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Abstract

Background: Type 2 diabetes mellitus (T2DM) and its related complications represent a growing economic burden for many
countries and health systems. Diabetes complications can be prevented through better disease control, but there is a large gap
between the recommended treatment and the treatment that patients actually receive. The treatment of T2DM can be challenging
because of different comprehensive therapeutic targets and individual variability of the patients, leading to the need for precise,
personalized treatment.

Objective: The aim of this study was to develop treatment recommendation models for T2DM based on deep reinforcement
learning. A retrospective analysis was then performed to evaluate the reliability and effectiveness of the models.

Methods: The data used in our study were collected from the Singapore Health Services Diabetes Registry, encompassing
189,520 patients with T2DM, including 6,407,958 outpatient visits from 2013 to 2018. The treatment recommendation model
was built based on 80% of the dataset and its effectiveness was evaluated with the remaining 20% of data. Three treatment
recommendation models were developed for antiglycemic, antihypertensive, and lipid-lowering treatments by combining a
knowledge-driven model and a data-driven model. The knowledge-driven model, based on clinical guidelines and expert
experiences, was first applied to select the candidate medications. The data-driven model, based on deep reinforcement learning,
was used to rank the candidates according to the expected clinical outcomes. To evaluate the models, short-term outcomes were
compared between the model-concordant treatments and the model-nonconcordant treatments with confounder adjustment by
stratification, propensity score weighting, and multivariate regression. For long-term outcomes, model-concordant rates were
included as independent variables to evaluate if the combined antiglycemic, antihypertensive, and lipid-lowering treatments had
a positive impact on reduction of long-term complication occurrence or death at the patient level via multivariate logistic regression.

Results: The test data consisted of 36,993 patients for evaluating the effectiveness of the three treatment recommendation
models. In 43.3% of patient visits, the antiglycemic medications recommended by the model were concordant with the actual
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prescriptions of the physicians. The concordant rates for antihypertensive medications and lipid-lowering medications were 51.3%
and 58.9%, respectively. The evaluation results also showed that model-concordant treatments were associated with better glycemic
control (odds ratio [OR] 1.73, 95% CI 1.69-1.76), blood pressure control (OR 1.26, 95% CI, 1.23-1.29), and blood lipids control
(OR 1.28, 95% CI 1.22-1.35). We also found that patients with more model-concordant treatments were associated with a lower
risk of diabetes complications (including 3 macrovascular and 2 microvascular complications) and death, suggesting that the
models have the potential of achieving better outcomes in the long term.

Conclusions: Comprehensive management by combining knowledge-driven and data-driven models has good potential to help
physicians improve the clinical outcomes of patients with T2DM; achieving good control on blood glucose, blood pressure, and
blood lipids; and reducing the risk of diabetes complications in the long term.

(J Med Internet Res 2021;23(7):e27858) doi: 10.2196/27858
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Introduction

Type 2 diabetes mellitus (T2DM) is a worldwide chronic disease
characterized by higher than optimal blood glucose levels.
T2DM can lead to multiple complications and increase the risk
of death. According to the global report on diabetes of the World
Health Organization [1], 3.7 million people died of diabetes in
2012 and the prevalence has been increasing in the past three
decades. T2DM and its related complications represent a
growing economic burden for many countries and health systems
[2]. Diabetes complications can be prevented through better
disease control; however, there is still a large gap between the
recommended treatment and the treatment that patients actually
receive [3].

The treatment of T2DM can be challenging because of the
different therapeutic targets and individual variability of the
patients, leading to the need for precise, personalized treatment
[4]. In addition, patients with diabetes require a sequence of
treatments due to chronicity of the condition, each of which
may affect the patients’ clinical outcome in the long term. The
decision-making for determining a sequence of treatments can
be more complex because (1) the impact of a single treatment
may not be immediately reflected, and (2) if we regard all of
the treatments a patient received chronically as a treatment
program, the number of options for the treatment programs is
extremely large and finding the best program for an individual
patient is a great challenge.

With the explosive increase of electronic medical records
(EMRs) and the rapid development of artificial intelligence
technology, it has now become possible to teach a model that
enables personalized treatment with the best expected clinical
outcomes. The treatment of chronic diseases such as T2DM is
a sequential decision-making process. Our goal is to develop
effective treatment regimens that can dynamically adapt to the
varying clinical states and maximize the long-term benefits of
patients. Reinforcement learning (RL) [5] is an approach that
learns the best policy toward a predefined long-term goal via
trial and error to address a sequential decision-making problem.
The RL approach has intrinsic advantages of tackling the
treatment recommendation problem for chronic diseases. First,
by considering the accumulative rewards as the optimization
goal, the long-term effect of current decision-making is taken
into account. Second, the design of RL leverages all samples

in model development by reinforcing actions with a good reward
and punishing others with a bad reward. With theoretical and
technical developments in recent years, the RL approach has
been successfully applied in the health care domain, including
for chronic disease management [6-10], critical care [11-14],
and other forms of health management [15,16].

The treatment of chronic diseases consists of a sequence of
medications or procedures that are determined based on the
changing clinical conditions of a patient and the effects from
the previous treatment. Tseng et al [6] recently proposed an
RL-based model to automate adaptive radiotherapy
decision-making for patients with nonsmall cell lung cancer,
where the deep Q network (DQN) was used to learn dose
decisions based on real clinical data and the synthesized data
created by generative adversarial networks [17]. The framework
was evaluated in a dataset of 114 patients. The learned dose
strategies by the DQN could achieve similar results to those
decided by clinicians, yielding feasible and promising solutions
for automatic treatment designs. Once a treatment
recommendation model is developed, it is imperative to carefully
evaluate its validity and effectiveness before wide application.
In the clinical domain, a randomized controlled trial (RCT) is
often performed to test the efficacy of an intervention. However,
RCTs can be costly, unpractical, and infeasible in some clinical
scenarios [18]. With the increase of EMR use, a retrospective
study has become a reasonable alternative to evaluate models
via statistical tests and other data analytics methods.

There is an emerging trend in the literature for effectiveness
evaluation on the treatment of chronic diseases [19-21], such
as the comparative effectiveness of more or less aggressive
treatment intensification strategies in adults with T2DM [19].
In these studies, two types of treatments are compared in terms
of a short-term clinical outcome such as the key indicator of
the disease and a long-term outcome such as the occurrences
of complications or death. When making a comparison in such
observational studies, it is crucial to eliminate the influence of
confounding factors. For short-term clinical outcomes, multiple
logistic regression and the propensity score (PS) method are
conventional approaches to adjust the confounders between
treatment groups [22]. With respect to long-term outcomes,
survival analysis via the Cox proportional hazard model can be
applied to adjust the time-invariant or time-varying covariates
for two treatment groups [23]. If the covariates change over
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time and are affected by the previous treatment, the use of
marginal structural models [24-26] was proposed to control the
confounders. In relation to diabetes treatment, Chen et al [27]
assessed the association between treatment concordance with
clinical guidelines and related clinical outcomes in patients with
T2DM by comparing guideline-concordant and
guideline-nonconcordant cohorts. This work is closely related
to treatment model evaluation as the treatment groups to be
compared are defined based on a given guideline, which can be
regarded as a special treatment model that has been verified and
commonly accepted. Chen et al [27] considered hospital
admission and severe hypoglycemic events as the clinical
outcomes of interest. Logistic regressions were used to examine
factors associated with the likelihood of having at least one
hospital admission and Cox proportional hazard regressions
were used to model time to hypoglycemic events.

In this work, we developed treatment recommendation models
based on the deep RL approach and then performed a
retrospective study to evaluate the reliability and effectiveness
of the models. The anonymized data used in our study are
derived from the Singapore Health Services (SingHealth)
Diabetes Registry [28], which is built based on the EMRs from
SingHealth, the largest health cluster in Singapore with 4
hospitals, 5 national centers, 8 polyclinics (primary care clinics),
and 3 intermediate long-term-care community hospitals. For
treatment recommendation, we successfully applied the deep
RL technique in the context of personalized treatment for
patients with T2DM, with careful design and formulation for
this challenging problem. We built a model that can be used to
recommend the medications for patients with T2DM based on
their clinical information, including demographic data, vital
signs, laboratory tests, disease history, and current medications.
Three models were developed for antiglycemic,
antihypertensive, and lipid-lowering treatments to enable the
comprehensive management of patients with T2DM. We
evaluated the effectiveness of our treatment recommendation
models by systematically performing a retrospective study on
the EMRs of patients with diabetes.

Methods

Patient Characteristics
This retrospective study was based on anonymized data of
189,520 patients with T2DM from SingHealth Diabetes Registry
between January 2013 and December 2018. The study was
approved by the SingHealth Centralized Institutional Review
Board with a waiver of informed consent granted. The board
deemed that further ethical deliberation was not required as the
study involves analysis of an anonymized dataset. All methods
performed in this study were in accordance with the relevant
guidelines and regulations. The dataset was split into training
data (80% with 152,527 patients) for treatment recommendation
models, including three types of treatments (antiglycemic,
antihypertensive, and lipid-lowing treatment), and test data
(20% of data with 36,993 patients) for evaluating the
effectiveness of the three treatment recommendation models.

The EMR data for each patient included demographic
information, medical history, physical measurements, laboratory

data, and physicians’ prescriptions. Demographic information
included age, gender, ethnicity, smoking, and others. Medical
history included comorbidities, vascular complications, hospital
admissions, emergency department visits, and outpatient visits.
Physical measurements included systolic blood pressure (SBP),
diastolic blood pressure (DBP), heart rate, weight, height, and
BMI. Laboratory data included glycated hemoglobin A1c

(HbA1c), low-density lipoprotein cholesterol (LDL-c), and
fasting plasma glucose. For physicians’ prescriptions, we
considered only antiglycemic, antihypertensive, and
lipid-lowering drugs and their dosages.

As is the case for all EMR data, our dataset contains errors and
missing data. The rate of missingness was generally low, with
higher rates for variables under the categories of physical
measurements and laboratory data. We handled the errors and
missing data using the following strategy. During preprocessing,
errors were treated as missing values. For missing physical
measurements and laboratory data, we substituted the missing
data with the value from the closest preceding data point of the
same patient within a 1-year time frame. If data were still
missing, we proceeded to impute the missing data using the
median of the observed values for that variable for all patients
without missing data.

Clinical Outcomes
Two types of clinical outcomes were analyzed: short-term and
long-term outcomes. Short-term outcomes were evaluated at
the patient-visit level, including blood glucose control, blood
pressure control, blood lipids control, and hypoglycemia-related
admissions. For the long-term outcomes, we evaluated the
occurrences of 5 diabetes complications and death in up to 6
years at the patient level, including myocardial infarction, heart
failure, stroke (including ischemic and hemorrhagic strokes),
diabetic nephropathy, other microvascular complications
(diabetic neuropathy, diabetic eye complications, diabetic
foot/peripheral angiopathy), and death.

Treatment Recommendation Models
The treatment recommendation models were based on the
patient’s clinical information from visits as input to recommend
three types of treatments as output: antiglycemic,
antihypertensive, and lipid-lowering medications. The input
clinical information of a patient contains demographic
information, lab data, physical measurements, medical history,
and prescriptions currently in use. We utilized three models to
recommend the three types of medications, and then combined
the output of the three models into a comprehensive treatment
recommendation.

Figure 1 illustrates the treatment recommendation approach by
combining a knowledge-driven model and a data-driven model.
The knowledge-driven model was developed based on the
clinical guidelines and expert experiences on managing T2DM
[29-34]. For the data-driven model, RL was used to learn the
policy of treatment recommendation from real-world data that
optimizes a predefined long-term goal via trial and error [35-37].
When integrating these two types of models, the
knowledge-driven model was first applied to select the candidate
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medications, and the data-driven model was used to rank the
candidates by the expected clinical outcomes.

RL-Based Framework of the Data-Driven Model
We trained the RL model on a set of time-varying data
consisting of state st (clinical data of the current visit), action
at (treatment), and reward rt score (based on clinical outcome).
The ultimate goal of RL is to learn a policy π, which for any
given state, one can select the action that maximizes cumulative
future rewards.

The DQN [38] is a type of RL method that has been recently
utilized to solve clinical decision problems with continuous
state variables [13,39,40]. Referring to the previous DQN work
of sepsis treatment in the intensive care unit [13], we applied
deep neural networks to calculate the action-value function Q
that estimates the cumulative rewards for each treatment action
at the current visit state. To train the DQN model, two neural
networks with the same architecture were used: an evaluation

network Q(·) and a target network . The evaluation network
was used to obtain optimal action maxaQ(st, a, θ) and was
trained by the loss function L(Q′, Q). The target network was
used to estimate the expected action-value Q′ to calculate the

loss function L and updated its parameters by slowly tracking
the parameters of the evaluation network θ every training

iteration:  ←τ·θ+θ (1 – τ)· with update parameter τ<1. The
loss function L(Q′, Q) is defined in Equation (1):

where the expected Q′ is:

and rreg is the maximum reward of all rt that is used in the
regularization term to penalize an inexpertly large Q value.
Here, we used a double-DQN [36] architecture that calculates

in Equation (2) through action from the evaluation network

a′=argmaxa [Q(st+1, a, θ)] instead of max . Double-DQN leads
to a more stable learning target and low-variance action-value
estimates. Moreover, we used dueling-DQN [37] that adds a
dueling architecture in the network to separate the output of the
last hidden layer into two streams to learn state values and
state-independent action advantages, respectively. We also used
a prioritized experience replay [41] method to speed up the
training approach. Each training batch was sampled from the
training data according to the importance, which was measured
by the samples’ temporal-difference error. The complete training
procedure of our DQN model can be found in Algorithm S1 in
Multimedia Appendix 1.

Figure 1. Treatment recommendation model of the “Knowledge + Data” two-wheel-drive method.

Details of DQN Implementation on the Dataset
To present the specific design of the RL-based data-driven
model, we take antiglycemic treatment as an example to explain
how we trained and applied the DQN in our models.

The given dataset makes up 80% of the entire dataset, which
contained 152,527 patients and 5,166,669 outpatient visits. To

define outpatient visit samples from the EMRs, we used lab test
results (or physical measurements) within a certain time interval
before the visit as state variables of its corresponding sample.
The complications that occurred before the current outpatient
visit were treated as medical history. The criteria used in the
generation of a given dataset are shown in Figure 2.
Subsequently, the patients in the given dataset were randomly
divided into a training set and validation set at a ratio of 8:2.
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Figure 2. Training set and validation set generation criteria for antiglycemic treatment recommendation.

The features that were selected to define the states for a patient
visit included demographics, medical history, disease risks,
previous drugs, lab data, and physical measurements. The
detailed state information is presented in Table S1 in Multimedia
Appendix 1. Among these features, continuous variables were
normalized into a common scale, whereas binary variables were
represented using 0 or 1. Other categorical variables were
converted into multiple binary variables using one-hot encoding.
Finally, we obtained a 49-dimension state vector.

For patients with T2DM, antiglycemic medications are usually
prescribed based on the currently used drugs [29,32,33]. Thus,
to simplify the action space of the DQN, we defined an action
of a visit based on medication changes from the previous

prescription. The prescription changes included drug changes
at the drug class level and dosage changes of some common
drugs. In terms of dosage changes, the increase or decrease in
dosage of the three most frequently used drugs, namely
metformin, basal insulin, and premixed insulin, was considered.
Table 1 lists the actions for antiglycemic treatment used in the
DQN model. The most common medication adjustment options
in the actions were: changing the dosage of a drug, adding an
oral antidiabetic drug (OAD), and changing to insulin treatment.
Among the action options, “No prescription change” indicates
use of the same drugs and dosages as the previous prescription,
and “Using xxx insulin” means changing to the specific insulin
or insulin combinations.

Table 1. Actions of the deep Q network for antiglycemic treatment.

ActionNumber

No prescription change0

Increase drug dosage1

Decrease drug dosage2

Adding alpha-glucosidase inhibitor3

Adding dipeptidyl peptidase-4 inhibitor4

Adding metformin5

Adding sodium glucose cotransporter-2 inhibitor6

Adding sulfonylurea7

Adding thiazolidinedione8

Adding glucagon-like peptide-1 receptor agonist9

Using basal insulin10

Using premix insulin11

Using basal and prandial insulins12
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The reward function is usually defined to quantify the
effectiveness of the action at each time step. In the antiglycemic
DQN, for a patient visit at time t, we defined the reward function
rt as shown in Equation (3):

rewardgly=a · sgn(7 – st+1
HbA1c) + (–b) · st+1

Hypo + (–c)

· st+1
Final · st+1

CX(3)

where

(4)

In Equation 3, st+1
HbA1c (%) is the HbA1c of time t+1, st+1

Hypo,
is a binary (1,0) variable representing whether hypoglycemia

occurs before time t+1, st+1
Final is a binary (1,0) variable

representing whether time t+1 is the final visit of the patient,

and st+1
CX ∈ {–1,1} indicates whether complications or death

occur at time t+1, where –1 represents “No” and 1 represents
“Yes.”

The concept underlying the reward function is to give a positive
reward when (1) the HbA1c after 3-6 months reaches the control
target (less than 7%), and (2) no complications or death occurred
until the last visit of a patient in the next 6 years. A negative
reward (ie, penalty) is given when (1) the HbA1c after 3-6

months is not well controlled, (2) a hypoglycemia event occurs
in the next 6 months, and (3) a complication or death occurs
after the current visit. Based on the importance of these
outcomes, we set the coefficients in Equation (1) as follows:
a=1, b=2, c=4. For an intermediate visit of a patient, the DQN
model is trained to optimize the cumulative reward, which is
equal to the current reward plus the next visit’s expected
cumulative reward multiplied by a discount factor, γ=0.9.
Therefore, the DQN model is able to estimate the impact of a
current action on both short-term and long-term outcomes.

The network architecture and training settings are provided
below. We adopted a fully connected neural network with 2
hidden layers of 64, with 32 units for the Q networks. Each
hidden layer contained batch normalization and Leaky-ReLU
activation. The input layer was 49 dimensions and the output
layer was 14 dimensions, which were the same as the sizes of
the state vector and the action space. The learning rate η was
0.001, the batch size was 256, and the target network update
parameter τ was set to 0.01. For regulation, we set the reward
threshold rreg=4 and λ=0.5. We trained the DQN model for a
maximum of 100,000 iterations using the Adam optimizer [42].

For antihypertensive and lipid-lowering treatments, actions and
reward functions of DQNs are shown in Table 2 and Table 3,
respectively.

Table 2. Actions of the deep Q network for antihypertensive treatment.

ActionNumber

No drugs0

Using Aa1

Using Bb2

Using Cc3

Using Dd4

Using A and B5

Using A and C6

Using A and D7

Using B and C8

Using B and D9

Using C and D10

Using A, B, and C11

Using A, B, and D12

Using A, C, and D13

Using B, C, and D14

Using A, B, C, and D15

aAngiotensin-converting-enzyme inhibitor or angiotensin II receptor blocker.
bBeta blocker.
cCalcium channel blocker.
dDiuretic.
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Table 3. Actions of the deep Q network for lipid-lowering treatment.

ActionNumber

No drugs0

Using statin1

Using fibrate2

Using ezetimibe3

Using statin and fibrate4

Using statin and ezetimibe5

Using fibrate and ezetimibe6

Using statin, fibrate, and ezetimibe7

In the antihypertensive DQN, for a patient visit at time t, we
defined the reward function as in Equation (5):

st+1
SBP(mmHg) is the SBP of time t+1, st+1

DBP (mmHg) is the
DBP of time t+1, and other terms are defined as in the reward
function of the antiglycemic DQN.

In the lipid-lowering DQN, for a patient visit at time t, we
defined the reward function as in Equation (7):

Rewardlip = a · sgn(2.6 – st+1
LDL-c) + (–c) · st+1

Final ·

st+1
CX(7)

where st+1
LDL-c (mmol/L) is the LDL-c of time t+1, and other

terms are defined as in the reward function of the antiglycemic
DQN.

Evaluation Methods

Short-Term Outcome Evaluation
Similar to previous works [27,43,44], we took model
concordance as the exposure factor, which was determined by
whether the actual prescription from the physician is concordant
to the model-recommended medication. Thus, we partitioned
the patient visits into a model-concordant group and a
model-nonconcordant group. The short-term clinical outcomes
were then compared between the two groups in terms of the
goal-achieving rate of the key parameters, including blood
glucose control, blood pressure control, blood lipids control,
and hypoglycemia events.

For each short-term outcome, we (1) followed the first 2
exclusion steps in the dataset generation process shown in Figure
2 for the corresponding treatment type (antiglycemic,
antihypertensive, or lipid-lowering treatment) and (2) excluded
visits without the short-term outcome information. Thus, one
patient may contribute different patient-visit samples for
evaluation of these outcomes. We applied the corresponding
treatment recommendation model onto these patient-visit
samples to generate model-recommended medications, and
partitioned the patient-visit samples into the model-concordant
group and model-nonconcordant group according to the
physicians’ prescription. Short-term outcomes were compared
between the model-concordant treatment and the

model-nonconcordant treatment with significance of differences

assessed via a χ2 test.

Furthermore, we combined stratification, PS methods, and
multivariate regression to adjust confounders. We first stratified
the patient visits by the confounder (eg, current HbA1c) that was
most strongly correlated to the clinical outcome. We then
performed the PS inverse probability weighting method [45,46]
to adjust multiple confounders for both overall samples and
stratified samples, since PS methods have been increasingly
used to control confounders [47,48] in observational studies,
especially for causal effect analysis. Finally, weighted
multivariate logistic regression was applied to adjust for residual
imbalances that might exist after PS modeling, and the adjusted
odds ratios (ORs) and 95% CIs in multivariate regression were
used to reveal the relationship between model concordance and
short-term outcome.

Long-Term Outcome Evaluation
At the patient level, model-concordant rates were included as
independent variables to evaluate the performance of the
combined treatments with antiglycemic, antihypertensive, and
lipid-lowering medications. The model-concordant rate was
calculated for each patient by dividing the number of
model-concordant visits by the total number of visits. We
defined the model-concordant rate to quantify the extent to
which each patient complied with the model recommendations.

We followed a similar process as shown in Figure 2 to generate
three test datasets. The difference was that patient visits after
the first occurrence time of the corresponding complication
were removed instead of the first occurrence time of the earliest
occurring complication. To describe the relationship between
the patient’s model-concordant rate and the occurrence rate of
the long-term outcome, we present illustration curves for each
type of treatment and each kind of long-term outcome, and
calculated the slopes by fitting the curves with a linear function
for exploring the trend. Multivariate logistic regression was
further used to investigate the associations between the three
types of comprehensive treatments and long-term outcomes,
where patients with the three kinds of model-concordant rates
were included as test samples. In the multivariate regression,
the three concordant rates were included as independent
variables, and the predicted risk score at baseline (representing
the effects of multiple risk factors on the occurrence of a
complication or death) was included as a covariate for
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confounder adjustment. Coefficients and P values are reported
for both independent variables and covariates.

Results

Patient Characteristics
Of the 36,993 patients in the test data, 18,878 were men (51%).
With respect to ethnicity, the majority of the patients were

Chinese (69%), followed by Malay (15%) and Indian (11%).
By 2019, the median age was 67 years (IQR 59-76) and the
median duration of diabetes was 10 years (IQR 6-16).

An overview of the short-term and long-term outcome
evaluation cohorts is shown in Figure 3. Further information is
provided in the following two subsections.

Figure 3. Overview of the exclusion criteria and the number of visits or patients in each evaluation cohort. SBP: systolic blood pressure; DSB: diastolic
blood pressure; HbA1c: glycated hemoglobin A1c; LDL-c: low-density lipoprotein cholesterol.

Short-Term Outcomes at the Patient-Visit Level
To evaluate the short-term outcomes, we took model
concordance as the exposure variable to evaluate the effect of
our treatment recommendation model at the patient-visit level.
We generated the test datasets separately for different short-term
outcomes, namely the percentages of patient visits with
well-controlled parameters (HbA1c<7% [53 mmol/mol],
SBP/DBP<140/90 mmHg, LDL-c<2.6 mmol/L [100 mg/dl])
after 3-6 months of therapy. For a hypoglycemia event, the
occurrence rate in the following 6 months was compared
between two groups. In short-term evaluation, potential
confounding factors were adjusted by stratification, the PS
weighting method, and multivariate regression, such as age,
gender, and ethnicity.

Specifically, the model concordance was defined at the level of
the standard drug class, since the treatment recommendation

models output the standard drug class rather than the specific
brand name. For example, if the model recommends
alpha-glucosidase inhibitors (AGI), the patient visit with a
prescription for Acarbose (a type of drug belonging to the drug
class AGI) is model-concordant. Only the top-ranking
recommended medication for antiglycemic, antihypertensive,
and lipid-lowering therapy was considered for evaluation.

After meeting all exclusion criteria, a total of 178,489 visits
were included to evaluate the short-term clinical outcomes of
HbA1c control. Of the total samples, 78,670 patient visits
(44.08%) were model-concordant and 99,819 (55.92%) were
nonconcordant. The characteristics of the model-nonconcordant
and model-concordant groups in the test data are shown in Table
4 for short-term blood glucose control evaluation, and patient
characteristics for other short-term outcomes (eg, blood pressure
control) are shown in Tables S2-S4 in Multimedia Appendix 1.
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Table 4. Characteristics of the glycated hemoglobin A1c (HbA1c) cohort.

P valueaModel-concordant group
(n=78,670)

Model-nonconcordant group
(n=99,819)

Variables

<.00164.61 (11.68)64.17 (12.23)Age (years), mean (SD)

<.00139,386 (50.1)48,450 (48.5)Gender (female), n (%)

Ethnicity, n (%)

<.00156,622 (72.0)69,019 (69.1)Chinese

<.0017,416 (9.4)10,658 (10.7)Indian

<.00111,701 (14.9)15,961 (16.0)Malay

.037644 (9.7)10,008 (10.0)Smoker/exsmoker, n (%)

<.00110.01 (7.52)12.14 (8.11)Duration of diabetes (years), mean (SD)

<.0016.94 (1.15)8.08 (1.39)HbA1c (%), mean (SD)

<.001131.71 (16.47)133.06 (16.77)SBPb (mmHg), mean (SD)

<.00169.33 (9.35)69.72 (9.40)DBPc (mmHg), mean (SD)

<.0012.19 (0.70)2.27 (0.76)LDL-cd (mmol/L) mean (SD)

<.0011.46 (0.79)1.61 (0.95)TGe (mmol/L), mean (SD)

<.00126.54 (5.95)26.75 (5.79)BMI (kg/m2), mean (SD)

<.00184.14 (30.65)80.56 (33.84)eGFRf (mL·min-1·1.73m–2), mean (SD)

<.00172,066 (91.6)92,235 (92.4)Hypertension, n (%)

<.00176,385 (97.1)97,506 (97.7)Hypercholesterolemia, n (%)

<.00119,604 (24.9)26,347 (26.4)Macrovascular complications, n (%)

<.00129,614 (37.6)44,904 (45.0)Microvascular complications, n (%)

aBased on a t test or χ2 test.
bSBP: systolic blood pressure.
cDBP: diastolic blood pressure.
dLDL-c: low-density lipoprotein cholesterol.
eTG: triglycerides.
feGFR: estimated glomerular filtration rate.

The evaluation results of short-term outcomes, including HbA1c,
SBP/DBP, LDL-c control, and hypoglycemia event, were based
on test samples with corresponding outcome data during the
follow-up period. After confounder adjustment for patient
characteristics, the model-concordant treatments were associated
with good blood glucose control, good blood pressure control,
and good blood lipid control compared with
model-nonconcordant treatments. There was no significant
difference in the occurrences of hypoglycemia events between
model-concordant treatments and model-nonconcordant
treatments (Table 5).

We further stratified the patient visits by the confounder that
was most strongly correlated to the clinical outcome. For the
outcome of glucose control (ie, HbA1c after 3-6 months), the
current HbA1c of the patient was used to stratify the patient
visits into three groups of low (<7%), medium (7-9%), and high
(>9%) levels. The short-term evaluation was performed on each
group separately (Table 6), showing that model-concordant
treatments were associated with improved short-term HbA1c

outcomes (ie, higher HbA1c goal-achieving rate) in each group.
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Table 5. Short-term clinical outcomes in the model-concordant and model-nonconcordant groups.

After propensity score weighting adjustmentBefore adjustmentSamples, nShort-term outcomes

P value95% CIORaP valueIncidence, n
(%)

<.0011.69-1.761.73<.001Antiglycemic treatmentb (HbA1c)c <7%)

48,263
(61.35)

78,670Concordant

21,507
(21.55)

99,819Nonconcordant

<.0011.23-1.291.26<.001Antihypertensive treatmentd (SBPe/DBPf<140/90 mmHg)

62,058
(76.74)

80,868Concordant

35,327
(55.17)

64,037Nonconcordant

<.0011.22-1.351.28<.001Lipid-lowering treatmentg (LDL-ch<2.6 mmol/L)

10,702
(71.42)

14,985Concordant

10,028
(55.41)

18,097Nonconcordant

0.220.91-1.020.97<.001Antiglycemic treatmenti (Hypoglycemia in next 6 months)

1497 (1.32)113,343Concordant

3009 (2.03)148,405Nonconcordant

aOR: odds ratio.
bConfounders considered: age, gender, ethnicity, smoking, duration of diabetes, HbA1c, SBP/DBP, LDL-c, triglycerides (TG), BMI, estimated glomerular
filtration rate (eGFR), hypertension, hypercholesterolemia, macrovascular complication, microvascular complication, hypoglycemia history.
cHbA1c: glycated hemoglobin A1c.
dConfounders considered: age, gender, ethnicity, smoking, duration of diabetes, HbA1c, SBP/DBP, LDL-c, TG, BMI, eGFR, hypercholesterolemia,
myocardial infarction, unstable angina, heart failure, stroke, nephropathy.
eSBP: systolic blood pressure.
fDBP: diastolic blood pressure.
gConfounders considered: age, gender, ethnicity, smoking, duration of diabetes, HbA1c, SBP/DBP, LDL-c, TG, BMI, eGFR, alanine transaminase,
macrovascular complication, nephropathy.
hLDL-c: low-density lipoprotein cholesterol.
iConfounders considered: age, gender, ethnicity, smoking, duration of diabetes, HbA1c, SBP, LDL-c, BMI, serum creatinine, hypertension, atrial
fibrillation, macrovascular complication, microvascular complication.
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Table 6. Short-term outcome for antiglycemic treatment based on current glycated hemoglobin A1c (HbA1c)

After propensity score weighting adjustmentBefore adjustmentSamples, nCurrent HbA1c level

P value95% CIORbP valueIncidence, n (%)

<.0011.69-1.891.79<.001Low (<7%)

43,836 (72.54)60,428Concordant

4034 (67.7)5959Nonconcordant

<.0011.69-1.831.76<.001Medium (7-9%)

3816 (27.21)14,025Concordant

16,365 (21.41)76,423Nonconcordant

<.0011.63-2.051.83<.001High (>9%)

611 (14.49)4217Concordant

1108 (6.35)17,437Nonconcordant

aConfounders considered: age, gender, ethnicity, smoking, duration of diabetes, HbA1c, systolic blood pressure/diastolic blood pressure, low-density
lipoprotein cholesterol, triglycerides, BMI, estimated glomerular filtration rate, hypertension, hypercholesterolemia, macrovascular complication,
microvascular complication, hypoglycemia history.
bOR: odds ratio.

Long-Term Outcomes at the Patient Level
Figure 4 illustrates the relationship between the patient’s
model-concordant rate and the occurrence rate of long-term
clinical outcomes for all patients with respect to antiglycemic,
antihypertensive, and lipid-lowering therapy. Specifically, the
patients were divided into different groups according to the
patient’s model-concordant rate (eg, every 20% as a group),
and the occurrence rate of complications or death in each group
was computed. In general, the curves show a downward trend.
In other words, there is a negative correlation between the
model-concordant rate and the occurrence rate of complications
or death; the higher the patient’s model-concordant rate, the
lower the occurrence rate of complications or death. Table 7
shows the slope of each curve by fitting to a straight line using
all data points, which indicates the extent of the downward
trend. In addition, the number of patients in each long-term
outcome evaluation cohort is shown in Table S5 in Multimedia
Appendix 1.

Furthermore, for combined treatments with antiglycemic,
antihypertensive, and lipid-lowering drugs, we evaluated if the
patient’s model-concordant rate for the three types of treatments
had a positive impact on the reduction of the complication or
death risk by multivariate regression. Only patients with all
three model-concordant rates of antiglycemic, antihypertensive,
and lipid-lowering treatment were included in the multivariate

regression model. Table 8 shows the multivariate regression
results of each long-term outcome with confounder adjustment
for the corresponding risk score generated by the prediction
model. All of the prediction models, based on XGBoost,
outperformed the clinical baseline models [49-53] and
demonstrated good prediction capability, with an area under
the receiver operating characteristic curve ranging from .711 to
.874. The model-concordant rate for antiglycemic treatment had
a negative correlation with the occurrence of major
complications and death, with coefficients ranging from –1.12
to –.33. A similar result was found for the model-concordant
rate for antihypertensive treatment (coefficient range –1.44 to
–.40) and the model-concordant rate for lipid-lowering treatment
(coefficient range –1.17 to –.52). All of these coefficients were
significant (P<.05), except for the coefficients of antiglycemic
treatment and antihypertensive treatment in the evaluation of
stroke outcome. This implies that the patients whose treatments
were more concordant with the model recommendation were
more likely to be associated with a lower risk of diabetes
complications (including both macrovascular and microvascular
complications) and death. All of the coefficients for the risk
score had positive values, which also validated the soundness
of the risk prediction models. In addition, the number of patients
with or without the corresponding long-term outcomes in
multivariate regression are shown in Table S6 in Multimedia
Appendix 1.
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Figure 4. Relationship between patient’s model-concordant rate and the occurrence rate of long-term outcomes for all patients with respect to antiglycemic,
antihypertensive, and lipid-lowering treatment, respectively.

Table 7. Slopes of patient-level long-term outcome evaluation curves in Figure 4.

Lipid-lowering treatmentAntihypertensive treatmentAntiglycemic treatmentCurves fit

–0.0581–0.0617–0.0384Myocardial infarction

–0.0502–0.057–0.0312Heart failure

–0.0535–0.0389–0.0261Stroke

–0.1670–0.2601–0.1098Nephropathy

–0.1007–0.0827–0.1584Other microvascular

–0.0881–0.1240–0.0419Death

Table 8. Multivariate regression results for long-term outcomes.

Risk score (%)Lipid-lowering treatment
model concordance rate

Antihypertensive treatment
model concordance rate

Antiglycemic treatment
model concordance rate

Long-term outcome

P valueCoefficient (β)P valueCoefficient (β)P valueCoefficient (β)P valueCoefficient (β)

<.001.0998<.001–1.0065<.001–.8018<.001–1.1150Myocardial infarction

<.001.0653<.001–1.0416<.001–1.4414.04–.6294Heart failure

<.001.1210<.001–1.1715.06–.4871.24–.3288Stroke

<.001.0072<.001–.5182<.001–1.2648<.001–.5667Nephropathy

<.001.0552<.001–.6296.004–.3956.001–.5382Other Microvascular

<.001.0527<.001–.9835<.001–.8872.02–.4922Death
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Medication Pattern
In all patient visits, the percentages of model-concordant visits
were 43.30%, 51.25%, and 58.93% for antiglycemic,
antihypertensive, and lipid-lowering therapy, respectively. To
analyze the distribution characteristics for model concordance,
we compared the antiglycemic medication patterns between
physicians’ prescriptions and model recommendations.

Figure 5 depicts the medication patterns used by physicians (top
panels) and the model (bottom panels) for the three different
groups. All patient-visit samples were categorized into three
groups based on the current HbA1c as follows: low (<7%),
medium (7-9%), and high (>9%). For each group, the medication
patterns of physicians’ prescriptions and model
recommendations are visualized by 2D histograms, in which
the x-axis represents the number of OADs and the y-axis
represents the intensity of insulin (a value of 0 indicates no

insulin used, 1 indicates single use of basal insulin or prandial
insulin, and 2 indicates a premix or combination use of basal
and prandial insulin, or others). The color indicates the usage
number of corresponding medication patterns. First, Figure 5
shows that medication patterns of model recommendations are
consistent with clinical knowledge, as most patients in the low
group were prescribed with a single OAD, whereas patients in
the medium and high groups showed increased use of
multi-OAD, insulin, and insulin plus OAD. Second, the
medication patterns of model recommendations are visually
similar to those of physicians’ prescriptions in the low group,
whereas in the medium and high groups, the patterns of model
recommendations are more vigorous than those of physicians’
prescriptions. This indicates that the model learns from the data,
showing that active adjustment of the medication for the patients
in medium and high groups may be associated with a better
clinical outcome.

Figure 5. Medication pattern comparison between physicians’ prescriptions and model recommendations. HbA1c: glycated hemoglobin A1c; OAD:
oral antidiabetic drug.

Discussion

In this work, we built our treatment recommendation model
based on 80% of the data in SingHealth Diabetes Registry and
evaluated its effectiveness with the remaining 20% of data. The
strengths of this retrospective study are two-fold. First, the
diabetes registry used for model building and evaluation is of
good quality. It consists of the medical records for a large patient
population, covers a long-term span of 6 years, and includes
different types of diabetes complications (macrovascular and
microvascular). Second, the methods used for the evaluation
are comprehensive. For the treatment recommendation, we
considered the concordance of three types of treatments
(antiglycemic, antihypertensive, and lipid-lowering treatment)
and evaluated two types of outcomes, namely the control of key

indicators in the short term and the occurrences of diabetes
complications in the long term.

The treatments are recommended by a combination of a
knowledge-driven model and a data-driven model. For the
knowledge-driven model, we incorporated renal dosing and
contraindications for specific medications so as to align with
standards of care. For example, the model will not recommend
an increase in the metformin dose in subjects with an estimated

glomerular filtration rate (eGFR) <45 mL·min-1·1.73 m–2 and
will recommend the discontinuation of metformin if the eGFR

is below 30 mL·min-1·1.73 m–2 [29]. For the data-driven model,
we ranked the candidates by the expected clinical outcomes.

In our study, the antiglycemic medications recommended by
our model were the same as the actual prescriptions of the
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physicians in 43.30% of patient visits. The percentages of
model-concordant visits for antihypertensive medications and
lipid-lowering medications were 51.25% and 58.93%,
respectively. For the treatment recommendation evaluation,
patients with more model-concordant treatments had better
control of blood glucose (OR 1.73, 95% CI 1.69-1.76), blood
pressure (OR 1.26, 95% CI 1.23-1.29), and blood lipids (OR
1.28, 95% CI 1.22-1.35), as well as a lower risk of diabetes
complications (coefficients of regression ranging from –1.44
to –.33). In addition, there was no significant difference (OR
0.97, 95% CI 0.91-1.02) on the risk of hypoglycemia events
between model-concordant treatments and model-nonconcordant
treatments. These evaluation results suggested that the treatment
recommendation model has good potential to guide physicians
in prescribing medications that could help to achieve better
clinical outcomes.

Our study has some limitations. First, the algorithm was more
aggressive in recommending complex treatment regimens than
the actual physicians’ prescriptions, especially in the medium
and high HbA1c groups. The dataset is built based on the EMRs
of patients with T2DM. Some information that can influence
the choice of a physician’s prescription may be missing in the
data. For example, a physician may default to repeating a
previous prescription because of the patient’s reluctance to
change medications. Such patient preference will not be recorded
in the data and hence not used in the treatment recommendation
model. This is reflective of “human bias” for less complex
treatment regimens in real-world clinical practice. Second,

selection bias may exist in this study. For example, when
evaluating the long-term clinical outcome, we selected the
patients with a number of visits greater than a threshold. As
such, newly added patients in 2018 were hardly selected. Third,
the unified therapeutic targets were used in this study without
considering personalized control targets for individual patients.
For example, the control goal of blood glucose was set to
HbA1c<7% in this study. However, for elderly patients and
patients with recurrent hypoglycemia, the HbA1c goal could be
less strict. Fourth, the hypoglycemia episodes that did not end
up requiring admissions may be reported by the patients but are
seldom coded in the EMRs as a blood test or diagnosis that the
algorithm can identify [54]. Thus, our analysis only considered
severe hypoglycemia events with hospital admissions. Finally,
although we performed the PS weighting method and
multivariate regression analysis to control for differences in
demographic and clinical conditions when evaluating the
association between model concordance and clinical outcomes,
a conclusion regarding the causal effect of model concordance
cannot be made based on the observed association due to the
limitations of a retrospective study.

In future work, the treatment recommendation model can be
further evaluated in a prospective study by piloting an interactive
treatment recommendation system in a real-world clinical
practice. Finally, the knowledge-driven and data-driven models
need to be optimized regularly to make use of newly collected
EMR data, and to incorporate the latest clinical guidelines and
new classes of drugs.
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