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Abstract

Background: Colonoscopy reduces the incidence of colorectal cancer (CRC) by allowing detection and resection of neoplastic
polyps. Evidence shows that many small polyps are missed on a single colonoscopy. There has been a successful adoption of
artificial intelligence (AI) technologies to tackle the issues around missed polyps and as tools to increase the adenoma detection
rate (ADR).

Objective: The aim of this review was to examine the diagnostic accuracy of AI-based technologies in assessing colorectal
polyps.

Methods: A comprehensive literature search was undertaken using the databases of Embase, MEDLINE, and the Cochrane
Library. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed. Studies
reporting the use of computer-aided diagnosis for polyp detection or characterization during colonoscopy were included. Independent
proportions and their differences were calculated and pooled through DerSimonian and Laird random-effects modeling.

Results: A total of 48 studies were included. The meta-analysis showed a significant increase in pooled polyp detection rate in
patients with the use of AI for polyp detection during colonoscopy compared with patients who had standard colonoscopy (odds
ratio [OR] 1.75, 95% CI 1.56-1.96; P<.001). When comparing patients undergoing colonoscopy with the use of AI to those
without, there was also a significant increase in ADR (OR 1.53, 95% CI 1.32-1.77; P<.001).

Conclusions: With the aid of machine learning, there is potential to improve ADR and, consequently, reduce the incidence of
CRC. The current generation of AI-based systems demonstrate impressive accuracy for the detection and characterization of
colorectal polyps. However, this is an evolving field and before its adoption into a clinical setting, AI systems must prove worthy
to patients and clinicians.

Trial Registration: PROSPERO International Prospective Register of Systematic Reviews CRD42020169786;
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020169786

(J Med Internet Res 2021;23(7):e27370) doi: 10.2196/27370
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Introduction

Colorectal cancer (CRC) is the third-leading malignancy
worldwide and a leading cause of mortality [1]. CRC typically
develops from sporadic colorectal adenomatous polyps, and
colonoscopy is established for the detection and resection of
these lesions, which has been shown to reduce the incidence
and mortality from CRC [2]. However, as with any procedure,
endoscopic polyp detection has operator-dependent limitations.
There is evidence highlighting that small polyps may be missed
at colonoscopy with a miss rate for adenomas as high as 26%
[3]. The primary colonoscopy quality indicator is the adenoma
detection rate (ADR). Given that ADR is inversely proportional
to postcolonoscopy CRC risk, with each 1% increase in ADR
equivalent to a 3% decrease in the subsequent risk of cancer
[4], there is an unmet need to tackle the problems that prevent
high-quality colonoscopy.

Human and technical factors lead to a small but significant
proportion of missed polyps during colonoscopy. Several studies
have suggested that ADR can be increased by improving the
educational and behavioral skills of the endoscopist. Training
programs, consisting of hands-on teaching and regular feedback,
showed good results in increasing ADR in trials [5,6]. However,
the increase in detection from baseline in these studies was
minimal and the ability of even expert endoscopists to detect
very small, subtle, or flat lesions remains a limiting factor.

Recently, there has been a successful adoption of artificial
intelligence (AI) technologies in health care diagnostics [7].
The ability of AI, specifically machine learning approaches, to
differentiate and characterize distinct pathologies is continuously
enhancing early computer-aided diagnosis (CAD) techniques.
Deep learning models are built using artificial neural networks
and have proven very useful with analysis of big data in health
care. Convolutional neural networks (CNNs) and their variants
with AI models have become the most preferred and widely
used methods in medical image analysis. Convolutional layers
convolve the input and pass its result to the next layer.
Application of AI in colonoscopy has focused more on polyp
detection than characterization, driven by the development of
deep CNNs (DCNNs). The architecture of these algorithms
includes multiple layers of processing between the input and
output layers, allowing analysis of complex data with efficient
performance. The most advanced polyp detection systems are
those that can be applied to video-based analysis during
colonoscopy.

In the field of endoscopy, a machine learning algorithm can be
trained to recognize or characterize polyps in real time. Two
endoscopic approaches have been studied: techniques used for
analysis of nonmagnified endoscopic images and those for
cellular imaging at a microscopic level (ie, optical biopsy).

The idea of such approaches is that by detecting more polyps
(ie, increasing the polyp detection rate [PDR]), there will be a
corresponding reduction in the number of missed adenomas
and, consequently, a reduction in the subsequent risk of CRC.
However, this presents a financial burden on health care systems,
especially the histopathology departments, involved in analysis
of resected tissue, which will only increase with the increase in

detection of polyps. The ultimate goal of a CAD system would
be the reliable detection of every polyp within the colon during
the colonoscopy procedure, while also characterizing them as
hyperplastic or adenomatous to guide decision making for
polypectomy and histopathological examination [8]. The
Preservation and Incorporation of Valuable endoscopic
Innovations (PIVI) initiative, set by the American Society of
Gastrointestinal Endoscopy (ASGE), has established a desired
threshold for the introduction of new endoscopic technologies,
including the optical diagnosis of diminutive colorectal polyps
[9]. Despite several, predominantly single-site, studies meeting
the PIVI criteria showing that a “resect and discard” strategy
or a “diagnose and leave” strategy could be adopted [10,11], a
recent multicenter study showed that the accuracy of optical
diagnosis requires imaging advances before it can be used to
determine surveillance without histology [12].

Machine learning by definition is a model that is able to
constantly adapt and improve when presented with new
information. To ensure this refinement, large quantities of
good-quality data should be used for training the algorithm.
Current AI systems that are not synthesized in this way are
prone to the risk of overfitting, whereby the system performs
well with training data to the extent that it negatively impacts
its performance when tested on new data [13]. Thus, for an AI
system to be successful in its ability to detect and characterize
polyps, it should adopt a machine learning model based on
good-quality high-yield data and the model should have a high
sensitivity for the detection of polyps, have a low rate of false
positives, and be able to maintain fast processing speeds to be
applicable in near-real time during colonoscopy [14].

Our aims were to systematically review and meta-analyze the
diagnostic accuracy of AI-based technologies in the detection
and characterization of colorectal polyps.

Methods

This review was carried out and reported in accordance with
the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) statement [15]. It has been registered on
PROSPERO (International Prospective Register of Systematic
Reviews) (registration No. CRD42020169786).

Search Strategy
A comprehensive literature search was undertaken using the
databases of Embase, MEDLINE, and the Cochrane Library.
All published articles up until October 2020 were included.
Search terms used in Embase and MEDLINE included “colon*,”
“polyp,” “artificial intelligence OR machine learning,” and
“computer aided or assisted and diagnos* OR detect*.” Studies
in the Cochrane Library were identified with the terms “colonic
polyp,” “artificial intelligence,” and “diagnosis,
computer-assisted” (Multimedia Appendix 1).

Inclusion and Exclusion Criteria
Inclusion criteria were as follows:

• Studies reporting computer-aided detection of colorectal
polyps retrospectively, using endoscopic images or videos
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• Studies reporting computer-aided classification of colorectal
polyps retrospectively, using endoscopic images or videos

• Studies reporting the use of CAD of colorectal polyps
during colonoscopy

• Studies reporting ADR, PDR, sensitivity, specificity, and
diagnostic accuracy data or studies with adequate
information to calculate these data

• Studies published or translated into English.

Exclusion criteria were as follows:

• Studies with no original data present (eg, review article or
letter)

• Studies with no full text available
• Studies conducted in patients with inflammatory bowel

disease (IBD)
• Studies greater than 20 years old
• Studies without adequate data to calculate sensitivity,

specificity, and diagnostic accuracy data; PDR and ADR;
adenoma miss rate; or mean adenomas per patient, or those
not reporting these data.

Study Selection
The retrieved articles were screened for duplicates by two
reviewers; these were excluded. Titles and abstracts were then
screened for relevance by two reviewers independently, and
irrelevant studies were excluded. Following this, full-text
reviews of remaining studies were completed. The reference
lists of identified review articles and included papers were
scrutinized for relevant studies. Disagreements about eligibility
were settled by consensus, both after screening and following
full‐text review. Inclusion and exclusion criteria were met by
all final articles.

Data Extraction
Data were gathered from studies and placed onto a standard
spreadsheet template. For each study, we extracted the following
data: study details (ie, first author, year of publication, and
journal), primary outcome (ie, polyp detection vs
characterization), study design (ie, type of study, method of AI,
and exclusion criteria), information on type of imaging modality
(ie, images or videos, images for training, and images for
validation), and information regarding diagnostic accuracy
characteristics (ie, sensitivity, specificity, accuracy, ADR, and
PDR).

Study Quality Assessment
Study quality was independently assessed using the Quality
Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2)
tool [16]. Each domain was classified as low-risk, high-risk, or
unclear risk of bias. For randomized controlled trials (RCTs),
the Jadad scale was used for quality scoring [17]. Studies with
a Jadad score of 3 or more were considered good quality.

Statistical Analysis
Independent proportions and their differences were calculated
and pooled  through DerSimonian  and
Laird random-effects modeling. This considered both
between-study and within-study variances, which contributed
to study weighting. Pooled values and 95% CIs were computed
and represented on forest plots. Statistical heterogeneity

was determined by the I2 statistic, where <30% was low,
30%-60% was moderate, and >60% was high. Analyses were
performed using Stata, version 15 (StataCorp LLC). Probability
values of P≤.05 were considered statistically significant.

Results

Search Results and Characteristics
A total of 899 articles were identified from the database
searches. After removing duplicates, 575 records were screened
on the basis of titles and abstracts. A total of 141 articles were
identified as appropriate for full-text review. Further evaluation
and application of the exclusion criteria revealed 48 studies,
which were included in this systematic review and
meta-analysis. The study screening and selection process is
shown in Figure 1.

Studies in this systematic review included preclinical studies
for polyp detection (Table 1 [18-35]), preclinical studies for
polyp characterization (Table 2 [11,13,36-55]), and recent RCTs
(Table 3 [56-63]). The studies were all published between 2003
and 2020. The outcome measures were polyp detection in 18
studies, polyp characterization in 22 studies, and PDR in 8
studies. The studies analyzing sensitivity, specificity, and
accuracy when testing each AI system were found to present
results at the per-patient, per-polyp, and/or per-image levels,
whereas the RCTs evaluating the ADR and PDR consistently
presented per-patient results.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for study selection.

Studies for polyp detection predominantly used CNN or DCNN
as their machine learning approach. A total of 14 studies for
polyp detection were carried out retrospectively. There was a
large variation in the number of images used by each paper to
train or validate the AI systems in detecting polyps, with one
study using 8 images [20] to train the system, while another
used 5545 images [25].

In the majority of studies, narrow band imaging (NBI) or
endocytoscopy was the imaging method of choice for

characterizing polyps, with one exception in which the imaging
modality was not stated [47]. Data for polyp characterization
was gathered retrospectively in 18 studies. In 3 studies that
collected data prospectively, a support vector machine classifier
was used as the machine learning approach. Similarly to studies
for polyp detection, those analyzing polyp characterization had
a large variation in number of images used for training or
validating the AI system. However, studies for polyp
characterization focused more on the number of polyps used
than on overall images, as seen in Table 2.
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Table 1. Characteristics of included studies whose primary outcome was polyp detection.

Images for
validation, n

Images for
training, n

Total im-
ages, n

Polyps, nPatients, nImaging modali-
ty

Machine learn-
ing approach

RecruitmentYearAuthors

120018013809566RGBb–color
frame grabber

CWCaRetrospective2003Karkanis et al
[18]

73292365—f100Still image en-

hanced by PCTe
SFFSc with

SVMd classifier

Retrospective2014Fu et al [19]

538—43—Video clipPolyp edge de-

tection—ECSPg
Retrospective2015Wang et al [20]

—30030015—CVCh-Colon
database

Hybrid context-
shape approach

Retrospective2015Tajbakhsh et al
[21]

—30019,40010—ASUi-Mayo
database

Hybrid context-
shape approach

Retrospective2015Tajbakhsh et al
[21]

——61231—White light
colonoscope

WM-DOVAj

maps

Retrospective2016Fernández-Es-
parrach et al
[22]

——11,80292—White light and

NBIm
CNNk-CRFl

model

Retrospective2016Park and Sar-
gent [23]

——8641—>2000NBI imagesDCNNnRetrospective2018Urban et al [24]

27,1135545——2428Still imagesANNo- SegNet
architecture

Retrospective2018Wang et al [25]

13541154615573White light im-
ages

CNNRetrospective2018Misawa et al
[26]

———4242White light im-
ages

SVM binary
classifier

Retrospective2019Figueiredo et al
[27]

4840>4000—752—Still imagesFaster R-CNNpRetrospective2019Yamada et al
[28]

———16550VideoANN- SegNet
architecture

Prospective2020Becq et al [29]

25611961709——White light im-
ages

CNNRetrospective2020Gao et al [30]

——1991—283VideoCNN-YOLOqRetrospective2020Guo et al [31]

110,7288495—2615VideoCNN-YOLOProspective2020Lee et al [32]

707720,431—30912,895NBI and white
light

CNNRetrospective2020Ozawa et al
[33]

476951,88956,6681001405White light im-
ages

CNN-YOLOProspective2020Misawa et al
[34]

34,469198,138—128144VideoCNN-
ResNet50,
YOLO

Prospective2020Poon et al [35]

aCWC: color wavelet covariance.
bRGB: red, green, and blue.
cSFFS: sequential floating-forward selection.
dSVM: support vector machine.
ePCT: principal components transformation.
fThis value was not reported.
gECSP: edge cross-section profiles.
hCVC: Computer Vision Center.
iASU: Arizona State University.
jWM-DOVA: window median depth of valleys accumulation.
kCNN: convolutional neural network.
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lCRF: conditional random field.
mNBI: narrow band imaging.
nDCNN: deep convolutional neural network.
oANN: artificial neural network.
pR-CNN: region-based convolutional neural network.
qYOLO: you only look once.
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Table 2. Characteristics of included studies whose primary outcome was polyp characterization.

Images for
validation, n

Images for
training, n

Total im-
ages, n

Polypsor
lesions, n

Patients, nImage modalityMachine learn-
ing approach

RecruitmentYearAuthors

—208—c209223Magnification

NBIb
SVMa classifierProspective pilot2010Tischendorf et

al [36]

—433—434214Magnification
NBI

SVM classifierProspective2011Gross et al [37]

8758———NBIShape-UCMdRetrospective2012Ganz et al [13]

3711519—371—Magnification
NBI

SVM classifierRetrospective2012Takemura et al
[38]

———176152ECECe-CADfRetrospective2015Mori et al [39]

—2247—11841Magnification
NBI

SVM classifierRetrospective2016Kominami et al
[11]

100979107985—NBI and ECEndoBRAINgRetrospective2016Misawa et al
[40]

———76—White light and
NBI

SfMhRetrospective2016Mesejo et al
[41]

6051——205123EC-CADSVM classifierRetrospective2016Mori et al [42]

20056435843375242EC-CADSVM classifierRetrospective2017Takeda et al
[43]

—60,089—125—NBIDCNNiRetrospective2017Byrne et al [44]

——1200——Endoscopic im-
ages

CNNRetrospective2017Komeda et al
[45]

16611731834124100NBIEndoBRAIN

and ECVj-CAD

Retrospective2017Misawa et al
[46]

———144—EC—Retrospective2018Mori et al [47]

28421572441284193NBIDNNkProspective2018Chen et al [48]

186602788231250NBI and HD-

WLl
DNNRetrospective2018Renner et al

[49]

45061,925—466325NBI and ECSVM classifierProspective2018Mori et al [50]

45061,925—466325NBI and ECSVM classifierProspective2018Mori et al [50]

506569,142—10089White light,
NBI, and EC

EndoBRAIN
system

Retrospective2019Kudo et al [51]

506569,142—10089White light,
NBI, and EC

EndoBRAIN
system

Retrospective2019Kudo et al [51]

4343861110NBISegmentation
algorithm

Retrospective2019Figueiredo et al
[52]

——740607286High magnifica-
tion NBI

DeepLab frame-
work

Retrospective2020Rodriguez-Diaz
et al [53]

240—3828—1339White lightCNN-Inception-
ResNet

Retrospective2020Yang et al [54]

634—6223——NBI and white
light

CNN-Inception-
ResNet

Retrospective2020Zachariah et al
[55]

aSVM: support vector machine.
bNBI: narrow band imaging.
cThis value was not reported.
dShape-UCM is an algorithm for automatic polyp segmentation.
eEC: endocytoscopy.
fCAD: computer-aided diagnosis.
gEndoBRAIN is a novel artificial intelligence system.
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hSfM: structure from motion.
iDCNN: deep convolutional neural network.
jECV: endocytoscopic vascular pattern.
kDNN: deep neural network.
lHDWL: high-definition white light.

Table 3. Characteristics of randomized controlled trials whose primary outcome was polyp detection.

P

value

Withdrawal

timed;

AI vs con-
trol, min

ADR

–con-
trol, %

ADRc

–AI,
%

PDR

–con-
trol, %

PDRa

–AIb,
%

Polyps,
n

Patients,
n

Imaging
modality

Machine
learning ap-
proach

RecruitmentYearAuthors

.156.18 vs 6.0720.3429.1229.1045.027671058Video
stream

ANNe-SegNet
architecture

Real-time,
prospective

2019Wang et al
[56]

.146.48 vs 6.3728343752809962Video
stream

ANN-SegNet
architecture

Prospective2020Wang et al
[57]

<.0017.03 vs 5.6816.5028.9025.4038.31273623Video
stream

DCNNfProspective2020Su et al [58]

<.0016.38 vs 4.768163447—g704Video
stream

DCNNProspective2020Gong et al
[59]

<.0016.82 vs 6.7423.8939.1027.8143.657341026Video
stream

ANNProspective2020Liu et al [60]

.106.22 vs 6.17——34.038.7185150Video
stream

CNN-YOLOhProspective2020Luo et al
[61]

.106.95 vs 7.2540.454.8——596685Video
stream

CNN-GI Ge-

niusi
Prospective2020Repici et al

[62]

.756.55 vs 6.5135.6842.3955.1463.59—369Video
stream

ANN-Endo-
screener

Prospective2020Wang et al
[63]

aPDR: polyp detection rate.
bAI: artificial intelligence.
cADR: adenoma detection rate.
dWithdrawal time excluded the time to perform the biopsy.
eANN: artificial neural network.
fDCNN: deep convolutional neural network.
gThis value was not reported.
hYOLO: you only look once.
iGI Genius (Medtronic) is novel artificial intelligence system.

Detection or Localization of a Polyp
The diagnostic accuracy of the machine learning systems for
detecting polyps was assessed using 103,049 still images in 10
studies, reporting a pooled sensitivity of 0.84 (95% CI
0.74-0.93), a specificity of 0.87 (95% CI 0.83-0.90), and an
accuracy of 0.89 (95% CI 0.81-0.97). Lesions within video
frames or images were used by 14 studies to report the

diagnostic performance of their detection systems, highlighting
a sensitivity of 0.92 (95% CI 0.89-0.95), a specificity of 0.89
(95% CI 0.84-0.94; Figure 2), and an accuracy of 0.87 (95% CI
0.76-0.97). There were 11 studies analyzing the accuracy of
polyp detection through the use of images or video clips
gathered from more than 17,401 patients. These demonstrated
a sensitivity of 0.92 (95% CI 0.90-0.94), a specificity of 0.93
(95% CI 0.91-0.96), and accuracy of 0.92 (95% CI 0.87-0.98).
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Figure 2. Pooled analysis of specificity of polyp detection by the use of lesions or polyps within video frames or images. Effect sizes (ES) are shown
with 95% CIs. A random-effects model was used.

Characterization of a Detected Polyp
There were 9 studies reporting diagnostic accuracy
characteristics for computer analysis of single image frames.
These included a total of 22,862 images and demonstrated a
sensitivity of 0.92 (95% CI 0.90-0.95; Figure 3), a specificity
of 0.79 (95% CI 0.68-0.91), and an accuracy of 0.87 (95% CI
0.83-0.91). A further 20 studies assessed the diagnostic accuracy
of techniques for predicting the histological diagnosis of a polyp,

with a sensitivity of 0.94 (95% CI 0.92-0.95), a specificity of
0.87 (95% CI 0.83-0.90), and an accuracy of 0.91 (95% CI
0.88-0.93). A total of 16 studies analyzed diagnostic accuracy
using images or video clips from a cohort of 4001 patients
having undergone colonoscopy. These studies showed a
sensitivity of 0.94 (95% CI 0.92-0.95), a specificity of 0.82
(95% CI 0.73-0.91), and an accuracy of 0.90 (95% CI
0.86-0.94).

Figure 3. Pooled analysis of sensitivity of polyp characterization by the use of images. Effect sizes (ES) are shown with 95% CIs. A random-effects
model was used.
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PDR and ADR for Polyp Detection: RCTs
The 8 RCTs consisted of a total of 5577 patients: 2438 patients
in the AI group and 2463 patients in the control group with
standard colonoscopy alone [56-59]. These captured data
prospectively with the use of deep learning methods on real-time
video streams from colonoscopy.

The meta-analysis showed a significant increase in pooled PDR
in patients with the use of AI for polyp detection during

colonoscopy compared with patients who had standard
colonoscopy (odds ratio [OR] 1.75, 95% CI 1.56-1.96; P<.001;
Figure 4). The PDR ranged from 38% to 64% when using AI,
with a median of 45%. When comparing patients undergoing
colonoscopy with the use of AI to those having standard
colonoscopy, there was also a significant increase in ADR (OR
1.53, 95% CI 1.32-1.77; P<.001; Figure 5). The ADR ranged
from 16% to 55% with a median of 34% when using AI
technology compared to standard colonoscopy.

Figure 4. Pooled analysis of polyp detection rate. Odds ratios are shown with 95% CIs. A random-effects model was used for the meta-analysis.

Figure 5. Pooled analysis of adenoma detection rate. Odds ratios are shown with 95% CIs. A random-effects model was used for the meta-analysis.
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Heterogeneity of Studies
There was a high degree of variation between studies. The
heterogeneity was statistically significant when comparing the
studies for polyp detection and characterization and assessing
for sensitivity, specificity, and accuracy (P<.05). The lowest
variation for polyp detection was among the studies assessing

accuracy with polyp data (I2=86.3%), and the highest was among
those analyzing the sensitivity of machine learning systems

using image data sets (I2=99.9%). When considering studies
for polyp characterization, the heterogeneity was lowest for

studies analyzing sensitivity using patient data sets (I2=51.1%)
and highest when assessing specificity using image data sets

(I2=99.9%). Within the RCTs assessed, there was found to be

a low degree of heterogeneity for PDR (I2=0%; P=.70) and a

moderate degree of heterogeneity for ADR (I2=45.5%; P=.09).
These results were not statistically significant.

Quality Assessment
The assessment of bias for the studies when using the
QUADAS-2 tool is depicted in Table S1 in Multimedia
Appendix 2. Most of the RCTs scored 3 or more on the Jadad
scale and were, therefore, considered to be of good quality
(Table S2 in Multimedia Appendix 2). One study scored 2,
suggesting poor quality, but after reviewing the paper and its
evidence in detail, the paper was included in the final analysis
[64]. This is because despite the lack of mention of blinding,
the selection process for participants was justified with
consecutive patients enrolled, and there were no concerns
regarding applicability. The paper matched the selection criteria
of our study and was otherwise in line with other studies that
were included.

Discussion

Principal Findings
The aim of this systematic review and meta-analysis was to
examine the current status of diagnostic accuracy for AI-based
technologies in the detection and characterization of colorectal
polyps. We found a wide variety of machine learning systems
being used for polyp detection and characterization in numerous
studies. The overall diagnostic accuracy for these systems to
detect polyps was high, predominantly with sensitivities,
specificities, and accuracies above 84%. When characterizing
polyps, the majority of machine learning systems had
sensitivities, specificities, and accuracies above 82%. These
outcomes show good results for current machine learning
systems and algorithms to detect and characterize polyps, and
indirectly in regard to the rate of false positives.

This meta-analysis highlights a significant increase in PDR and
ADR when using AI systems in conjunction with colonoscopy
in real time to detect polyps in the colon and rectum with an
overall OR of 1.75 (95% CI 1.56-1.96; P<.05) and 1.53 (95%
CI 1.32-1.77; P<.05), respectively. The UK key performance
indicators and quality assurance standards for colonoscopy
dictate that the minimal ADR should be 15%, with an
aspirational target of 20% [65]. It has previously been shown
that endoscopists with an ADR of less than 20% had a hazard

ratio for interval cancer that was 10 times higher than those
with an ADR of greater than 20% [66]. All RCTs in this review
were shown to have an ADR of greater than 15% when detecting
polyps with the use of an AI system, the majority of which
highlighted an ADR of greater than 25% [56-58]. These
outcomes are a promising start for the use of AI to detect missed
polyps and, thus, may lead to a reduction in CRC incidence.

The assessment of quality of the diagnostic accuracy studies
included in this paper highlighted an overall low risk of bias,
justifying the validity of the study results and implying that
their results may be applicable to clinical practice. The main
area of bias in the RCTs was in the process of blinding. This
may have contributed to an overestimation in the effects of AI
in polyp detection.

There are many limitations within the published studies (Table
S1 in Multimedia Appendix 3). Factors contributing to the miss
rate of polyps are multifactorial and include patient-related
factors, polyp-related factors, and image-related factors [67,68].
It is encouraging to note that a variety of imaging modalities
were used in the studies in this review, since this will improve
applicability in a clinical setting. We note that most studies with
image enhancement techniques have used NBI, and it will be
important to validate the performance of AI systems in
endoscopy using image enhancement approaches from other
manufacturers (eg, i-scan from PENTAX Medical and blue laser
imaging from Fujifilm Corporation). Some studies analyzing
polyp characterization used magnification NBI [11,36,38,69].
This imaging modality is not commonly used in Western
endoscopic practice, so is less applicable to a health care setting
in the Western world. Although there has been significant
development in computer-assisted technologies to increase
ADR, issues with image quality still remain. Many studies in
this review excluded images that were blurred or of poor quality
when assessing diagnostic accuracy of the machine learning
systems. [27,40,42,51]. Recent RCTs have tried to tackle this
problem by developing models to recognize blurry frames
[58,59]. Other studies excluded images with poor bowel
preparation [27,36,48]. Adequate bowel cleansing is vital for
complete mucosal inspection; however, it has been shown in a
meta-analysis that low-quality preparation does not significantly
affect ADR, since these patients frequently undergo repeat
colonoscopy [70]. Most RCTs included in this review used the
Boston Bowel Preparation Scale [71] to assess adequacy of
bowel preparation.

Sufficient withdrawal time allows full mucosal inspection with
careful examination of all folds and flexures, in an attempt to
avoid missing any polyps. It has been shown that an increase
in withdrawal time is associated with an increase in ADR [72].
This supports the use of withdrawal times as a quality indicator
for screening colonoscopy. In preclinical studies, it is difficult
to assess withdrawal times given the use of still images and
video clips. In the RCTs assessed, the withdrawal
times—excluding biopsy time—were mostly higher with the
use of AI-based technology, although not significantly so in all
studies (Table 3). However, the ability to record the withdrawal
time is equally important [58,59]. This may suggest that quality
control during colonoscopy examinations can be maintained
with the use of machine learning.
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Given the fact that AI is a relatively new and evolving area of
medical practice, there is a lack of evidence-based standards to
support its development. This is highlighted through the
inconsistencies in validating the machine learning systems in
each study. The data used for training the algorithms vary in
type, for example, as either a static image from the colonoscopy
[45,46] or an image of a polyp [21,47], and in number, with
some studies having very small sample sizes [21,52]. We
acknowledge the high degree of heterogeneity in the included
studies, which may, in part, be explained by the wide range of
approaches or algorithms used. This may suggest that our
findings are applicable to a wide range of study settings and
outcomes. However, the high degree of heterogeneity also
emphasizes the issue of inconsistencies within the development
of AI systems and, thus, weakens their design and may hinder
implementation of the AI systems in a clinical setting. In order
to address this problem, we are developing a new
multidisciplinary, consensus-based reporting standards statement
called STARD-AI (Standards for Reporting of Diagnostic
Accuracy Studies–Artificial Intelligence). It is being developed
to provide stringent guidelines for all AI-based clinical trials
that report diagnostic accuracy [73,74].

The lack of standards among these studies introduces an element
of selection bias. In traditional computer programming,
intelligent systems were built by writing models by hand and,
therefore, understanding the rules from which conclusions were
made. Neural networks and deep learning techniques are
criticized for their “black box” problem, in failing to produce
an intelligible description of the results produced. This creates
tension between our need for explanations and our interests in
efficiency. Most studies in this systematic review did not reveal
their algorithms, which begs one to question whether they only
used the algorithms that were most successful in producing the
desired outcome without understanding the process underlying
it.

Multiple other factors contribute to the lack of applicability of
these studies in clinical practice. Many of the studies about
polyp detection and characterization have been carried out in
Japan [46,50,51] or China [19,56,59], and differences in polyp
biology and tumorigenesis may limit application to Western
endoscopy practice [75]. Furthermore, for real-time detection
to be successful, the operation of the AI system to detect and
characterize polyps must be fast, practical, and nondisruptive
to workflow. However, most current studies are designed in a
nonclinical environment and carried out retrospectively, with
only a handful of recent RCTs. More RCTs are needed to
provide prospective data by testing the machine learning systems
while a colonoscopy procedure is undertaken.

The financial implications of introducing an AI system to
endoscopy should be considered. The studies in this review lack
evidence to show that AI systems would be cost-effective.
Before clinical application, studies must demonstrate that the
current burden on health care systems and histopathology
departments can be relieved, both in view of workload and in
terms of costs. A very recent study examining the use of AI
combined with the diagnose-and-leave strategy for diminutive
polyps has found substantial reductions in the cost of

colonoscopy based on prospective data [76]. This is an
encouraging outcome, but more studies are needed.

The role of the health care workforce must also be considered
in a time of developing AI systems. At present, real-time
detection systems during colonoscopy are not able to operate
independently of human direction, but understanding the change
in the role of the endoscopist and nurses will be crucial for the
future. In addition, a skills gap to prepare the workforce for AI
will need to be addressed. The refinement of machine learning
systems in detecting polyps will eventually lead to the use of
AI in conjunction with all routine colonoscopy procedures. This
will allow the procedure to be performed by staff who will not
require the lengthy training or accreditation [77]. In this
scenario, only patients with complex polyps requiring more
advanced management may need to be referred to expert
endoscopists.

It is important to also consider some of the ethical dilemmas
that arise from the use of AI in health care. The aim of AI in
polyp detection and characterization is to introduce machine
learning as a “checker system” for the endoscopist. As a result,
incorporation of AI into endoscopy should be encouraged as a
complementary tool and not as a replacement for a clinician.
For this reason, a high degree of accuracy is required from AI
systems. We expect that they operate with 100% sensitivity and
a low rate of false positives. However, AI is not yet free from
bias or errors, and an AI decision support tool could easily
succumb to automation bias when its predictions are almost
always followed by the endoscopist [78]. Machine learning
systems can also unintentionally reproduce or magnify existing
biases of their training data sets and exacerbate health disparities
[79]. Many of the studies in this meta-analysis, for example,
have excluded patients with IBD or sessile serrated polyps
[39,43,56], limiting their applicability for these populations.
We recognize that these other cohorts of patients, including
those with benign colonic pathologies and not exclusively
polyps, are important to include in such research. However, this
technology is still in its infancy and these patient groups
represent a minority. It is difficult and not entirely feasible to
create validated AI algorithms for all patient cohorts until the
technology is more established and works well in its own right.

Although this systematic review has shown the performance of
the AI systems to be satisfactory, the majority of the studies are
preclinical trials that have not addressed these clinical needs.
As a result, there remains a lack of confidence by endoscopists
and patients to fully adopt the system as a whole. The clinical
expectations exceed the aims of the machine learning algorithms.
To fully support the incorporation of an AI system into routine
practice, the diagnostic accuracy for polyp detection and
characterization must meet the desired threshold, while also
providing confidence that quality requirements will be fulfilled.

A further two challenges threaten the ability for AI to thrive in
health care: patient confidentiality and accountability. The lack
of stringent policies for the use of training data in AI means
that the methods used to deidentify patient information are weak,
and we suggest that standardized guidance is required for the
consent of collection and use of patient data for AI training
purposes. Once an algorithm-based health care system is
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operational, the question of accountability arises. In the case
that a machine learning system working in unison with an
endoscopist detects and characterizes a polyp as hyperplastic
when, in fact, it is adenomatous, who is held liable for this
mistake? A robust legal framework in association with national
and international endoscopy representative groups (eg, the Joint
Advisory Group on Gastrointestinal Endoscopy in the United
Kingdom and the ASGE in the United States) for the use of AI
in health care is vital to protect endoscopists and patients.
Addressing these important concerns will help build confidence
and trust among patients and doctors for the use of machine
learning in the delivery of care.

Conclusions
This systematic review and meta-analysis highlights the growing
interest in the field of polyp detection and characterization
during colonoscopy using AI. The current accuracy of machine
learning for this role is high. There is potential to improve ADR
and, consequently, reduce the incidence of CRC.

However, AI and machine learning systems are still evolving.
Firstly, higher-quality research with modern trial designs is
needed in this field, with particular attention on using larger
data sets and by validating the AI systems prospectively in a
clinical setting. Secondly, these systems must provide quality
assurance with a robust ethical and legal framework before they
can be fully embraced by clinicians and patients in the future.
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