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Abstract

Background: Diabetic retinopathy (DR), whose standard diagnosis is performed by human experts, has high prevalence and
requires a more efficient screening method. Although machine learning (ML)–based automated DR diagnosis has gained attention
due to recent approval of IDx-DR, performance of this tool has not been examined systematically, and the best ML technique for
use in a real-world setting has not been discussed.

Objective: The aim of this study was to systematically examine the overall diagnostic accuracy of ML in diagnosing DR of
different categories based on color fundus photographs and to determine the state-of-the-art ML approach.

Methods: Published studies in PubMed and EMBASE were searched from inception to June 2020. Studies were screened for
relevant outcomes, publication types, and data sufficiency, and a total of 60 out of 2128 (2.82%) studies were retrieved after study
selection. Extraction of data was performed by 2 authors according to PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses), and the quality assessment was performed according to the Quality Assessment of Diagnostic Accuracy
Studies 2 (QUADAS-2). Meta-analysis of diagnostic accuracy was pooled using a bivariate random effects model. The main
outcomes included diagnostic accuracy, sensitivity, and specificity of ML in diagnosing DR based on color fundus photographs,
as well as the performances of different major types of ML algorithms.

Results: The primary meta-analysis included 60 color fundus photograph studies (445,175 interpretations). Overall, ML
demonstrated high accuracy in diagnosing DR of various categories, with a pooled area under the receiver operating characteristic
(AUROC) ranging from 0.97 (95% CI 0.96-0.99) to 0.99 (95% CI 0.98-1.00). The performance of ML in detecting more-than-mild
DR was robust (sensitivity 0.95; AUROC 0.97), and by subgroup analyses, we observed that robust performance of ML was not
limited to benchmark data sets (sensitivity 0.92; AUROC 0.96) but could be generalized to images collected in clinical practice
(sensitivity 0.97; AUROC 0.97). Neural network was the most widely used method, and the subgroup analysis revealed a pooled
AUROC of 0.98 (95% CI 0.96-0.99) for studies that used neural networks to diagnose more-than-mild DR.

Conclusions: This meta-analysis demonstrated high diagnostic accuracy of ML algorithms in detecting DR on color fundus
photographs, suggesting that state-of-the-art, ML-based DR screening algorithms are likely ready for clinical applications.
However, a significant portion of the earlier published studies had methodology flaws, such as the lack of external validation and
presence of spectrum bias. The results of these studies should be interpreted with caution.
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Introduction

Diabetic retinopathy (DR) is the leading cause of vision
impairment and blindness among working-aged people in the
world [1]. Approximately one-third of people with diabetes
mellitus have signs of DR, among whom one-third have
vision-threatening DR (VTDR). A meta-analysis estimated
global prevalence of any DR and proliferative diabetic
retinopathy (PDR) among patients with diabetes to be 35.4%
and 7.5%, respectively [2]. The number of patients with DR is
approximately 93 million and is expected to rise to 191 million
by 2030, as type 2 diabetes has attained the status of a global
pandemic, spreading from affluent industrialized nations to the
developing world [3].

Vision impairment due to DR can be significantly reduced if
diagnosed in early stages and treated appropriately [4]. However,
fewer than 60% of patients with diabetes undergo regular eye
examinations at intervals recommended by guidelines due to
the high cost and low accessibility of ophthalmologic services
[3]. The number of people with diabetes that need regular eye
examinations has quadrupled in the past three decades.
Therefore, the development of an automatic, low-cost, accurate
eye screening tool has become an important public health issue
[5]. The gold standard for DR screening is based on clinical
examinations by human clinicians or the analysis of color fundus
photographs via telemedicine [6]. However, both approaches
are time-consuming, labor-intensive, and prone to inconsistency
due to inherent human subjectivity [7]. Automated systems that
are capable of interpreting color fundus photographs with high
sensitivity and specificity are critical for widespread
implementation of DR screening, and the rise of artificial
intelligence (AI), specifically machine learning (ML), has made
such automated approaches a possibility.

ML uses existing data to train a computer to recognize a specific
pattern or predict a specific outcome in a new data set [6].
Exploration of automated image analysis can be dated back to
1980, when classical ML methods, such as support vector
machines and random forests, were used to detect predefined
features [8]. These early ML techniques for detecting DR
employed mathematical image transformation techniques and
image engineering guided by expert-designed rules [9]. The
accuracy of this type of analysis did not reach the standard of
clinical application. In recent years, the advent of deep learning
(DL), a subtype of ML, has transformed the field of automated
image analysis [10]. Briefly, DL methods are representation
learning methods that use multilayered neural networks, the
performance of which can be enhanced by reiteratively changing
the internal parameters [11,12]. Unlike other ML approaches,
DL does not require image engineering. It develops its own
representations needed for pattern recognition after being fed
raw data and has shown superior accuracy as compared with
other classical ML algorithms [13,14].

Although ML has garnered significant attention with the recent
US Food and Drug Administration (FDA) approval of the first
ML-based, fully automatic DR screening machine in April 2018
[15], skepticism within the medical community remains
regarding the robustness of ML techniques in real-world clinical
applications. Given that ophthalmology is among the medical
disciplines that have reaped the most benefits from recent AI
advancements and that DR screening is one of the most
promising ML applications in ophthalmology, we have set out
to systematically survey, through meta-analysis, the current
status of ML as applied in DR screening based on color fundus
photographs. Specifically, we have examined the range of
performances reported by different studies and have determined
which ML technique is superior for this clinical purpose.

Methods

Search Methods for Identifying Studies
This meta-analysis was performed in accordance with the
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) guidelines [16]. A literature search for
relevant studies published through June 2020 was performed
with 2 publicly available databases, PubMed and EMBASE.
There were 3 stages to the literature search. No language or
population filters were applied, while nonhuman experiments,
case reports, guidelines, conference papers, letters, editorials,
and review articles were excluded. Filter for publication year
was applied only in the second and third stages of the literature
search in order to avoid overlapping of search results. Duplicated
references in different stages of the literature search were
manually excluded. The major search key combination terms
were “diabetic retinopathy” OR “diabetic macular edema” OR
“macular edema” OR “retinopathy” OR “neovascularized
retinopathy” OR “proliferative retinopathy” OR “referable
diabetic retinopathy” OR “diabetic macular oedema” OR
“proliferative diabetic retinopathy” OR “retinal disorders” OR
“diabetic eye disease” OR “vision loss” OR “retinal diseases”
OR “macular disease” OR “macular degeneration” OR “macular
disorders” crossed with “artificial intelligence” OR “deep
learning” OR “transfer learning” OR “machine learning” OR
“deep learning system”. The detailed search strategy is provided
in Multimedia Appendix 1.

Eligibility Criteria for Considering Studies for This
Review
We included studies that evaluated ML algorithms on the
accuracy of automated image analysis for screening or diagnosis
of DR. We included studies that detected pathological findings
of DR, diagnosed DR status, and staged DR severity.

Study Selection
The study selection and data extraction were independently
performed by 2 authors (JHW and CCL). After duplicates were
removed, titles and abstracts were screened for exclusion of
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studies with potentially nonrelevant outcome or publication
types and studies applying information other than images in
analytical work. When there were multiples studies derived
from the same cohort with overlapping study periods, earlier
studies were considered duplicates and only the study with the
most recent result was included. Retrieved studies with
accessible full articles then underwent full-text review.
Discrepancies between the reviewers were resolved first by a
consensus meeting and then arbitration by a third reviewer if
consensus could not be reached.

Data Collection
Data extraction was performed on studies selected after full-text
review. A thorough review of each article was performed with
the following variables extracted: first author, published year,
country, algorithm, image modality, total image size, relevant
image size, number of participants and eyes, number of diseased
participants and eyes, databases and characteristics, and the
sensitivity and specificity of both training and validation
sessions. When multiple algorithms were tested on one data set,
only the data of the best-performing algorithm were included.
Algorithms applied were further classified into 4 main
categories: support vector machine (SVM), neural network
(NN), random forest (RF), and others. After data extraction,
studies were classified into different outcomes of DR, including
any DR, more-than-mild diabetic retinopathy (mtmDR),
vision-threatening diabetic retinopathy (VTDR), diabetic
macular edema, and proliferative diabetic retinopathy (PDR).
Studies with relevant data were examined for sufficiency to
construct a 2 × 2 contingency table before quality assessment.

Risk of Bias Assessment
The quality of eligible studies was independently assessed by
2 reviewers using the Quality Assessment of Diagnostic
Accuracy Studies 2 (QUADAS-2) tool, which is composed of
4 domains assessing both risk of bias and applicability of clinical
practice: patient selection, index test, reference standard, and
flow and timing. For each diagnostic study, we determined the
risk for bias and general applicability in all 4 domains of
QUADAS-2 and reported them separately. A study was
considered to have a low risk of bias in one domain if at least
half of the variables extracted from the validation session met
the requirements of QUADAS-2.

Data Synthesis and Analysis
Meta-analysis for diagnostic accuracy of each ML algorithm or
DR outcome was performed with a bivariate random effects
model to account for both within- and between-study
heterogeneity. Results were summarized by using hierarchical
summary receiver operating characteristic (ROC) plots and
coupled forest plots. Pooled sensitivity, specificity, area under
the curve, and positive and negative likelihood ratios were
calculated. The bivariate model approach modeled the

logit-transformed sensitivity and specificity simultaneously to
account for the inherent negative correlation between sensitivity
and specificity that might have arisen due to different thresholds
in different studies. Heterogeneity was tested using the Cochran

Q statistic (P<.05) and quantified with the I2 statistic, which
describes the variation of effect size that is attributable to
heterogeneity across studies. For direct clinical interpretation,
we also calculated the posttest probability for each type of
lesion. We used the prevalence of lesions in the pooled study
population as the informative prior, and derived the posttest
probability of each type of lesion based on the pooled positive
and negative likelihood ratios. Results are presented as Fagan
nomograms. The presence and effect of publication bias were
examined with Deeks tests. When publication bias is present,
Deeks funnel plots are usually asymmetrical. We used a
trim-and-fill method to impute hypothetical missing studies due
to publication bias. Trim-and-fill odds ratios (ORs) were
reported when the tests for publication bias were significant.
We performed sensitivity analyses to examine the potential
effects of different demographic factors, ML algorithms, and
types of training or validating databases. All analyses except
for the summary ROC curve were conducted by the “mada”
package in R software (The R Foundation for Statistical
Computing). Summary ROC and area under the ROC (AUROC)
were calculated by the “midas” package in Stata 14.0
(StataCorp). A 2-sided P value <0.05 indicated statistical
significance for all tests.

Results

Search Results
The first 2 stages of the literature search (performed in May
2018 and December 2018) yielded 668 hits from PubMed and
809 hits from EMBASE. After screening titles and abstracts,
we excluded 336 studies for duplication and 941 studies for
nonrelevant abstracts or publication types. A total of 187 studies
went through full-text review, 99 of which were excluded for
a result that was not of interest and 43 of which were excluded
for insufficient data for analysis. After completing qualitative
synthesis of the 45 studies, we proceeded to only include ML
studies that involved use of color fundus photograph for DR
screening. After further exclusion, only 32 studies were retrieved
after the second stage of literature selection [13,15,17-46]. The
third stage of the literature search was performed in June 2020,
and 28 out of 651 studies were retrieved after literature selection
[47-74], resulting in a total of 60 (N=32+28) included studies
for final analysis. A new category composed of VTDR and PDR
(VTDR+PDR) was created for examination of diagnostic
accuracy of the most treatment-urgent group. A flowchart of
the literature search and study selection process is summarized
in Figure 1.
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Figure 1. Flowchart of study selection.

Study Characteristics
Multimedia Appendix 2 Table S1 summarizes the study-level
characteristics of studies assessing the diagnostic accuracy of
ML algorithms for different categories of DR. Of the 60 studies,
35 studies (58%) evaluated any DR, 23 (38%) mtmDR, 12
(20%) VTDR, and 12 (20%) PDR. Publicly available benchmark
databases, such as Messidor, Structured Analysis of the Retina
(STARE), Digital Retinal Images for Vessel Extraction
(DRIVE), DIARETDB, e-Ophtha, and EyePACs were used for
testing of the ML algorithms in 40 of the 60 (67%) studies. The
characteristics of these publicly available retinal image databases
are summarized in Multimedia Appendix 3. The distribution of
categories of ML algorithms used was as follows: SVM (6/60,
10%), RF (2/60, 3%), NN (37/60, 62%), and others (17/60,
28%). The general principles of these ML algorithms are
described in Multimedia Appendix 4.

Quality Assessment
Quality assessments using the QUADAS-2 criteria are
summarized in Multimedia Appendix 5. Most studies (56/60,
93%) presented a clear source of patient recruitment or selection

criteria and processes, and were at a low risk for bias. Of the
60 studies, 3 (5%) reported limited information on the
establishment of reference standard and were at a high risk for
bias, and 4 (7%) reported insufficient blinding to a reference
standard during interpretation of the index test results and were
at a high risk for bias. For study applicability, 1 study (2%) in
the index test section and 4 (7%) studies in the patient selection
section were recorded to be at a high risk of concern, due to
insufficient information reported.

Synthesis of Results
A summary of data of included studies is presented in
Multimedia Appendix 6. Pooled sensitivities, specificities,

likelihood ratios, AUROCs, and I2 statistics for the 5 DR
categories, including any DR, mtmDR, VTDR, PDR, and
VTDR+PDR, are presented in Table 1. As some studies might
have used more than 2 data sets for validation, performance of
ML derived from each data set was viewed as individual data,
and we used “data” as the unit for calculation (eg, 35 included
studies performed evaluation of ML on identifying any DR,
resulting in a total of 53 data for synthesis and analysis). The
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hierarchical summary ROC plots for the 4 main DR categories,
including DR, mtmDR, VTDR, and PDR, are also presented
(Figures 2-5). ML showed a high overall accuracy in detecting
the 5 categories of DR, with a pooled AUROC ranging from
0.97 (95% CI 0.96-0.99) for mtmDR and VTDR+PDR to 0.99
(95% CI 0.98-1.00) for VTDR and PDR. The pooled sensitivity
for all 5 categories was high, ranging from 0.93 (95% CI
0.87-0.96) for PDR to 0.97 (95% CI 0.94-0.99) for VTDR. The
pooled specificity, however, showed more variation: from 0.90

(95% CI 0.87-0.93) for mtmDR to 0.98 (95% CI 0.96-0.99) for
PDR. The Fagan plots for different DR categories are presented
in Multimedia Appendix 7. For images that were classified as
positive by the ML algorithms, the posttest probability for DR,
mtmDR, VTDR, and PDR was 87%, 71%, 66%, and 77%,
respectively. For images that were classified as negative by the
ML algorithms, the posttest probability for DR, mtmDR, VTDR,
and PDR was 4%, 1%, 0%, and 1%, respectively.

Table 1. Pooled analysis for diagnostic accuracy of diabetic retinopathy by machine learning on color fundus photographs.

Publication bias

(P value)
I2 statisticcAUROCg,cLR–f,cLR+e,cSped,cSenb,cDataa, nGoal of detec-

tion

.0132 (22-42)0.98 (0.96-0.99)0.07 (0.05-
0.09)

12.4 (8.0-
19.3)

0.92 (0.88-
0.95)

0.94 (0.91-
0.96)

53Any DRh

.1129 (18-40)0.97 (0.96-0.99)0.05 (0.04-
0.08)

9.7 (7.4-12.7)0.90 (0.87-
0.93)

0.95 (0.93-
0.97)

40mtmDRi

.3332 (9-56)0.99 (0.98-1.00)0.03 (0.01-
0.06)

17.3 (7.5-
39.9)

0.94 (0.87-
0.98)

0.97 (0.94-
0.99)

15VTDRj

.1129 (11-46)0.99 (0.98-1.00)0.07 (0.04-
0.13)

38.5 (21.7-
68.4)

0.98 (0.96-
0.99)

0.93 (0.87-
0.96)

22PDRk

.06N/A0.97 (0.96-0.99)0.07 (0.05-
0.10)

24.3 (14.5-
38.5)

0.97 (0.94-
0.98)

0.96 (0.93-
0.98)

37VTDR and
PDR

aMachine learning data derived from each data set was viewed as individual data, and we used “data” as the unit for calculation.
bSen: sensitivity.
cValues in this column are as follows: mean (95% confidence interval).
dSpe: specificity.
eLR+: positive likelihood ratio.
fLR–: negative likelihood ratio.
gAUROC: area under the receiver operating characteristic.
hDR: diabetic retinopathy.
imtmDR: more-than-mild diabetic retinopathy.
jVTDR: vision-threatening diabetic retinopathy.
kPDR: proliferative diabetic retinopathy.
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Figure 2. SROC curves for diagnosis of any diabetic retinopathy on color fundus photographs. AUC: area under the curve; Sens: sensitivity; Spec:
specificity; SROC: summary receiver operating characteristics.

Figure 3. SROC curves for diagnosis of more-than-mild diabetic retinopathy on color fundus photographs. Sens: sensitivity; Spec: specificity; SROC:
summary receiver operating characteristics; AUC: area under the curve.
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Figure 4. SROC curves for diagnosis of vision-threatening diabetic retinopathy on color fundus photographs. AUC: area under the curve; Sens:
sensitivity; Spec: specificity; SROC: summary receiver operating characteristics.

Figure 5. SROC curves for diagnosis of proliferative diabetic retinopathy on color fundus photographs. AUC: area under the curve; Sens: sensitivity;
Spec: specificity; SROC: summary receiver operating characteristics.

Subgroup Analyses and Sensitivity Analysis
We performed subgroup analyses for mtmDR studies to explore
the possible heterogeneity in test accuracy (Table 2). The main
causes of heterogeneity included in the analysis were algorithm
type, mean age of subject populations, and validation set
selection. For this subgroup analysis, 23 studies were included,

with a total of 40 data obtained from different testing data sets.
Of the 23 studies, the 22 studies that applied NN algorithms
demonstrated high pooled performance (summary AUROC
0.98; 95% CI 0.96-0.99), sensitivity (sensitivity 0.95; 95% CI
0.93-0.97), and specificity (specificity 0.91; 95% CI 0.88-0.93).
The only study that used a different kind of ML algorithm
(instance learning) reported significantly inferior sensitivity
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(0.84) under preset specificity (0.50). Of the 60 studies, 19
(83%) tested the algorithm’s performance on data sets with
subject populations with a mean age greater than 50 years.
Pooled sensitivity of data from these studies was high
(sensitivity 0.95; 95% CI 0.93-0.97), and the pooled specificity
was moderate (specificity 0.89; 95% CI 0.85-0.92). Compared
with algorithms that used benchmark data sets for validation
(pooled sensitivity 0.92; 95% CI 0.87-0.95), the pooled

sensitivities of algorithms validated by clinical data sets
(sensitivity 0.97; 95% CI 0.95-0.98) and independent data sets
(sensitivity 0.96; 95% CI 0.93-0.97) were not inferior. The
results of pooled AUROCs validated by these 3 types of data
sets were similar, implying that robust performance of ML
algorithms can be generalized to images collected in clinical
practice.

Table 2. Subgroup analysis for diagnostic accuracy of mtmDR retinopathy on color fundus photographs.

Publication bias

(P value)
I2 statisticcAUROCg,cLR–f,cLR+e,cSped,cSenb,cDataa, nFeatures of sub-

group

.1129 (18, 40)0.97 (0.96, 0.99)0.05 (0.04,
0.08)

9.7 (7.4, 12.7)0.90 (0.87,
0.93)

0.95 (0.93,
0.97)

40Overall mtm-

DRh

.2233 (20, 46)0.97 (0.95, 0.98)0.05 (0.03,
0.08)

8.8 (6.4, 12.0)0.89 (0.85,
0.92)

0.95 (0.93,
0.97)

32Mean age> 50
years

.1430 (19, 41)0.98 (0.96, 0.99)0.05 (0.03,
0.07)

10.1 (7.7,
13.2)

0.91 (0.88,
0.93)

0.95 (0.93,
0.97)

38NNi algorithms

.2225 (10, 39)0.96 (0.94, 0.98)0.09 (0.05,
0.16)

9.0 (4.8, 16.6)0.90 (0.82,
0.94)

0.92 (0.87,
0.95)

15Benchmark test
sets

.0630 (15, 45)0.97 (0.96, 0.98)0.04 (0.02,
0.06)

10.0 (7.9,
12.6)

0.90 (0.88,
0.92)

0.97 (0.95,
0.98)

25Clinical

Test sets

.0829 (16, 42)0.98 (0.96, 0.99)0.05 (0.03,
0.07)

9.7 (7.2, 13.0)0.90 (0.87,
0.93)

0.96 (0.93,
0.97)

31External valida-
tion

aMachine learning data derived from each data set was viewed as individual data, and we used “data” as the unit for calculation.
bSen: sensitivity.
cValues in this column are as follows: mean (95% confidence interval).
dSpe: specificity.
eLR+: positive likelihood ratio.
fLR–: negative likelihood ratio.
gAUROC: area under the receiver operating characteristic.
hmtmDR: more-than-mild diabetic retinopathy.
iNN: neural network.

Publication Bias
The test for publication bias was generally not significant in
different categories of DR (Deeks test P=.01; Multimedia
Appendix 8), except for any DR. Trim-and-fill analysis showed
the diagnostic OR remained insignificant (OR 0.50, 95% CI
0.25-1.01) after hypothetical unpublished data were included
for analysis (Multimedia Appendix 9).

Discussion

Principal Results and Comparison With Prior Work
This systematic review synthesizes the available evidence and
compares the diagnostic accuracy of ML algorithms for the
detection of DR based on color fundus photographs. The primary
meta-analysis included 60 studies with 445,175 interpretations.
Out of the 60 studies, 35 (58%) were validated by external
testing data sets that were completely independent of the training
data sets. Overall, ML demonstrated a robust performance in
detecting different DR categories, with a pooled sensitivity of
0.93 to 0.97 and a pooled specificity of 0.90 to 0.98. The pooled
sensitivity compares favorably to reported sensitivities of 73%

[75], 34% [76], and 33% [77] achieved by board-certified
ophthalmologists performing indirect ophthalmoscopy and to
reported sensitivities of 92% [78] and 89% [79] achieved by
ophthalmologists interpreting digital fundus photographs. Our
analysis suggests that the performance of ML algorithms in
detecting DR based on color fundus photographs is likely to be
on par with human clinicians and supports a previous study that
compared humans head to head with ML. Rajalakshmi et al
[37] compared the performance of an AI DR screening software
(EyeArt) on smartphone-based fundus photographs of 296
patients to the performance of human graders who evaluated
the same data set. The EyeArt achieved a high sensitivity of
95.8% for any retinopathy and 99.1% for VTDR, both of which
were on par with human graders. Our pooled data suggest that
ML techniques are more sensitive than specific in DR detection.
It is unclear whether this is a reflection of the limitations of ML
techniques for this clinical purpose or whether it is by design.
It is possible that model developers of these studies chose
optimal statistical thresholds that favored sensitivity over
specificity. Regardless, the lower specificity should not pose a
major issue, as false negatives are much more problematic than
are false positives in the context of disease screening.
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Furthermore, the major causes of false positives in retinal image
interpretation, including inadequate image quality and artifacts
[55], are modifiable with future improvement in image quality
control.

To further facilitate direct clinical interpretations, we used Fagan
nomograms to determine whether a patient with a positive or
negative finding by ML actually has that particular finding as
per the gold standard. For any DR, in a population with a DR
prevalence of 36%, a positive likelihood ratio of 12.4 translates
into a posttest probability of 87%. In other words, approximately
9 out of 10 patients with a positive ML diagnosis of DR can be
expected to have DR as per the gold standard. The diagnostic
value for ML to rule out DR performed as well as its rule-in
value. In the same population, a negative ML diagnosis
translates into a 4% posttest probability of any DR (negative
likelihood ratio 0.07) and only a 1% posttest probability of
mtmDR (negative likelihood ratio 0.05). These numbers again
suggest that ML is extremely sensitive in detecting overall DR
and mtmDR based on color fundus photographs and that the
rate of false negatives are low.

We performed an in-depth analysis of studies that involved the
detection of mtmDR, as Abramoff et al’s [15] pivotal trial
involved the detection of mtmDR and led to the FDA’s approval
of the first fully automated ML system. Among the 16 mtmDR
studies conducted by other research teams that were also
externally validated, 14 showed performance superior to the
preset end points (sensitivity >85%; specificity > 82.5%) used
in Abramoff et al’s trial. Although only 5 out of these studies
were prospectively evaluated in a real-world setting as the
Abramoff algorithm was, this suggests that Abramoff et al’s
trial was no accident and that ML algorithms in general are
likely capable of producing clinical grade detections of mtmDR
based on color fundus photographs. In addition, no statistically
significant difference in pooled AUROC between studies
validated by benchmark databases and studies validated by
clinical databases was identified within this group.

To the best of our knowledge, previous meta-reviews on DR
screening have focused on the performance of DL algorithms
alone [80,81]. DL is only a subtype of ML, and other ML
techniques, such as SVM and RF, can be used to detect DR as
well. Therefore, our meta-analysis was more comprehensive
than these previous studies, as it included all ML studies,
including DL studies, published through 2020. In addition, the
review by Nielsen et al [80] did not conduct pooled analysis on
the results of past studies, while our study did. The meta-analysis
by Islam et al [81] focused mainly on detection of referable DR,
while our study was broader and more fine grained, as it
evaluated the ability of ML to detect different categories of DR,
including any DR, mtmDR (referrable DR), VTDR, and PDR.
These analyses are clinically meaningful, as different categories
of DR require different management strategies. For example,
while patients with moderate nonproliferative DR (a subset
within referrable DR) should be further evaluated by
ophthalmologists at some point, patients with VTDR require
immediate referrals to retinal specialists.

Use and Predominance of NN Algorithms
NN algorithms, especially deep convolutional NN algorithms,
were generally recognized as the best ML technique for
automated medical image analysis. NN algorithms were also
the most-used technique in diagnosing DR of all categories in
our study, being used in 37 of the 60 (62%) studies. As for the
23 studies evaluating mtmDR (Table 2), NN algorithms were
used in 22 studies and contributed to the high pooled AUROC
of 0.98 (95% CI 0.96-0.99). In addition, we ranked the
performance of the included studies by sensitivity, specificity,
and quality. The top-5 performing, high-quality (based on
QUADUS-2 and study design) studies are listed in Multimedia
Appendix 10, and 4 out of the 5 studies used NN algorithms.
This result confirms that NN is the cutting-edge ML technique
for medical image classification, at least in the context of DR
detection.

Limitations
Our study was based on a rigorous literature search, and a
validated appraisal tool was used to determine the risk of bias
of included studies. Several limitations should be considered,
however. First, of the 60 studies included for final analysis,
only 35 applied true external validation. For those studies
without external validation, the generalizability of their ML
algorithms was not adequately evaluated, and thus their reported
performance should be interpreted with caution. Second, without
sufficient details, we were unable to conduct subgroup analysis
on populations with available key factors of DR that could
influence the clinical practicability of the diagnostic tool. Bias
could have been introduced by poor reporting of patient
characteristics of the included studies. Finally, except for
Abramoff et al’s trial [15] and 5 other prospectively conducted
studies [48,52,55,60,66], all other studies on ML-based DR
diagnosis were validated by retrospective data. Due to spectrum
bias, an overestimation of ML’s performance in a real-world
setting is possible and should be considered.

Conclusions
ML algorithms for diagnosing DR based on color fundus
photographs have shown high diagnostic accuracy for different
categories of DR. Specifically, the performances of ML
algorithms in detecting mtmDR, the widely accepted threshold
for clinically relevant DR, compare favorably to those of clinical
examinations by ophthalmologists and to those of expert grading
of digital fundus photographs. To the best of our knowledge,
this is the first meta-analysis in the published literature that
quantitatively assessed the performance of ML algorithms for
a specific medical image classification task. As evidence-based
medicine expands from therapy to diagnosis, the information
from this systematic review may provide important evidence
in the determination of the proper and efficacious use of ML
algorithms in the diagnosis or screening of DR and may serve
as a framework for similar analyses of other medical conditions
conducted in the future. However, our meta-analysis also
showed that a significant portion of the published studies had
methodological flaws, such as the lack of external validation
and presence of spectrum bias. Therefore, more rigorous
prospective studies would be helpful in establishing the true
efficacy of these algorithms in real-life clinical care.
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