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Abstract

Background: The supervised deep learning approach provides state-of-the-art performance in a variety of fundus image
classification tasks, but it is not applicable for screening tasks with numerous or unknown disease types. The unsupervised anomaly
detection (AD) approach, which needs only normal samples to develop a model, may be a workable and cost-saving method of
screening for ocular diseases.

Objective: This study aimed to develop and evaluate an AD model for detecting ocular diseases on the basis of color fundus
images.

Methods: A generative adversarial network–based AD method for detecting possible ocular diseases was developed and
evaluated using 90,499 retinal fundus images derived from 4 large-scale real-world data sets. Four other independent external
test sets were used for external testing and further analysis of the model’s performance in detecting 6 common ocular diseases
(diabetic retinopathy [DR], glaucoma, cataract, age-related macular degeneration, hypertensive retinopathy [HR], and myopia),
DR of different severity levels, and 36 categories of abnormal fundus images. The area under the receiver operating characteristic
curve (AUC), accuracy, sensitivity, and specificity of the model’s performance were calculated and presented.

Results: Our model achieved an AUC of 0.896 with 82.69% sensitivity and 82.63% specificity in detecting abnormal fundus
images in the internal test set, and it achieved an AUC of 0.900 with 83.25% sensitivity and 85.19% specificity in 1 external
proprietary data set. In the detection of 6 common ocular diseases, the AUCs for DR, glaucoma, cataract, AMD, HR, and myopia
were 0.891, 0.916, 0.912, 0.867, 0.895, and 0.961, respectively. Moreover, the AD model had an AUC of 0.868 for detecting any
DR, 0.908 for detecting referable DR, and 0.926 for detecting vision-threatening DR.

Conclusions: The AD approach achieved high sensitivity and specificity in detecting ocular diseases on the basis of fundus
images, which implies that this model might be an efficient and economical tool for optimizing current clinical pathways for
ophthalmologists. Future studies are required to evaluate the practical applicability of the AD approach in ocular disease screening.
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Introduction

Globally, approximately 2.2 billion people have vision
impairment or blindness, according to the first World Report
on Vision issued by the World Health Organization in 2019 [1].
In addition, the growth of the global population and the changes
in its age structure are leading to accelerated growth of this
number [2]. There is adequate evidence that retinal screening
and referral for treatment can prevent avoidable blindness [3].
Advances in fundus imaging are expected to decrease
preventable visual morbidity by enabling convenient and timely
eye disease screening [4,5]. Color fundus camera imaging is an
essential and easy-to-master technique for detecting a variety
of eye diseases, such as diabetic retinopathy (DR) [6],
age-related macular degeneration (AMD) [7], glaucoma [8],
cataracts [9], and myopia [10,11]. However, in most countries,
especially in low-income countries or regions with insufficient
medical resources, there are not enough highly skilled
ophthalmologists engaged in eye screening. Therefore, there is
an urgent need to develop a convenient and low-cost auxiliary
diagnostic system to screen for ocular diseases.

With the promotion of artificial intelligence (AI) in medicine
over the past decade [12,13], AI has proven to be effective and
feasible for automatic eye disease screening or diagnosis based
on color retinal fundus images. Over the past few years,
supervised deep learning approaches have provided
state-of-the-art performance in eye disease classification tasks
and have achieved excellent sensitivity and specificity in the
detection of DR [14-16], AMD [17,18], cataracts [11], glaucoma
[15,19], and pathological myopia [20]. However, these models
may fail in real-life settings because they are trained on the basis
of only one type of fundus disease, when a given fundus image
used for inference is neither normal nor the specific ocular
disease used in training; in such situations, the model is bound
to make an incorrect prediction. A multiclass model that includes
all types of ocular diseases may be an option to consider.
However, such a model would require large data sets annotated
by ophthalmologists, which is laborious and expensive.
Furthermore, the gamut of all possible anomalies is not available
in most cases owing to the rarity of certain diseases and
disorders.

In disease screening, the proportion of normal samples is
generally much higher than that of anomalies, which implies
that the task is akin to anomaly detection (AD). In AD, a model
is developed on the basis of only normal samples to capture the
distribution of normality and is then evaluated on both unseen
normal and abnormal samples to test their deviation from the
distribution [21]. Numerous previous studies have focused on
AD in understanding visual scenes [22-25], with a wide range

of application domains [26-29]. However, AD has rarely been
applied to medical images, where the distinctions between
normality and anomaly may be subtler and more variable than
those in natural images.

In the field of ophthalmology, Seeböck et al [30] developed the
first AD system by training a 1-class support vector machine
model unsupervised to identify anomalous regions in optical
coherence tomography (OCT) images. Furthermore, a series of
generative adversarial network (GAN)–based AD methods were
proposed for OCT AD, which demonstrated excellent
performance [31-33]. To date, only 1 study has adopted the
isolation forest AD algorithm to detect ocular diseases on the
basis of small-scale data sets of color retinal fundus images
[34]. The area under the receiver operating characteristic curve
(AUC) of the model for detecting premature retinopathy and
DR were 0.770 and 0.745, respectively, which do yet meet
clinical requirements. Hence, we decided to test the prospects
of a deep learning–based AD model developed on a large-scale
data set of color fundus images.

The primary aim of our study was to develop an AD model
based on normal retinal fundus images for the detection of ocular
diseases. Our secondary aim was to evaluate the performance
of this approach in detecting 6 common ocular diseases, DR of
different severity grades, and a variety of fundus abnormalities.

Methods

Methods Overview
Figure 1 represents the workflow for the establishment and
verification of the proposed AD method in this study. The first
step was to compile fundus images from various sources into a
large-scale data set, which contains public data sets available
on websites and data sets of our own. The next step was to
preprocess the fundus images, including manual removal of
fundus images that are not qualified for diagnosis because of
substandard quality, as well as cropping of images from different
sources to a uniform size. In the third step, the AD model was
developed on the training and validation sets. Specifically, the
training set was applied to optimize the learnable parameters
of the model, whereas the validation set was used to determine
the best configuration of the hyperparameters (such as the
learning rate, batch size, and momentum) through the random
search strategy. The optimal hyperparameters refer to the
combination of hyperparameters that can make the AD model
achieve the highest AUC on the validation set. In the last step,
the final model was first evaluated on internal and primary
external test sets, and then we evaluated the model’s ability to
detect 6 common ocular diseases, different severity levels of
DR, and 36 types of fundus abnormal findings or diseases.
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Figure 1. Workflow of this study. AD: anomaly detection, AUC: area under the receiver operating characteristic curve, DR: diabetic retinopathy,
ODIR: Ocular Disease Intelligent Recognition, and ROC: receiver operating characteristic curve.

Training, Validation, and Test Sets
Eight color fundus image data sets from various sources were
collected for model development and evaluation in our study,
which are described in Table 1. These fundus images were
collected from numerous clinical or health care institutions with
diverse models of color fundus cameras in 4 countries (United
States, India, China, and France). All fundus images were
centered near the macula, while the pupil dilation and field of
vision were inconsistent.

We compiled 4 data sets (3 publicly available and 1 proprietary),
which comprise 64,351 normal fundus images and 26,148
fundus images with lesions, as training, validation, and internal
test sets. Since the model only needs normal fundus images for
training, we randomly sampled 60% of normal fundus images
as the training set, 20% of normal and 50% of abnormal fundus
images as the validation set for hyperparameter tuning of the
model during the training phase, and the remaining 20% of
normal and 50% of abnormal fundus images as the test set for
internal testing of the model’s performance.

The model was externally tested using 4 additional fundus image
data sets, of which 1 is proprietary and the other 3 are publicly

available (Table 1). Ocular Disease Intelligent Recognition
(ODIR-5K) contains images of 6 common ocular diseases,
namely DR (1334 diagnosable images), glaucoma (456 images),
cataract (439 images), AMD (322 images), HR (251 images),
and myopia (377 images). The Messidor-2 data set is a collection
of DR examinations [35,36], which contains only abnormal
images of DR, and each image is rated by a medical expert as
1 of 5 severity levels in accordance with the International
Clinical Diabetic Retinopathy Disease Severity Scale [37]. The
JSIEC1000 data set contains 36 categories of abnormal retinal
fundus images, including some rare diseases such as retinitis
pigmentosa, congenital disc abnormality, fundus neoplasm, and
Vogt-Koyanagi-Harada disease.

We used these 4 data sets to further evaluate different aspects
of model performance. The primary analysis was performed to
evaluate the performance of the AD algorithm in detecting all
abnormal fundus images in the Local-2 data set. Next, the
following subsidiary analyses were performed: (1) the detection
of 6 common ocular diseases was analyzed in the ODIR-5K
data set, (2) the detection of different severities of DR was
evaluated in the Messidor-2 data set, and (3) the detection of
36 abnormal findings or diseases was assessed on the basis of
the JSIEC1000 data set.
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Table 1. Summary of all data sets used to develop and evaluate the anomaly detection model.

Number of diagnosable
images

AnnotatorsCamera
models

CohortRace or ethnicityAbbreviationSource data sets

AbnormalNormal

Training, validation and internal test sets

23,30147,306A panel of medical
specialists

A variety
of cameras

Clinic-basedVarious ethnicitiesEyePACSEyePACS program
in California (United
States)

98714,9331 ophthalmologistTopcon
TRC-
NW100

Population-
based

ChineseLocal-1Health Examination
Center of Beijing
Xiaotangshan Hospi-
tal (China)

169217641 clinicianA variety
of cameras

Clinic-basedIndianAEHIAravind Eye Hospi-
tal (India)

168348Medical expertsUnclearClinic-basedIndianIDRiDEye Clinic of
Sushrusha Hospital
(India)

External test sets

108917,0271 ophthalmologistTopcon
TRC-
NW400

Population-
based

ChineseLocal-2Beijing Physical Ex-
amination Center
(China)

31793492Trained human read-
ers

A variety
of cameras

Clinic-basedChineseODIR-5KMore than 400 clini-
cal hospitals in Chi-
na (China)

73110171 medical expertTopcon
TRC NW6

Clinic-basedFrenchMessidor-2Ophthalmology de-
partment of Brest
University Hospital
(France)

94654Medical expertsA variety
of cameras

Clinic-basedChineseJSIEC1000Joint Shantou Inter-
national Eye Centre
(China)

Image Preprocessing
Our data sets were obtained from a wide range of real-world
sources, and their characteristics reflect their origins; some
images may be out of focus, of inaccurate exposure, or contain
artefacts and noise that are not relevant to the diagnosis. For
unsupervised AD methods, it is necessary to eliminate these
low-quality fundus images to ensure that they are not recognized
as abnormal images [38]. Two trained junior ophthalmologists
(with 2~3 years of experience) were asked to identify and
discard low-quality fundus images that were insufficient to
make a reliable diagnosis independently. In case of discordance
between these 2 screeners, arbitration was performed by a senior
ophthalmologist (with 12 years of experience) to generate a
final judgment. The number of diagnosable images in each data
set is listed in Table 1.

Moreover, owing to the diverse fundus camera models and
settings, the regions captured by the fundus photographs are
also markedly heterogeneous, which may cause the model to
learn features that are extraneous to disease diagnosis. Hence,
we cropped all fundus images to save the same area and
standardized the image sizes to a width and height of 800 pixels
and 660 pixels, respectively. Multimedia Appendix 1 provides
details regarding the pipeline for fundus image preprocessing.
We determined the optimal input image resolution for loading

into the model through a pilot study, which investigated image
resolutions ranging from 32 × 32 pixels to 640 × 640 pixels.
The results showed that an image resolution of 256 × 256 pixels
achieved the maximum AUC (Multimedia Appendix 2). Hence,
we reshaped the fundus images to 256 × 256 pixels when loading
them into the AD model for training or inference.

AD Algorithm
In this study, we adopted an AD method, known as
Skip-GANomaly, proposed by Akçay et al [21]. This approach
learns representations within both image and latent vector space
jointly and achieves state-of-the-art performance both
statistically and computationally.

As shown in Figure 2, this algorithm is a GAN network that
includes a generator (G) and a discriminator (D) network. The
generative network is similar to an automatic encoder, which
comprises an encoder (GE) and a decoder (GD) network and
skip connections between them. In the training phase, the model
is trained only on normal samples, and the training objective is
to capture the distribution of normal images within not only
image space but also latent vector space. To achieve this goal,
3 loss equations are established: adversarial loss (Ladv),
contextual loss (Lcon), and latent loss (Llat). The total training
objective becomes a weighted sum of the aforementioned losses.
In the inference phase, an anomaly score composed of weighted
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contextual loss (Lcon) and latent loss (Llat) was used to detect
the anomalies. The training objective would yield minimum
anomaly scores for training samples (normal samples) but higher
scores for abnormal images. Hence, a higher anomaly score for
a given sample x indicates that x is likely abnormal with respect

to the distribution of normal samples learned by the AD model
from the training set during training [21]. The optimal threshold
for the anomaly scores was determined using the Youden index
[39]; that is, the critical threshold value that achieved the
maximum Youden index was referred to as the optimal
threshold.

Figure 2. Overview of the training procedure of the Skip-GANomaly model.

We trained the AD model in an unsupervised manner on the
training set (38,611 normal samples) and tuned the
hyperparameters of the model on the validation set (containing
12,870 normal and 13,074 abnormal samples). The configuration
of the optimal hyperparameters, the optimization objective of
the model in the training phase, and the calculation method of
anomaly score in the inference phase are detailed in Multimedia
Appendix 3.

Statistical Analysis
The metrics AUC, accuracy, sensitivity, and specificity were
used to evaluate the performance of the AD algorithm. For the
calculation, abnormal fundus images were regarded as positive
samples, and normal fundus images were regarded as negative.
The binomial exact 95% CI was calculated for the AUC, and
the Wilson score was applied to calculate the Wilson 95% CIs
for accuracy, sensitivity, and specificity. All statistical analyses
were conducted using R (version 3.6.0, The R Foundation).

Results

In total, the AD algorithm for detecting abnormal fundus images
was developed using a training set of 38,611 normal fundus
images and a validation set comprising 12,870 normal fundus
images and 13,074 anomalies. With the optimal hyperparameters
derived from model tuning, a final complete model was trained
on all 51,481 images, including all normal fundus images in the
training set and the validation set. Then, we evaluated the
model’s performance in detecting abnormal fundus images in
the internal and external test sets.

First, we investigated the model’s performance on the internal
test set (containing 12,870 normal fundus images and 13,074
anomalies) and the external test set Local-2 (containing 17,027
normal fundus images and 1089 anomalies). The algorithm
achieved an AUC of 0.896 on the internal test set (Table 2 and
Figure 3). The maximum Youden index was 0.6536
(sensitivity=82.69% and specificity=82.63%), which

corresponded to the optimal threshold of 2.874×10-3. The
model’s performance on external test set Local-2 was equal to
its performance on the internal test set (Table 2).
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Table 2. The performance of the anomaly detection model in detecting abnormal fundus images in the internal and external test sets.

Proportion (%) (95% CI)bArea under the receiver operating

characteristic curve (95% CI)a
Test data sets

SpecificitySensitivityAccuracy

82.63 (81.74-83.49)82.69 (81.94-83.42)82.67 (82.10-83.22)0.896 (0.891- 0.900)Internal test set

85.19 (81.90-88.07)83.25 (82.52-83.97)83.35 (82.63-84.04)0.900 (0.893-0.906)Local-2

aThe binomial exact 95% CI was calculated for each are under the receiver operating characteristic curve.
bThe Wilson score was applied to calculate the Wilson 95% CI for accuracy, sensitivity, and specificity.

Figure 3. ROC and AUC of the anomaly detection model for detecting abnormalities in the internal test set, as well as detecting aDR, rDR, and vDR
in the Messidor-2 data set. “internal” refers to internal test set. aDR diabetic retinopathy of any severity, AUC: area under the receiver operating
characteristic curve, rDR: referable diabetic retinopathy, ROC: receiver operating characteristic, vDR vision-threatening diabetic retinopathy.

Next, to explore the model’s capacity to detect different ocular
diseases, we evaluated the model’s effectiveness in detecting 6
common types of ocular diseases by using the ODIR-5K data
set (Table 3 and Figure 4). The top 3 AUCs were 0.961, 0.916,
and 0.912, which corresponded to myopia, glaucoma, and
cataract, respectively. AMD had the lowest AUC of 0.867

among all 6 categories. The model had greater than 80%
accuracy, sensitivity, and specificity for the detection of all
evaluated ocular diseases, except for AMD. Furthermore, we
calculated the anomaly score of each fundus image and plotted
the distribution of the scores by using probability density curves
(Figure 5).
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Table 3. The Ocular Disease Intelligent Recognition-5K test set: area under the receiver operating characteristic curve, accuracy, sensitivity, and
specificity of the anomaly detection model in detecting 6 ocular diseases.

Proportion (%) (95% CI)bArea under the receiver oper-
ating characteristic curve

(95% CI)a

Ocular diseases

SpecificitySensitivityAccuracy

81.00 (76.87-84.54)80.69 (79.27-82.03)80.72 (79.39-81.99)0.896 (0.885-0.906)All anomalies

80.50 (76.33-84.08)80.36 (78.09-82.45)80.39 (78.42-82.23)0.891 (0.875-0.905)Diabetic retinopathy

84.00 (80.09-87.27)83.70 (78.34-87.94)83.89 (80.81-86.56)0.916 (0.892-0.937)Glaucoma

83.50 (79.55-86.82)83.33 (77.95-87.61)83.44 (80.33-86.14)0.912 (0.887-0.933)Cataract

78.75 (74.48-82.48)77.61 (71.36-82.83)78.37 (74.90-81.48)0.867 (0.837-0.893)Age-related macular degenera-
tion

82.75 (78.74-86.14)81.29 (74.00-86.90)82.37 (78.93-85.36)0.895 (0.866-0.920)Hypertensive retinopathy

88.75 (85.28-91.49)88.83 (83.53-92.58)88.78 (85.97-91.08)0.961 (0.942-0.975)Myopia

aThe binomial exact 95% CI was calculated for each are under the receiver operating characteristic curve.
bThe Wilson score was applied to calculate the Wilson 95% CI for accuracy, sensitivity, and specificity.

Figure 4. ROC and AUC of the anomaly detection model for detecting 6 ocular diseases. AMD: age-related macular degeneration, AUC: area under
the receiver operating characteristic curve, DR: diabetic retinopathy, HR: hypertensive retinopathy, and ROC: receiver operating characteristic curve.
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Figure 5. The probability density curves of the anomaly scores for the Ocular Disease Intelligent Recognition-5K test set. The solid red curve indicates
the anomaly score distribution of normal fundus images, and the solid blue curve indicates the anomaly score distribution of all abnormal fundus images.
The dotted line represents the anomaly score distribution of 6 types of abnormal fundus images. AMD: age-related macular degeneration, and DR:
diabetic retinopathy, HR: hypertensive retinopathy.

Then, we assessed the performance of the model in detecting
fundus images of referable DR and vision-threatening DR by
using the Messidor-2 data set. Referable DR was defined as
moderate DR or worse (severe DR and proliferative DR), and
vision-threatening DR was defined as severe or proliferative
DR. The AUC of the AD model was 0.908 for referable DR
and 0.926 for vision-threatening DR, both of which were higher
than the AUC of 0.868 for any DR (Table 4 and Figure 3).

Finally, we evaluated the model’s performance in detecting 36
abnormal findings or diseases on retinal fundus images by using
the JSIEC1000 data set. In detecting any abnormal findings or
diseases, the model’s AUC was 0.895 with an accuracy of
82.35%, sensitivity of 82.69%, and specificity of 82.99%. For
each of the 36 abnormal findings or diseases, the AUC values
ranged from 0.630 to 0.987, in which 23 of 36 categories had
AUCs greater than 0.9, 9 categories had AUCs ranging from
0.8 to 0.9, and 4 categories had AUCs less than 0.8 (Multimedia
Appendix 4).

Table 4. The Messidor-2 test set: area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity of the anomaly detection
model in detecting diabetic retinopathy of different severities.

Proportion (%) (95% CI)bArea under the receiver oper-
ating characteristic curve

(95% CI)a

Severity of diabetic retinopathy

SpecificitySensitivityAccuracy

79.41 (77.49-81.24)79.47 (78.12-80.77)79.45 (78.36-80.52)0.868 (0.854-0.880)Any diabetic retinopathy

83.39 (81.87-84.81)83.36 (81.77-84.84)83.38 (81.49-84.84)0.908 (0.899-0.916)Referable diabetic retinopathy

86.43 (85.02-87.73)86.38 (81.41-90.19)86.40 (81.45-88.19)0.926 (0.918-0.933)Vision-threatening diabetic
retinopathy

aThe binomial exact 95% CI was calculated for each are under the receiver operating characteristic curve.
bThe Wilson score was applied to calculate the Wilson 95% CI for accuracy, sensitivity, and specificity.
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Discussion

Principal Findings
In this study, a GAN-based AD approach was developed to
detect ocular diseases or abnormalities by using only normal
fundus images. Four data sets containing over 53,236 color
fundus images from various geographic and ethnic groups were
applied for model training, validation, and internal testing, along
with 4 data sets for external testing. Our results show that our
approach achieved an AUC of 0.896, sensitivity of 80.69%, and
specificity of 81.00% in detecting abnormal fundus images in
the internal test set, and the developed model showed stable
and consistent performance in the primary external test set,
Local-2. This study further analyzed the model’s ability to detect
DR, glaucoma, cataracts, AMD, HR, and myopia and compared
the performance of the model in detecting different severities
of DR. To our knowledge, this is the first study using large-scale
data sets of color fundus images to detect various ocular diseases
by using an AD approach. The contribution of the AD model
we established is to automatically detect abnormal fundus
images so that the ophthalmologist can focus on the diagnosis
based on abnormal fundus images and avoid spending extensive
time and effort on masses of normal fundus images.

Comparison With Existing Studies
Previous studies have applied AD to screen eye disorders;
however, most of those studies were based on OCT images.
Retinal fundus photography is simpler to operate and more
cost-effective than OCT, which renders it suitable for early
screening of ocular disease [40]. Thus far, only Ouardini et al
[34] have used AD with regard to color retinal fundus images;
however, the 2 data sets they used were small, and only 1 type
of fundus abnormality (retinopathy of prematurity or DR) was
included in each data set. In our study, we developed an AD
model based on 4 large-scale data sets derived from clinical or
population screening and conducted external validation on 4
independent data sets, which ensured the robustness and
generalizability of the model. Hence, this study substantially
complements the findings of previous studies.

In recent years, there has been a surge in supervised deep
learning studies for classifying fundus images, and many studies
have achieved excellent performance. For example, Ting et al
[41] trained a deep learning system to detect specific ocular
diseases through binary classification tasks, achieving 90.5%
sensitivity and 91.6% specificity for the detection of referable
DR, 96.4% sensitivity and 87.2% specificity for possible
glaucoma, and 93.2% sensitivity and 88.7% specificity for
AMD, which is markedly higher than those of our method. The
main reason may be that we used unsupervised learning; the
model only learns the distribution pattern of normal images in
model training, rather than the distributions of normal and
abnormal images simultaneously as in supervised learning [42].

However, the unsupervised AD approach applied in our study
has several specific advantages. First, model fitting does not

require any labeled abnormal fundus images for training, which
greatly reduces the cost of image annotation. Second, the AD
model from our study can theoretically detect all classes of
abnormal fundus images, including those of rare ocular diseases,
while supervised learning is limited to detecting the types of
abnormal images used in model training. Third, owing to the
existence of various types of abnormal fundus images in clinical
practice, the applicability of binary classification models is very
low. For instance, the premise for a binary classification model
to be applicable for distinguishing between normal and DR
images is that the fundus image to be discriminated by the model
must be either a normal fundus image or a DR fundus image.
Any other type of image will inevitably lead to incorrect
classification results. However, AD models do not present such
issues.

Limitations
This study has some limitations of note. First, the model we
established in this study has lower precision than that achievable
by a supervised learning model. Nevertheless, the detection
performance of the AD algorithm remained clinically acceptable
and highly reproducible both in the internal test set and in
external data sets. For DR screening, international guidelines
recommended a minimum sensitivity of 60% (Australia) to 80%
(United Kingdom) [43,44]. In clinical applications, to ensure
that the model has a minimal false-negative rate, the sensitivity
of the model can be increased by lowering the threshold of
anomaly scores. Second, this model can only screen out
abnormal fundus images and cannot directly provide specific
diagnoses, which still require an ophthalmologist for completion.
As such, the model is not capable of making a fully automated
diagnosis, and its primary function is to allow ophthalmologists
to focus more on the fundus images of possible lesions. The
AD model is well suited for fundus screening in the general
population, which predominately includes normal fundus
images. Owing to the wide variety of existing ocular diseases,
the use of fundus images alone is not a sufficient basis for
accurate diagnosis of ocular diseases, and the model also
requires information regarding the patient’s medical history and
clinical findings. Furthermore, the AD approach can detect
anomalies only at the image level, not at the pixel level, and
cannot show the specific locations of anomalies (eg, hard
exudate, retinal vein occlusion, and macular hole) with
heatmaps. The inherent black-box nature of deep learning may
affect its acceptance for clinical use by ophthalmologists [45].

Conclusion
In conclusion, we developed and evaluated a cost-effective and
time-efficient AD model to screen for ocular diseases or
abnormalities, which showed high sensitivity and specificity.
Further studies are required to determine the feasibility of
applying this algorithm for clinical diagnosis or screening and
to determine whether the use of this algorithm could lead to
improved care and outcomes, compared to the current diagnostic
workflow.
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