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Abstract

Background: Out-of-hospital cardiac arrest (OHCA) is a serious public health issue, and predicting the prognosis of OHCA
patients can assist clinicians in making decisions about the treatment of patients, use of hospital resources, or termination of
resuscitation.

Objective: This study aimed to develop a time-adaptive conditional prediction model (TACOM) to predict clinical outcomes
every minute.

Methods: We performed a retrospective observational study using data from the Korea OHCA Registry in South Korea. In this
study, we excluded patients with trauma, those who experienced return of spontaneous circulation before arriving in the emergency
department (ED), and those who did not receive cardiopulmonary resuscitation (CPR) in the ED. We selected patients who
received CPR in the ED. To develop the time-adaptive prediction model, we organized the training data set as ongoing CPR
patients by the minute. A total of 49,669 patients were divided into 39,602 subjects for training and 10,067 subjects for validation.
We compared random forest, LightGBM, and artificial neural networks as the prediction model methods. Model performance
was quantified using the prediction probability of the model, area under the receiver operating characteristic curve (AUROC),
and area under the precision recall curve.

Results: Among the three algorithms, LightGBM showed the best performance. From 0 to 30 min, the AUROC of the TACOM
for predicting good neurological outcomes ranged from 0.910 (95% CI 0.910-0.911) to 0.869 (95% CI 0.865-0.871), whereas
that for survival to hospital discharge ranged from 0.800 (95% CI 0.797-0.800) to 0.734 (95% CI 0.736-0.740). The prediction
probability of the TACOM showed similar flow with cohort data based on a comparison with the conventional model’s prediction
probability.

Conclusions: The TACOM predicted the clinical outcome of OHCA patients per minute. This model for predicting patient
outcomes by the minute can assist clinicians in making rational decisions for OHCA patients.
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Introduction

Out-of-hospital cardiac arrest (OHCA) is a common but serious
public health issue [1]. Globally, 55 in 100,000 people
experience OHCA every year [2]. Despite vigorous and
continuous efforts, the survival rate of OHCA patients is poor
in many countries. Thus, OHCA is a critical medical problem
with a poor prognosis [3,4].

Predicting the prognosis of OHCA patients can assist clinicians
in deciding whether to provide treatment or use hospital
resources [5,6]. Appropriate decisions allow better utilization
of hospital resources, reduce medical expenses considerably,
and increase the availability of care for other patients [7,8].
Furthermore, determining the termination of resuscitation for
OHCA patients is an important issue because of the limited
resources of hospitals. Prediction-based decision-making for
using mechanical circulatory support devices or for executing
early coronary angiography could improve the clinical outcomes
of patients [9-11].

Some studies have proposed prediction models to predict clinical
outcomes of OHCA patients using Utstein data [12,13]. These
studies have shown that basic Utstein variables are associated
with patient clinical outcomes. However, these studies
determined patient outcomes after hospitalization and not in
real time. Other studies predicting the prognosis of OHCA
patients also predicted the long-term outcomes of patients, such
as 1-year survival and posthospital outcomes, using various
laboratory results [14,15]. Our study differs from previous
studies in that the decision time and the prediction available
time in our study are different.

In this study, we developed a machine learning–based
time-adaptive conditional prediction model (TACOM) using
the concept of a time-adaptive cohort to predict outcomes among
OHCA patients every minute. We compared the random forest,
LightGBM, and artificial neural network algorithms to develop
a precise prediction model. The time-adaptive cohort was
derived from the concept of censoring. We used the TACOM,
based on the concept of the time-adaptive cohort, to compare
the prediction probability with the conventional model to
demonstrate the possibility of predicting patients’ clinical
outcomes every minute during cardiopulmonary resuscitation
(CPR). To the best of our knowledge, this study is the first to
predict the prognosis of OHCA patients by the minute.

Methods

Data Sets
We performed a nationwide retrospective observational cohort
study using data from the Korea OHCA Registry (KOHCAR).
The KOHCAR was constructed by the Korea Centers for
Disease Control and Prevention (CDC) in collaboration with
the Central Fire Services (CFS). We integrated the emergency
medical services (EMS) run sheet, EMS CPR registry, and

dispatch CPR registry into the EMS-assessed cardiac arrest
database of the CFS [16,17]. Data collection was based on the
Utstein style and Resuscitation Outcome Consortium Project
customized for local conditions. To assess the quality of data,
we held monthly meetings with field investigators and the CDC
data quality control team [18]. Trained managers visited the
hospitals to review the medical records and complete the
database. Additionally, they contacted the patients to verify
information about the outcomes [19-21]. The Korea CDC
approved the use of all data.

In this study, the KOHCAR data set from January 1, 2013, to
December 31, 2017, was used for the training set, and the data
set from January 1, 2018, to December 31, 2018, was used for
the test set. Patients who experienced return of spontaneous
circulation (ROSC) before arriving in the emergency department
(ED), those who did not receive CPR in the ED, and those with
missing information were excluded. The institutional review
board of the Samsung Medical Center approved this study.

Predictor Variables and Endpoints
Predictor variables included patient demographics,
occurrence-related information, and hospital treatment
information available at the time of the patient’s arrival in the
ED. The demographics included age and sex. Occurrence-related
information included place (public or private), OHCA etiology,
witness of the event, bystander CPR, prehospital CPR, patient’s
act at the time of OHCA, prehospital electrocardiography (ECG)
rhythm, prehospital defibrillation, and history of hypertension,
diabetes, heart disease, renal disease, respiratory disease, stroke,
and dyslipidemia. Hospital treatment information included
EMS-to-ED time, initial ECG rhythm at the ED, defibrillation,
and the place of the first defibrillation.

The outcomes of this model were patient survival to hospital
discharge and a good neurological outcome. For patient survival
to hospital discharge, we considered patients whose ED
treatment resulted in being discharged or whose hospitalization
resulted in being discharged, voluntarily discharged, or
transferred. A good neurological outcome was defined as a
cerebral performance category of 1 or 2.

Data Processing
We used both numerical and categorical variables. The patient
age and EMS-to-ED time were numerical variables. A scaling
method was used for numerical variables to increase the ability
of the prediction model. For the age values, we used a standard
scaler that could normalize each feature by removing its mean
and scaling its variance to 1. For EMS-to-ED time values, we
used a robust scaler that utilized quantile information to scale
each feature through the application of an inverse cumulative
distribution function. For categorical variables, we used one-hot
encoding to remove integer-encoded variables and then added
new binary variables for each unique integer value.
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Model Development
To develop a real-time outcome prediction model, we included
the per minute data of patients with ongoing CPR. When
predicting the clinical outcome of patients in real time, we
deemed it unreasonable to predict the outcome of patients whose
conditions had been determined. In other words, it is reasonable
to predict the outcome of patients whose condition has not been
previously determined [16]. We trained the TACOM with every
single data set by minute. Data set D(t) was defined as follows:

D (T2|T1>t) (1)

where t is a minute from 0 to 60, T1>t indicates patients whose
CPR duration is longer than time t, and T2 indicates patients
who had a clinical outcome (survival to hospital discharge or
good neurological recovery). The TACOM system included 61
models trained with different data sets over time. CPR duration
was not used as a machine learning feature in the model. The
model’s training data set cohort varied for each minute according
to the duration of CPR.

Additionally, we developed three models, namely, random
forest, LightGBM, and artificial neural networks, to select the
best performance model. Both the deep learning algorithm and
machine learning algorithm performed well in the health care
domain [22,23]. We compared the area under the receiver
operating characteristic curve (AUROC) for model performance
and chose LightGBM as our final model. We have provided the
AUROC of the other models in Multimedia Appendix 1.
LightGBM, an open-source algorithm by Microsoft, is an
advanced model of the ensemble algorithm for speeding up the
training process and reducing memory consumption. In general,
the ensemble model has shown remarkable performance for the
classification of structured data. It generates several classifiers
and combines predictions to derive a final prediction. Ensembles
have the following two main types: bagging and boosting. In
the bagging algorithm, each training set is constructed by
forming a bootstrap replicate of the original training set. In the
boosting algorithm, the model maintains a set of weights over
the original training set and adjusts these weights after each
classifier is learned by the base algorithm [24].

We utilized a widely used parameter optimization algorithm,
the grid search, to determine the best combination of the three
hyperparameters in LightGBM. Referring to the technical

documents provided by Microsoft, first, we found the value of
“max_depth,” which specifies the depth limit of the tree.
Through grid search, we selected the value that had the highest
AUROC among the values from 1 to 10. After that, we found
the value of “num_leaves” that controls the complexity of the
tree model. Theoretically, since the number of leaves should be

smaller than 2“max_depth”, one of the values from 100 to 900 was
selected through the grid search. Finally, we found
“min_data_in_leaf,” an essential parameter to prevent
over-fitting. Its value ranges from 100 to 1000; we found an
appropriate value through the grid search. The AUROC of each
value is shown in Multimedia Appendix 2.

Statistical Analysis
For the descriptive statistics, means and SDs were used for
continuous variables, and frequencies and percentages were
used for categorical variables. The t test and chi-squared test
were performed to determine the mean differences between the
derivation and test sets. All tests were two-tailed with the
statistical significance level set at P<.05. Additionally, the
standardized mean difference (SMD) was used to measure the
effect size of the two groups.

We used various metrics, including prediction probability,
AUROC, and area under the precision-recall curve (AUPRC),
to measure the metric of our prediction model, TACOM.
Prediction probability was used to determine which model
reflected reality. AUROC and AUPRC scores were used to
measure the performance of the binary outcomes. We evaluated
95% CIs using bootstrapping with 1000 sampling iterations
with replacement.

Implementation
Furthermore, we developed a simple user interface (Figure 1)
for showing prediction probability using Android. By simply
entering the input values, a patient’s outcomes can be predicted
and visualized as a graph. We designed an application prototype.
This application could provide information to the medical staff.
The implemented software for model development included the
Python programming language (version 3.8.5), Tensorflow
framework (version 2.3.1), and scikit-learn (version 0.23.2).
Using the Tensorflow framework, the predictive model could
be extended to a mobile or web application.
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Figure 1. Simple user interface of the out-of-hospital cardiac arrest outcome prediction model.

Code Availability
We published our prediction model on GitHub [25]. The codes
that support the findings of this study are available on GitHub.

Results

Patient Selection
Patients’ records from the KOHCAR were used as derivation
and validation data sets. The KOHCAR held records for 175,182

patients from 2013 to 2018. After excluding trauma patients,
patients who experienced ROSC in the prehospital stage, patients
who did not receive CPR in the ED, and patients with missing
values, we included 49,669 records in our study. We split the
data set into 39,602 records from 2013 to 2017 to be used as
the derivation set, and 10,067 records from 2018 to be used as
the validation set. Figure 2 presents the diagram of patient
selection from the KOHCAR.
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Figure 2. Subject selection process of OHCA patients. CPR: cardiopulmonary resuscitation; ED: emergency department; OHCA: out-of-hospital cardiac
arrest; ROSC: return of spontaneous circulation.

Patient Characteristics
Table 1 shows the baseline characteristics of the derivation and
validation sets from the KOHCAR. Overall, the patients’ basic
characteristics showed that the majority were men

(32,049/49,669, 64.5%), and the average age was 67.0 years,
with a quartile range of 57.0 to 79.0 years. The shockable
rhythm rates in the ED and EMS were 4.4% (2170/49,669) and
10.2% (5,067/49,669), respectively.
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Table 1. Basic characteristics of the study participants.

SMDaP valueValidation data
(n=10,067)

Derivation data
(n=39,602)

All (n=49,669)Variable

0.125<.00168.8 (16.6)66.5 (19.3)67.0 (18.8)Age, mean (SD)

0.030.0073688 (36.6%)13,932 (35.2%)17,620 (35.5%)Female sex, n (%)

0.130<.0011513 (15.0%)6517 (16.5%)8030 (16.2%)Public place, n (%)

0.190<.0013552 (35.3%)24,126 (60.9%)30,314 (61.0%)Witnessed, n (%)

0.333<.0012549 (25.3%)7417 (18.7%)9966 (20.1%)Bystander CPRb, n (%)

0.114<.001Cause, n (%)

9297 (92.4%)36,495 (92.2%)45,792 (92.2%)Cardiogenic disease

78 (0.8%)303 (0.8%)381 (0.8%)Respiratory disease

217 (2.2%)558 (1.4%)775 (1.6%)Nontraumatic bleeding

29 (0.3%)430 (1.1%)459 (0.9%)Terminal cancer

50 (0.5%)147 (0.4%)197 (0.4%)Sudden infant death syndrome

396 (3.9%)1,669 (4.2%)2065 (4.2%)Others

N/Ae<.001Initial ECGc rhythm of EMSd, n (%)

1129 (11.2%)3603 (9.1%)4732 (9.5%)VFf

77 (0.8%)258 (0.7%)335 (0.7%)Pulseless VTg

4227 (42.0%)11,593 (29.3%)15,820 (31.9%)Asystole

1769 (17.6%)3637 (9.2)5406 (10.9%)PEAh

2865 (28.4%)20,511 (51.7%)23,376 (47.0%)Others

N/A<.001Initial ECG rhythm of EDi, n (%)

337 (3.3%)1576 (4.0%)1913 (3.9%)VF

39 (0.4%)218 (0.6%)257 (0.5%)Pulseless VT

5901 (58.6%)23,532 (59.4%)29,433 (59.3%)Asystole

1584 (15.7%)4031 (10.2%)5615 (11.3%)PEA

2206 (22.0%)10,245 (25.8%)12,451 (25.0%)Others

0.184<.0013823 (38.0%)13,886 (35.1%)17,709 (35.7%)Anamnesis hypertension, n (%)

0.209<.0012599 (25.8%)9188 (23.2%)11,787 (23.7%)Anamnesis diabetes, n (%)

0.059<.0011946 (19.3%)6774 (17.1%)8720 (17.6%)Anamnesis heart disease, n (%)

0.031.02703 (7.0%)2489 (6.3%)3192 (6.4%)Anamnesis renal disease, n (%)

0.037.003760 (7.5%)2613 (6.6%)3373 (6.8%)Anamnesis respiratory disease, n (%)

0.033.01928 (9.2%)3333 (8.4%)4261 (8.6%)Anamnesis stroke, n (%)

0.073<.001338 (3.4%)863 (2.2%)1201 (2.4%)Anamnesis dyslipidemia, n (%)

0.074<.00150.6 (84.5)44.7 (73.0)45.9 (75.5)EMS arrival (min), mean (SD)

aSMD: standardized mean difference.
bCPR: cardiopulmonary resuscitation.
cECG: electrocardiography.
dEMS: emergency medical services.
eN/A: not applicable.
fVF: ventricular fibrillation.
gVT: ventricular tachycardia.
hPEA: pulseless electrical activity.
iED: emergency department.
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Study Cohort
As shown in Figure 3, we divided our data set by CPR duration
from 0 to 60 minutes. As time progressed, the models were
trained using patients who were receiving CPR. In other words,
patients who did not receive CPR were excluded. We did not

use CPR duration as a feature but as a criterion that divided the
data by minutes to apply the concept of time. The first model
included 49,669 patients. The 30-minute model was trained
using the data of 21,841 patients, indicating that the status of
27,828 patients in the ED had already been determined after 30
minutes.

Figure 3. Population of every data set included in each minute from 0 to 60.

Model Performance
Figure 4 shows the prediction probability of the outcome
(survival to hospital discharge) for the TACOM and that for a
prediction model that uses CPR duration as a machine learning
feature. Considering that the survival to hospital discharge rate
of OHCA patients is about 5%, the TACOM reflected reality,

whereas the prediction model that used CPR duration as a
training feature was overly optimistic.

Figure 5 shows the receiver operating characteristic and
precision-recall curves for the test set at 2 minutes, trained with
data on patients whose outcomes had not been determined before
2 minutes. The AUROC and AUPRC of all the minutes from
0 to 30 are shown in Multimedia Appendix 3.
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Figure 4. Prediction probability of the TACOM and conventional model for out-of-hospital cardiac arrest patients’ survival to hospital discharge.
TACOM: time-adaptive conditional prediction model.

Figure 5. Area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) of the time-adaptive
conditional model for out-of-hospital cardiac arrest (OHCA) patients’ survival to hospital discharge at 2 minutes (right) and OHCA patients’ good
neurological outcome at 2 minutes (left).
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Discussion

Principal Findings
We developed a time-adaptive conditional model for predicting
the clinical outcomes of OHCA patients using machine learning
data from a large nationwide cohort registry. Our study
demonstrated the possibility of real-time prediction among
OHCA patients using a time-adaptive conditional model. The
most important finding of this study was that the time-adaptive
conditional model, in which CPR duration was not used as a
feature but as a criterion to define the time-adaptive cohort,
reflected real-world outcomes. The training data were divided
by time according to the duration of CPR and trained separately
for each time. Thus, the model was verified to be suitable for
the real-time prediction of clinical outcomes.

The TACOM predicted the probability of survival of specific
patients, updated every minute in a personalized manner. Hence,
it could have practical application in the field. Currently, clinical
decision-making is based on the personal experience of the
medical staff or institutional guidelines; thus, decisions do not
necessarily reflect the actual condition of each patient [17]. We
used a machine learning–based model to calculate a patient’s
clinical outcome in real time using the patient’s initial state.
The clinical outcome prediction probability of the TACOM
showed a similar flow to the actual clinical outcome rate of the
cohort data.

We designed the TACOM to be different from the conventional
model; the TACOM only used the initial information that could
be obtained before CPR as a machine learning feature.
Additionally, data, such as time arrival to EMS, time to EMS
arrival at the ER, and lab results, were excluded. However,
unlike with other models, the TACOM reflects the real
environment using a time-adaptive cohort. We made the

time-adaptive cohort from one big registry by censoring the
data. Censoring is used when time-to-event information is not
available such as in clinical trials or survival analysis in cancer
treatment. We did not train all patients at once; however, we
created the discriminative models by censoring the patients
whose status was determined by the minute.

We aimed to apply and test the TACOM in the real world to
make it practically useful and effective in the future. In this
study, validation was performed using a subset of the data set.
Prospective data collection and verification would be required
and potentially achieved by developing an application that
applies the TACOM. Furthermore, usability and utility
evaluations for UX design are needed to identify whether the
application is convenient and useful.

Limitations
This study had some limitations. First, the cohort was organized
in the Utstein style. The data were obtained from a nationwide
cohort, and thus, some detailed characteristics reflecting the
quality of CPR and patient responses were unavailable. Second,
our model did not include long-term outcomes, such as 1-month
or 1-year survival. Finally, given the absence of any significant
difference between machine learning algorithms, various
machine learning algorithms have not been included in this
study.

Conclusions
We developed a time-adaptive conditional model to predict the
clinical outcomes of OHCA patients per minute. We found a
suitable algorithm for the TACOM to predict the survival to
hospital discharge and neurological recovery of OHCA patients
at the minute level. This study showed the potential of the
time-adaptive prediction model for resuscitation, which can be
useful to medical staff for making appropriate and rational
decisions.
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Area under the receiver operating characteristic curve of the time-adaptive conditional model using the following three different
methods: LightGBM, random forest, and deep learning.
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Results of the grid search according to the three hyperparameters in LightGBM.
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Multimedia Appendix 3
The area under the receiver operating characteristic curve and area under the precision-recall curve of the time-adaptive conditional
model from 0 to 30 minutes.
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