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Abstract

Background: The COVID-19 pandemic has changed public health policies and human and community behaviors through
lockdowns and mandates. Governments are rapidly evolving policies to increase hospital capacity and supply personal protective
equipment and other equipment to mitigate disease spread in affected regions. Current models that predict COVID-19 case counts
and spread are complex by nature and offer limited explainability and generalizability. This has highlighted the need for accurate
and robust outbreak prediction models that balance model parsimony and performance.

Objective: We sought to leverage readily accessible data sets extracted from multiple states to train and evaluate a parsimonious
predictive model capable of identifying county-level risk of COVID-19 outbreaks on a day-to-day basis.

Methods: Our modeling approach leveraged the following data inputs: COVID-19 case counts per county per day and county
populations. We developed an outbreak gold standard across California, Indiana, and Iowa. The model utilized a per capita running
7-day sum of the case counts per county per day and the mean cumulative case count to develop baseline values. The model was
trained with data recorded between March 1 and August 31, 2020, and tested on data recorded between September 1 and October
31, 2020.

Results: The model reported sensitivities of 81%, 92%, and 90% for California, Indiana, and Iowa, respectively. The precision
in each state was above 85% while specificity and accuracy scores were generally >95%.

Conclusions: Our parsimonious model provides a generalizable and simple alternative approach to outbreak prediction. This
methodology can be applied to diverse regions to help state officials and hospitals with resource allocation and to guide risk
management, community education, and mitigation strategies.

(J Med Internet Res 2021;23(7):e28812) doi: 10.2196/28812
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Introduction

Background
The COVID-19 pandemic has impacted the health and
well-being of individuals, communities, and economies
worldwide at a hitherto unprecedented scale [1-3]. On March
11, 2020, the World Health Organization declared COVID-19

a pandemic with over 118,000 confirmed cases and 4291 deaths
in over 114 countries [4]. To date, the pandemic has resulted
in over 170 million confirmed cases, with over 3.5 million
deaths globally [5]. In the United States, 33 million people have
had COVID-19 and more than 600,000 lives have been lost [5].

At the height of the pandemic, waves of viral outbreaks placed
health systems across the globe under extended strain, leading
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to shortages in hospital beds, personal protective equipment,
and health care personnel, which caused significant disruptions
to health care delivery and loss of life [2,6]. Experts have
estimated the cumulative financial costs of the COVID-19
pandemic related to lost output and health reduction at US $16
trillion, or approximately 90% of the annual gross domestic
product of the United States [7].

In contrast with historical pandemics, the availability of public
and population health information systems has enabled
researchers to collaborate on many research activities in
response to COVID-19 [8,9]. Since the onset of the pandemic,
data scientists have collaborated with governmental
organizations to create various public-facing COVID-19
dashboards that provide easy access to descriptive statistics and
other metrics [10,11]. Information on COVID-19–related
mortality, utilization of health care resources, and recovery has
been crucial in increasing situational awareness to inform
ongoing pandemic response efforts across communities [12,13].

Most recently, COVID-19 infection rates have started to
decrease in response to increased vaccination and efforts in
public education [14,15]. To date, 40% of the population of the
United States is fully vaccinated [16]. These improvements
have led to an interest in relaxing or revoking various restrictions
enforced at the state and county levels. While important to the
well-being of both communities and economies, such decisions
may be dangerous if undertaken without adequate preplanning
and awareness of potential risks. As such, effective identification
of potential outbreaks of COVID-19 offers the ability to inform
decision-makers across governmental and public health sectors
on how to resume normal day-to-day activities in their
communities and deploy limited human and treatment resources
to where they are most needed [17].

Previous studies have demonstrated the potential to apply
analytical models to identify potential outbreaks in response to
other diseases [18]. However, these methods rely on large,
complex data sets extracted from a specific health system or
region [19-21]. Such data sets may be challenging and
time-consuming to collect, leading to delays in generating timely
predictions. Further, models trained using locale-specific data
sets may not be generalizable across other locations [22],
hindering the potential of reusing such models across other
patient populations and regions. A variety of models are trained
using complex algorithmic approaches such as neural networks
and deep learning models. Such machine learning approaches
may yield superior results but fail to achieve widespread
acceptance [23] owing to challenges in explainability and
interpretation [24].

In contrast, a less complex modeling approach that uses a subset
of easily obtainable key elements widely captured across broad
geographic regions may be less challenging to develop. Further,
such models may also deliver adequate predictive performance
without sacrificing explainability and interpretability. Such
parsimonious models may also present less risk of overfitting
on training data sets, thus allowing for greater generalizability
[25].

Objective
We seek to leverage various readily accessible data sets
extracted from multiple states to train and evaluate a
parsimonious predictive model capable of identifying the
county-level risk of COVID-19 outbreaks on a day-to-day basis.

Methods

Methods Overview
We selected 3 states for our efforts in COVID-19 outbreak
prediction modeling: California, Indiana, and Iowa. These states
were selected on the basis of geographical factors, governmental
regulations, and availability of data sets for public use. For
example, Indiana and Iowa are similar in the number of counties
and total populations [26]. In contrast, California represented
a more populous, urbanized state [26]. We also considered the
general completeness of reporting, the quality of basic
COVID-19 data sources, and the accuracy of state tracking
systems [27].

Data Extraction and Cleaning
For each state, we extracted a variety of county-level data
elements captured daily between March 1 and October 31, 2020.
Data for Indiana were obtained from the Indiana State
Department of Health, while data for Iowa and California were
obtained from the New York Times web-based repository [5,28].
We selected March 1, 2020, as a start date as most states began
collecting COVID-19 data at this time. October 31, 2020,
marked the end of our analysis time period. Each data set was
organized by county, state, and date reported using R [29].
Several errors or omissions in the data sets were addressed as
follows: days with negative case counts were changed to 0 and
a county labeled as “unknown” reported by Iowa and California
were removed from further evaluation.

Preparation of a Gold Standard
We created a gold standard indicating if each county under study
was in an outbreak on any particular day. A human expert
reviewer created the gold standard by assigning an outbreak
label (with responses of “yes” or “no”) to each county or date
combination, considering the following criteria:

1. How do case counts trend in each county? Is there a general
baseline of cases over time?

2. How large is the county’s population size (counties with
more people report more cases)?

3. Duration of the outbreak to assign a binary indicator of
“outbreak detected” or “outbreak not detected” to each day
and county.

Based on our approach, a county could have multiple outbreaks
over time. Outbreaks lasted a minimum of 3 days to account
for testing lags as data were not always reported on the same
day, especially during the initial phases of the pandemic [30].
Furthermore, lower case counts at the end of an outbreak and
on weekends owing to the closure of testing centers were also
considered using 7-day average metrics.
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Model Building
We created a heuristic outbreak prediction model using the
training data sets obtained from all 3 states and evaluated its
performance across the holdout test data sets and the gold
standard. For each county, data collected between March 1 and
August 31, 2020, were considered the training data set, while
data collected between September 1 and October 31, 2020, were
considered the test data set. As a preliminary step toward model
development, we considered features used in other common
models, including the susceptible-infected-recovered epidemic
[31] and time delay [32] models, severity of lockdown measures
[33], cumulative cases (both reported and not reported) [34],
and daily test reports [35]. Furthermore, predictive models for
infectious diseases, such as susceptible-infected-recovered
models, provide guidance on disease transmission and outbreak
causation. The State of Wisconsin’s COVID-19 dashboard used
a Case Rate metric defined as a per capita running 7-day sum
of the case counts per county per day [36]. Case Rate
standardizes COVID-19 severity across counties of differing
populations while also accounting for data lags and providing
insight on transmission. We plotted Case Rate vs Indiana county
populations to generate a general trendline that could
differentiate between “outbreak detected” or “outbreak not

detected” days. Our logarithmic graph semiaccurately depicted
a horizontal line that separated outbreak days. The following
steps were undertaken to leverage and apply the trendline results
on states and counties with various populations.

We started building the model by dividing counties on the basis
of population size, initially at 100,000 population intervals.
Since Case Rate is more sensitive to less populated counties,
we added intervals for counties with less than 100,000 people.
Each population interval was allocated an assigned Case Rate
baseline value that served as a binary indicator for outbreak
determination. We implemented a criterion where an outbreak
was underway in counties if they were 4 SDs above the
cumulative case count mean to account for data lag. As depicted
in the system flow diagram (Figure 1), we established these
parameter values and trained the model rules with the training
data sets (data reported between March 1 and August 31, 2020).
The train-to-test partition was approximately 71% to 29%,
respectively, which is close to optimal for large data sets [37].
Then, the model was tested against the gold standard with the
test data sets (data reported between September 1 and October
31, 2020). Figure 1 shows a flow diagram depicting our study
approach.

Figure 1. Flow diagram providing an overview of the study methodology.

Results

Results Overview
We collected data on a total of 249 counties from across all 3
states. Table 1 presents descriptive statistics for each state,
including the number of counties, population sizes, and
urbanization to highlight each state’s fundamental differences
[26]. Previous studies have identified multiple factors in
determining urban vs rural areas, including the total population,
population density, and commuting flow [38].

Indiana and Iowa have similar county population distributions,
with both having a majority of counties with less than 100,000

people. However, Indiana has more midsized counties with its
largest county having almost 1 million people, while California
has several counties having populations of more than 1 million
people. Moreover, California has the highest percentage of the
urban population (94.95%), with Indiana (72.44%) and Iowa
(64.02%) far behind.

Figure 2 provides an example visualization of outbreak
determination in Cass County, Indiana, and Santa Barbara
County, California, for gold standard preparation. Cass and
Santa Barbara counties have populations of 37,689 and 446,499
people, respectively [26].
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Table 1. State and county population sizes and population statistics based on census counts.

CaliforniaIowaIndianaCensus counts

County-level statistics

589992Counties, n

239375Counties where population is <100,000 people, n

19616Counties where the population is ≥100,000 and <500,000 people, n

701Counties where the population is ≥500,000 and <1,000,000 people, n

900Counties where the population is >1,000,000 people, n

112936025875Population of the smallest county (people), n

10,039,107490,161964,582Population of the largest county (people), n

94.9564.0272.44Urban population, %

70,48968,71859,892Household income (US $), median

70.33 (231.86)6.18 (15.75)7.98 (21.02)Case count per day, mean (SD)

Figure 2. Visualization of the COVID-19 case counts in Cass County, Indiana, and Santa Barbara County, California, between March 1 and October
31, 2020. Outbreak days are indicated in red, and normal days are indicated in black.

Table 2 shows the prevalence of the number of outbreaks and
their durations in each state over the training, test, and total time
periods. In Indiana and Iowa, the number of outbreaks doubled
from the training to the test date range, despite the training data
set being almost 3-fold as large as the test data set. Furthermore,
the percentage of days in an outbreak between the training and
test ranges quadrupled to 22.6% and 20.1% for Indiana and

Iowa, respectively. The percentage of outbreak days in
California remained relatively stable, while the average outbreak
duration decreased from 47 days to 19 days. Because counties
were our unit of analysis and since California had fewer and
more populated counties than Indiana or Iowa, we believe that
these factors contributed to the reduced number of outbreaks in
California.

Table 2. COVID-19 outbreak prevalence descriptors from the gold standard. Indiana, Iowa, and California data sets were divided by training (March
1 to August 31, 2020), test (September 1 to October 31, 2020), and total (March 1 to October 31, 2020) date ranges to characterize the outbreak periods.

CaliforniaIowaIndianaPrevalence descriptors

TotalTestTrainingTotalTestTrainingTotalTestTraining

4026351148543836526Outbreaks, n

53.9219.3147.2915.7914.6218.1822.8619.1825.00Outbreak duration (days), mean

215750216551926119972718971247650Total outbreak days, n

5.2414.4315.597.9720.154.018.4522.593.86Outbreak days, %

Model Rules
Using the aforementioned data sets, we developed model
parameters to predict COVID-19 outbreaks.

Figure 3 shows a top-down decision tree for our model’s
behavior. Rules and the assigned case rate associated with each

population band used in the decision-making process are further
outlined in Multimedia Appendix 1. As shown in Figure 3, the
heuristic model determined that counties experienced an
outbreak through the following methods:
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1. For the specified population band, a county’s case rate on
a given day was greater than the minimum case rate
assigned to that population.

2. The county’s case count on a specific day was greater than
12 and was 4 SDs above the rolling mean county-level
COVID-19 case count.

3. If a county met either requirement on a specific day, that
county was considered to be “in outbreak.”

By combining these rules with the previously developed gold
standard, a confusion matrix was utilized to analyze the model’s
performance.

Figure 3. Decision-making process of our heuristic model.

Table 3 shows the results of the confusion matrix when the
prediction model was applied to the curated gold standard during
the test date range from September 1 to October 31, 2020.
Sensitivity is the proportion of correctly identified positives,
while specificity is the proportion of correctly identified
negatives. All 4 key confusion matrix statistics—sensitivity,
specificity, precision, and accuracy—were above 80% in each
state during the test range. Model specificity and accuracy were
>94% for each state. This was attributed to most days being
classified as true negatives, which are fundamentally more

straightforward to detect than true positives. Model sensitivity
for Indiana and Iowa was 10% greater than that of California.
However, their precision was 11% and 7% lower, respectively.
For Indiana and Iowa, this implies that the model computed
fewer false-negative readings, which could be attributed to
having increasingly prolonged outbreaks (Table 1). California’s
higher precision but lower sensitivity implies that the model
was more precise in predicting when outbreaks occurred but
less successful in capturing all outbreaks.

Table 3. Results of the model with the test data set relative to the gold standard.

CaliforniaIowaIndianaPerformance parameters

September 1 to October 31, 2020September 1 to October 31, 2020September 1 to October 31, 2020Test date range

80.8690.0592.33Sensitivity, %

99.5797.4095.56Specificity, %

96.9689.8385.04Precision, %

96.8595.9194.86Accuracy, %
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Discussion

Principal Findings
Our efforts resulted in the development of a heuristic model
capable of detecting COVID-19 outbreaks, with predictive
measures between 80% and 99%. The model had sensitivities
of 92%, 90%, and 81% for Indiana, Iowa, and California,
respectively. This indicates that the model was capable of
identifying a clear majority of outbreaks across each state. The
model also reported precision scores of 85%, 89%, and 96%
for Indiana, Iowa, and California, respectively, which indicated
that most positive predictions made by the model were accurate.
These performance metrics indicate that the model is fit for use
in real-life settings. Additionally, the training and test periods
displayed distinct outbreak characteristics owing to the increased
spread of COVID-19.

These performance metrics are also notable, considering that
the prevalence of outbreaks in training data sets was
considerably low and could have resulted in weak predictive
models had we used more traditional classification-based
modeling approaches, which significantly underperform when
trained using unbalanced data sets [39,40]. As the pandemic
progressed, each state attempted to enhance their data reporting
systems. As described by Khakharia et al [41], some regions
reported sudden and significant changes in case counts, making
it difficult for models to forecast future cases. Though outbreaks
are not fundamentally different, the training and test data sets
can be characterized separately. Despite the test range being
shorter, Indiana and Iowa both reported twice as many outbreaks
during the test period. This can be attributed to the second wave
of COVID-19 that occurred during the test period as schools
resumed, governors relaxed state lockdown laws, and people
returned to work [42]. For example, California was one of the
last states to begin lifting restrictions in midsized and large
counties, which may have contributed to relatively fewer
outbreaks than those in Indiana and Iowa [43,44]. Thus, counties
re-entered or for the first time realized outbreak periods during
the test period.

California remains a state of interest owing to the
characterization of its outbreaks as well as predictive
performance results on the holdout test data set. Unlike Indiana
and Iowa, California has several counties with populations of
over 1,000,000 people; furthermore, it was the only state with
fewer outbreaks and a low percentage of outbreak days between
the training and test periods. The California model revealed a
significantly lower sensitivity but higher precision. Thus, to
Indiana and Iowa, the California model captured proportionally
fewer outbreaks but predicted the subset with greater precision.

This parsimonious prediction model is easily replicable in other
states, as it only utilizes county population and COVID-19 cases
per day per county data. States can detect and predict outbreaks
with high accuracy by following the model’s rules. Current
outbreak prediction approaches are based on machine learning
algorithms. Though they generally have very high accuracies,
these models incorporate a variety of data points and can overfit
models [22]. The heuristic model’s data simplicity enables it to
be easily implemented in other regions, especially those with

limited reported systems. It is also an understandable and
accurate method to relay a county’s current state of COVID-19
to the general public, who are not as informed in health metrics.
In addition to public and internal communication, forecasting
models can be applied to aid in outbreak preparation and
community mitigation methods [45].

In addition to a high-performing heuristic model, our efforts
also led to the development of a well-curated gold standard data
set consisting of outbreak status for each county on a day-to-day
basis. This data set is shown in Multimedia Appendix 2 to
facilitate additional studies on this important issue.

Limitations
Our study was impacted by limitations in data collection systems
currently deployed by each state. The inconsistency of data
reporting presented a significant systematic challenge for model
building activities. For instance, states closed most COVID-19
testing centers on weekends, which led to lower case count
values on Saturdays and Sundays. Further, many states did not
publish most of their own COVID-19 data, which led us to
obtain data on cases per day per county from the New York
Times instead of a state’s Department of Health, the latter being
more accurate. The New York Times would retroactively change
case data, making it more unreliable since there were days with
negative values.

The lack of previous studies on curating gold standards on
disease outbreaks also presents limitations. With no industry
standard on defining an outbreak, we created the gold standard
on the basis of intuition and the aforementioned specified
criteria. Therefore, this process could have been subject to
potential confounders, which may have influenced our model’s
results. Furthermore, the rule-based model approach is subject
to several limitations. Since the model incorporated a 7-day
moving Case Rate, there was a lag at the tails of outbreaks as
the increased case counts were not initially detected. Even with
a parsimonious approach, the parameters derived from our
results can greatly differ when applied to other regions. This
uncertainty, resulting from parameters, social mandates, and
vaccination, is a feature of any prediction model. We helped
lessen this uncertainty through our generalizable approach
demonstrated in diverse states.

Future Prospects
The ongoing COVID-19 pandemic has led most major
institutions to allocate tremendous resources for its resolution.
The model would benefit from a larger sample size of US states,
and possibly regions worldwide, to test its generalizability on
a more expansive scale. Additionally, we could expand the
model’s data range for the third wave of cases and as the
COVID-19 vaccine is distributed to a majority of the population,
to determine its functionality beyond the scope of this study.
Our results could also be translated to provide a clearer
epidemiological outlook of diseases. Since the model can predict
outbreaks with high accuracy, it could be tested on historical
COVID-19 data to determine when most outbreaks occurred
easily in a particular region. Moreover, trends and patterns were
found across outbreaks among various factors such as lockdown
policies, air pollution levels, and civilian obedience.
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Understanding the causes of outbreaks presents interesting
findings related to public policy adaptation in current and future
situations.

Conclusions
This study presents an accurate, generalizable, and explainable
COVID-19 outbreak prediction model. The model reported
sensitivity scores of >90% in Indiana and Iowa and >80% in
California. Furthermore, model specificity and accuracy scores
were >94% in every state. These results, coupled with the

minimal data inputs required, creates an explainable and
easy-to-implement model that governments and policymakers
can utilize to assess COVID-19 severity across diverse
geographic regions. Future studies are required to test the model
in other states and countries by using more recent data.
Moreover, the model should be used to identify outbreaks to
investigate correlations among external factors such as
socioeconomic risks, air pollution, county-level laws, and
outbreak development.
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Multimedia Appendix 1
Population bands with their respective minimum case rates.
[XLS File (Microsoft Excel File), 26 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Outbreak gold standard for each county in California, Indiana, and Iowa per day.
[XLSX File (Microsoft Excel File), 38 KB-Multimedia Appendix 2]
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