU, XGBoost
benefited from the same lab features, while monocyte percentage

and carbon dioxide were additionally selected for by logistic
regression. Of note, for XGBoost, no lab feature showed a higher
importance measure than did respiration rate and SpO2 for all
three outcomes.

Figure 4. Predictive performance after incorporating lab features. A. Receiver operating characteristic (ROC) curve and precision-recall curve (PRC)
for logistic regression model. B. ROC curve and PRC for the XGBoost (eXtreme Gradient Boosting) model. C. Coefficient weights for the logistic
model are recorded on the left. Model performance gains for XGBoost are listed on the right. Alt: alanine aminotransferase; Ast: aspartate aminotransferase;
AUC: area under the curve; AUPRC: area under the precision-recall curve; Dbp: diastolic blood pressure; ICU: intensive care unit; Inr: international
normalized ratio; Ldh: lactate dehydrogenase; rbc: red blood cell; Resp: respiration rate; Rdw-cv: red cell distribution width–coefficient of variation;
Rdw-sd: Red cell distribution width–standard deviation; Sbp: systolic blood pressure; SpO2: peripheral oxygen saturation; Temp: temperature.

Finally, models trained on data collected in the last 24 hours
excelled at predicting which patients would become deceased.
The logistic regression model (Figure 5A) had an AUC
performance of 0.91, specificity of 88%, and sensitivity of 84%.
The XGBoost model (Figure 5B) had an AUC performance of

0.92, specificity of 86%, and sensitivity of 85%. The importance
of respiration rate increased for XGBoost (Figure 5C),
accounting for more than 50% of the gain. Values of SpO2 and
being aged 75 years and over were the next most important
features.
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Figure 5. Predictive performance of deceased using clinical data from the final 24 hours. A. Receiver operating characteristic (ROC) curve and
precision-recall curve (PRC) for the logistic regression model. B. ROC curve and PRC for the XGBoost (eXtreme Gradient Boosting) model. C.
Coefficient weights for the logistic model are recorded on the left. Model performance gains for XGBoost are listed on the right. D. Performance of
models to predict deceased outcome was assessed using clinical data from the preceding 30 days. Plots track the area under the curve (AUC), area under
the precision-recall curve (AUPRC), specificity, and sensitivity when using the threshold that maximized the sum of the sensitivity and specificity
(Youden’s J statistic). Dbp: diastolic blood pressure; ICU: intensive care unit; Resp: respiration rate; Sbp: systolic blood pressure; SpO2: peripheral
oxygen saturation; Temp: temperature.

Using the same coefficients and tree weights and structures,
both models were assessed based on clinical data from the
preceding 30 days (Figure 5D). With cutoffs of 0.80 for AUC,
and 70% for specificity and sensitivity, logistic regression was

able to predict a deceased outcome 4 days in advance
(AUC=0.82; specificity=85%; and sensitivity=71%) and 5 days
in advance (AUC=0.81; specificity=70%; and sensitivity=75%)
for XGBoost. Models were not trained on those ventilated or
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ICU admitted, as these events are unlikely to occur in the final
24 hours preceding discharge and death. Lab values were not
incorporated because few blood tests were ordered in the final
24 hours.

To explore whether patient status can be dynamically predicted
based on past medical data, we also built time series models
using simple RNN, GRU, and LSTM architectures and
compared the performance metrics to single time point models
of logistic regression and MLP. A major goal is to explore
whether more complex modeling approaches are able to make
accurate and transferrable predictions. The vital status of each
patient was converted to a time series that was marked as
positive if the time point was within 3 days of the patient
becoming deceased (Figure 6A). The time series models (ie,
RNN, GRU, and LSTM) were trained to take medical data from
eight time points as input and infer the vital status at each point,
giving rise to a real-time risk prediction based on historical

records. The single time point models (ie, logistic regression
and MLP), on the other hand, only used medical data at the
current point to make the prediction. Model comparison was
carried out with three different feature sets: vital signs only (ie,
body temperature, pulse, respiration rate, systolic blood pressure,
diastolic blood pressure, and SpO2), vital signs and 46 lab results
with nonzero coefficients in the single time point LASSO
regression model, and vital signs and lab results plus static
demographic information (ie, sex, age group, diabetic history,
and comorbidities) (Multimedia Appendix 5). As the time series
data were recorded at uneven and irregular intervals, the
progression time (in days) was included in all models as an
additional feature. For models only including vital sign features,
time series models showed better performance (Figure 6B)
compared to single time point models, but performance was
comparable among all models when lab results and demographic
information was added to the feature set.

Figure 6. Time series model performance. A. Time series labels for mortality risk. Medical measurements are obtained at time points across the
admission period with uneven intervals. Green and red arrows represent time points with negative and positive (0/1) labels. B. Mean values of the area
under the precision-recall curve (AUPRC) and area under the receiver operating characteristics curve (AUROC) for five model architectures across
three feature settings. GRU: gated recurrent unit; LR: logistic regression; LSTM: long short-term memory; MLP: multilayer perceptron; PCR: polymerase
chain reaction; RNN: recurrent neural network.
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Discussion

Retrospective analysis of patients who tested positive for
COVID-19 identified recognizable clinical markers, such as
respiration rate and SpO2, but also provided insights
distinguishing morbidity (ie, ICU-admitted or ventilated
outcomes) from mortality (ie, deceased outcome). Our study
confirmed canonical risk factors that were previously established
(eg, age, respiration rate, and SpO2) as predictive of mortality
and morbidity, but also uncovered the surprising finding that
temperature was not predictive for mortality. In addition, lab
markers of physiological stress, including LDH, BUN, and CRP,
were found to be important for model prediction, but other
canonical indicators, such as procalcitonin, were not.

Our results aligned with previous work [10] analyzing patient
data from NYU Langone Health to predict absence of adverse
events within a 96-hour window as opposed to negative
outcomes. Several features of importance overlapped both
studies, notably respiration rate, SpO2, LDH, BUN, and CRP.
However, other selected features, such as temperature, platelet
count, pulse, and eosinophil percentage, were not found to be
important in our model.

Although the goal of stratifying patients by disease severity
aligned, the different approaches likely explain the differences
in variable explanation. Our study differs in that our models
were trained only on clinical data from the first 24 hours after
admission, as compared to continuously updating predictions
when new lab values were reported. Thus, features that are
important for outcome prediction at the time of admission will
differ from those that do a better job of modeling variations in
disease severity over time. In addition, we stratified our negative
outcomes into mortality and morbidity, and separated morbidity
further to compare those requiring ICU admission versus
ventilation. Eosinophil percentage was statistically different
between all three clinical outcomes, while temperature and pulse
were only different for morbidity and platelet counts were only
different for mortality (Multimedia Appendix 2). It is
hypothesized that patients exhibiting symptoms of fever and
increased pulse rate, likely a consequence of decreased SpO2

(r=–0.21 and –0.12, respectively), will likely be prioritized for
ICU care and/or ventilation. Although SpO2 and respiration rate
were consistently selected as predictive features across outcomes
and modeling methods, age groups were informative predictors
of mortality risk only. As expected, the mortality model
performed better than the morbidity models. These results
suggest that disease severity and mortality risks may require
unique modeling with different predictor subsets and weighting
factors. It is also consistent with the observation that senior
patients were the most vulnerable population, while the mortality
rate among the youth was relatively low [11].

In addition, although current evidence suggests that adults with
type 2 diabetes mellitus are at increased risk for COVID-19
complications, our XGBoost model did not find a past diagnosis
important for predicting morbidity or mortality. Only after
incorporating lab features did we identify a positive correlation
between exact glucose values and poorer outcomes. Together,
this observation suggests that the elevated blood sugar levels

observed may be the result of physiological stress triggered by
the disease. Indeed, prior work has shown that even when
controlled for pre-existing diabetes, hyperglycemia was
commonly observed in acutely ill hospitalized patients and
linked to poorer outcomes [12,13].

Other lab features also identified routine chemistry data points
that shed light on disease pathology. Values of LDH were
elevated for all three clinical outcomes, a finding consistent
with widespread tissue damage that has been shown in numerous
studies to be a predictor of morbidity and mortality in a wide
variety of diseases beyond COVID-19 [14-18]. Mortality was
also predicted for by BUN. To investigate further the possibility
of any relationship to acute kidney injury, we retrained our
models with a BUN to creatinine ratio as an additional feature.
While correlated with mortality (r=0.17), the feature was not
selected for by LASSO, and was only of importance when BUN
was removed from the training data set. Indeed, recent literature
has revealed that BUN is emerging as an independent predictor
of mortality in a variety of diseases, including heart failure [19],
aortic dissection [20], and acute pancreatitis [21]. It has also
been proposed that BUN is an important indicator for metabolic
diseases and general nutritional status of patients, explaining
its relative importance in the prediction for mortality. The
relationship here is unclear and warrants further investigation.

Interestingly, calcium level upon admission was a more
important predictor of morbidity in our models than
procalcitonin was. As a peptide precursor of calcitonin, a
hormone involved in calcium homeostasis, procalcitonin is also
an acute phase reactant that has been used historically, albeit
controversially, to help diagnose bacterial pneumonia [22-24].
Although many studies [25-27] have described a positive
relationship between procalcitonin levels and mortality and
morbidity in patients with COVID-19, few have commented
on the importance of calcium as a prognostic value, as we have
found in our study. Calcium was negatively correlated with all
three measured clinical outcomes, which is consistent with other
studies linking hypocalcemia with increased morbidity and
mortality in patients with COVID-19 [28-30]. Theoretically,
hypocalcemia could be a result of increased procalcitonin, since
procalcitonin is the precursor of calcitonin whose function is
to reduce serum calcium. Interestingly, it has been reported that
in a systemic inflammatory response, serum calcitonin does not
increase concordantly in response to increased procalcitonin.
This situation could indicate that calcium is a predictive factor
through an entirely different mechanism than the more
well-established procalcitonin. One theory is that alteration of
calcium homeostasis is perhaps used as a strategy by the
SARS-CoV-2 virus for survival and replication, since calcium
is essential for virus structure formation, entry, gene expression,
virion maturation, and release. Another possibility is that
patients who present with hypocalcemia have pre-existing
parathyroid hormone (PTH) and vitamin D imbalances that are
exacerbated by SARS-CoV-2 infection. Our study could not
evaluate the importance of PTH or vitamin D due to infrequent
lab orders (0.21% and 0.08% completeness, respectively).

While the inclusion of lab features resulted in only modest
improvement for ventilation and ICU admission prediction, lab
values did result in larger increases in performance metrics for
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mortality prediction. However, time series modeling failed to
improve prediction performance with more clinical features.
This observation is likely due to the fact that laboratory results
were sampled much less frequently than vital sign readings.
Moreover, treating static demographic information as repeating
time series measurements may be suboptimal for recurrent
models. As discussed above, laboratory measurements may help
in modeling mortality risk of patients, and future work will
focus on efficiently incorporating these static features for
dynamic predictions [31,32].

A key limitation of our data set revolves around balancing
inclusion criteria to maximize the number of encounters
available for model training, while also limiting the amount of
missing data. For example, patients who test positive for
COVID-19 and present with less severe symptoms in outpatient
or telehealth settings may not have a complete set of vital signs
or any lab values available. Similarly, past medical histories

are dependent on an accurate recollection on the patient’s part,
either through a past hospital encounter or at the time of
admission. In addition, it is possible that the comorbidities
designation in our data set may have false negatives. Because
patient histories are often self-reported, it is possible that
admitted patients with no prior encounters with the hospital, or
either the physical or cognitive inability to verbalize such history
at the time of triage, would not have such indication available
in the electronic health record. However, this reflects real-world
medical situations, in which diagnoses must be made based on
unverifiable patient data or delayed lab results. Finally, as data
were retrospectively gathered from Epic during the early stages
of the pandemic, when diagnostic and treatment protocols were
still being developed, a concerted effort to gather novel
biomarker tests that have later been shown to be linked with
disease severity is not expected. As time draws on and new
variants emerge, we also expect that repeated studies will be
needed to survey changes to risk factors.
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