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Abstract

Background: Machine learning techniques are increasingly being applied in health research. It is not clear how useful these
approaches are for modeling continuous outcomes. Child quality of life is associated with parental socioeconomic status and
physical activity and may be associated with aerobic fitness and strength. It is unclear whether diet or academic performance is
associated with quality of life.

Objective: The purpose of this study was to compare the predictive performance of machine learning techniques with that of
linear regression in examining the extent to which continuous outcomes (physical activity, aerobic fitness, muscular strength,
diet, and parental education) are predictive of academic performance and quality of life and whether academic performance and
quality of life are associated.

Methods: We modeled data from children attending 9 schools in a quasi-experimental study. We split data randomly into
training and validation sets. Curvilinear, nonlinear, and heteroscedastic variables were simulated to examine the performance of
machine learning techniques compared to that of linear models, with and without imputation.

Results: We included data for 1711 children. Regression models explained 24% of academic performance variance in the real
complete-case validation set, and up to 15% in quality of life. While machine learning techniques explained high proportions of
variance in training sets, in validation, machine learning techniques explained approximately 0% of academic performance and
3% to 8% of quality of life. With imputation, machine learning techniques improved to 15% for academic performance. Machine
learning outperformed regression for simulated nonlinear and heteroscedastic variables. The best predictors of academic performance
in adjusted models were the child’s mother having a master-level education (P<.001; β=1.98, 95% CI 0.25 to 3.71), increased
television and computer use (P=.03; β=1.19, 95% CI 0.25 to 3.71), and dichotomized self-reported exercise (P=.001; β=2.47,
95% CI 1.08 to 3.87). For quality of life, self-reported exercise (P<.001; β=1.09, 95% CI 0.53 to 1.66) and increased television
and computer use (P=.002; β=−0.95, 95% CI −1.55 to −0.36) were the best predictors. Adjusted academic performance was
associated with quality of life (P=.02; β=0.12, 95% CI 0.02 to 0.22).

Conclusions: Linear regression was less prone to overfitting and outperformed commonly used machine learning techniques.
Imputation improved the performance of machine learning, but not sufficiently to outperform regression. Machine learning
techniques outperformed linear regression for modeling nonlinear and heteroscedastic relationships and may be of use in such
cases. Regression with splines performed almost as well in nonlinear modeling. Lifestyle variables, including physical exercise,
television and computer use, and parental education are predictive of academic performance or quality of life. Academic performance
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is associated with quality of life after adjusting for lifestyle variables and may offer another promising intervention target to
improve quality of life in children.

(J Med Internet Res 2021;23(7):e22021) doi: 10.2196/22021
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Introduction

In trials and quasi-experimental designs, reported sample sizes
range from less than 100 to several thousand [1]. Linear
regression approaches are widely used for modeling continuous
outcome data in such studies [2]. Processor advancements, data
abundance, and routine data collection have cultivated a general
rise in popularity of artificial intelligence or machine learning
techniques. In contrast to regression, the use of machine learning
techniques requires making fewer assumptions about data
structure [3]. Machine learning techniques have been used
extensively in areas such as biomedicine and, to a lesser extent,
in areas such as chronic disease, pain, psychology, and
sociology, where data have not typically been available in such
abundance [4-6]. Machine learning techniques have yielded
useful health classification models [7,8]. Numerous comparisons
exist between machine learning techniques and traditional
logistic or multinomial logit regression, demonstrating that
approaches can yield similar performance and highlighting a
risk of overfitting in machine learning techniques [9]. However,
few comparisons exist between machine learning techniques
and linear regression for continuous outcomes in health data
sets, and where such comparisons have been made, sample sizes
have been small [10,11].

Quality of life is an important health outcome in trials [2,12].
Child quality of life is associated with parental socioeconomic
status and activity levels [13-16]. Diet is associated with child
mental health, but the nature of the relationship between diet
and child quality of life is less clear [17,18]. It has been
suggested that aerobic fitness and muscular strength are
positively associated with child quality of life [13,19]. The
extent to which academic performance and quality of life are
associated is also unclear. Known predictors of academic
performance include parental socioeconomic status, child IQ,
and activity levels, and there is some evidence of association
with diet [20-22]. Thus, any relationship between quality of life
and academic performance may be confounded by common
associations with socioeconomic status, activity, and diet. Our
aims were to examine the performance of linear regression and
common machine learning techniques; the extent to which
lifestyle variables (including physical activity, aerobic fitness,
muscular strength, diet) and parental education are predictive
of academic performance and quality of life; and the association
between academic performance and quality of life, after
adjusting for confounding variables, using a relatively large
data set with continuous health outcomes.

Methods

Data Set
We used data from fifth-year students attending 9 schools in
Norway between 2015 and 2019, within the Health Oriented
Pedagogical Project (HOPP), which is an ongoing
quasi-experimental study (ClinicalTrials.gov; NCT02495714)
in which data up to 2019 were captured [23]. Schools were
allocated to receive intervention (n=7) or usual curriculum (n=2).
In intervention schools, child activity was increased by 225
minutes per week and an activity-based learning component
(emphasizing mathematics and language studies, including
English) was undertaken during the physical activity [23]. Both
parent and child quality of life was measured using the
Norwegian version of the Inventory of Life Quality [24]. The
Norwegian Inventory of Life Quality has good internal
consistency (normative 11- to 12-year-old children: Cronbach
α=.82; parents: Cronbach α=.80) and good test–retest reliability
in Norwegian children (normative 11- to 14-year-old children:
intraclass correlation coefficient 0.86) [25]. In parents,
test–retest has been reported as satisfactory, although we found
no reports of a published intraclass correlation coefficient [25].
The Inventory of Life Quality spans domains of perceived school
performance, family relations, peer relations, autonomy in play,
physical health, mental health, and global assessment of
well-being and uses a measurement scale of 0 to 100, where
higher scores indicate greater quality of life. Academic
performance was measured using the Norwegian Directorate
for Education and Training’s compulsory National Academic
Tests for fifth year students. We had access to reading,
mathematics, and English test results; each academic subject
was measured on a quasi-continuous scale (ranging from 0 to
100). Because we were interested in general academic
performance, we used the average of these tests [26].

Physical activity level (defined by movement counts per minute:
sedentary 0-99, light 100-1999, moderate 2000-4999, and hard
or vigorous ≥5000 [13], while a monitor was worn between 8
hours and 6 days), percentage of time spent at each activity
level, and average moderate-to-vigorous physical activity level
(the sum of the minutes spent in moderate-to-vigorous activity
divided by the number of valid monitored days) [27]; weight;
height; blood pressure; waist circumference; muscle mass;
percentage body fat; hand strength; aerobic fitness (Andersen
intermittent running test [28]); executive functions (Stroop test
[29,30]); parental education (university education or not; masters
level or above or not); and lifestyle (self-reported diet, physical
activity, and health questions from the Ungkost-2000
questionnaire [31]) data were included as predictor variables.
Where there were missing observations in year 5 Ungkost
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variables, we carried forward observations from the same pupils
in year 4.

Modeling Approaches
We split the data set randomly into training (70%) and validation
(30%) sets in order to train models and subsequently evaluate
performance. We expected missing data (approximately 20%
overall, with few variables >50%). Full imputation may often
be performed with machine learning techniques regardless of
the extent of missing data or whether or not data are missing at
random. We performed a sensitivity analysis using single-mean
imputation for continuous predictor variables and mode for
nonbinary or categorical predictors (stratified by school) under
the assumption that observations were missing at random. We
tested this assumption for variables in final models by fitting a
dummy variable for variable missingness, examining effect on
outcome using 2-tailed independent t tests. In addition, we
simulated variables with no missing data. We first examined
strengths and limitations of different approaches, modeling
academic performance with worked examples, and then modeled
child quality of life.

Regression Modeling
We took a pragmatic approach to regression modeling that we
judged to approximate best practice. In cases of high
between-predictor correlations (ρ>0.75), we selected 1 variable
for modeling. In the absence of strong clinical or theoretical
indications, we chose the variable that explained the most
variance. To enable comparisons to regression approaches in
which individuals are clustered by site, we fitted linear mixed
models with a random intercept by school. We also built
nonhierarchical models, without this random effect, to compare

adjusted R2 like-for-like with machine learning techniques (in
which clustering was not nominated). To facilitate comparison
of residual mean square error (RMSE), we standardized
variables by subtracting the mean and dividing by the standard
deviation, which is required by machine learning techniques.
For curvilinear relationships, we explored fitting polynomial
terms. In the case of truly nonlinear relationships—variables
that are not well modeled with a single linear predictor
(notwithstanding polynomial terms)—we fitted splines (ie,
piecewise fitting of models) [32].

The diet and lifestyle variables from the Ungkost-2000
questionnaire have multiple quasi-continuous responses (eg,
for sugared soda consumption, response options ranged from
‘Never/rarely’ and increased incrementally over 7-levels to a
maximum that indicated >7 glasses per day). Where responses
were normally distributed, we treated the variables as
quasi-continuous. If distributions did not satisfy normality
criteria, we dichotomized variables using a cut-point [33].
Variables with significant crude effects were considered for an
adjusted model. We took a manual approach to model building,
using a combination of the lowest Akaike Information Criterion
and variables that we judged to be clinically or theoretically
useful for outcome prediction [34]. When modeling academic
performance, in order to facilitate performance comparisons
with partly automated machine learning techniques, we did not
favor modifiable exposures, but instead, favored those we judged
would explain the most variance. For quality of life, we built 2
models: (1) optimized for prediction and (2) based on modifiable
exposures. Models for sensitivity analyses with imputed data
were built independently.

Machine Learning Techniques
We evaluated the performance of 4 machine learning techniques
(Table 1) [35,36]. We selected machine learning techniques that
were able to be used with continuous outcome measures (and
not only binary or categorical), appear commonly in health
research literature, and we judged health researchers would find
comparisons useful. It is beyond the scope of this paper to
explain each technique in detail; however, overviews are
provided in Table 1.

Variables that it did not make sense to include were removed
(eg, age, since participants were from the same school year).
We set each approach to start with a null model and successively
added variables that provided the best improvement, measured
by RMSE in cross-validation [35]. We only selected tuning
characteristics, such as the optimum value of k in k-nearest
neighbor models, or optimum decay and threshold activation
levels in neural network models, after graphical assessment.
For machine learning techniques, we did not dichotomize
nonnormal diet and lifestyle variables, since machine learning
techniques are not sensitive to normality.

Table 1. Machine learning techniques that were evaluated in this study.

DescriptionAlgorithm

A classification technique that assigns class or predicts a continuous value based on the classes or
values of k nearest neighbors.

k-Nearest neighbors

A technique in which artificial neuron cores are connected with n input channels, inputs are weighted
and summed, and the output (if above an activation threshold) feeds into another neuron in a deeper
hidden layer. This deeper neuron receives multiple inputs from each neuron in the layer above, and
communicates output with either another hidden layer, or an output layer. Synaptic weights in this
structure are determined by back propagation, based on error, until convergence is reached.

Neural network

An iteratively grown set of decision trees, where each tree outputs outcome means, with branches split
by variable characteristics, and where each tree is formed from randomly bootstrapping data, with av-
erages taken from all trees.

Random forest

A technique that minimizes error to individualize a hyperplane.Support vector machine
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Simulations
We simulated data to explore types of relationship that were
not present within our real data, but which we reasoned, may
perform better with either regression or machine learning
techniques. We simulated, without missing data, (1) a variable
with a quadratic relationship with academic performance; (2)
a variable with a true nonlinear relationship with academic
performance; and (3) a variable with marked heteroscedasticity
(ie, changing variance) with respect to academic performance
(we acknowledge this is a technical violation of regression;

therefore, we recorded R2 and RMSE rather than standard error
terms). We permitted slight heteroscedasticities to remain in
the first 2 simulations to approximate limits of real-life
pragmatic decisions. We expected curvilinear simulation to
favor regression, since we reasoned it would be modeled well
with polynomial terms; nonlinear simulation to favor machine
learning techniques, or linear regression with splines, since truly
nonlinear relationships are not conducive to modeling by a
single linear predictor; and heteroscedastic simulation to favor
machine learning techniques, since modeling is not derived
using minimum squared error, which in the presence of
heteroscedasticity would no longer be the best estimator.

Performance Comparisons and Using Worked
Examples for Modeling Quality of Life

To compare performance, we calculated RMSE and R2 using
predicted observations from training sets and observed
observations from validation sets (Multimedia Appendix 1).
Informed by findings from modeling academic performance,
we judged the most appropriate modeling technique for quality
of life, and to confirm that we had made the correct choice, we
compared the performance of the approaches that we selected
with those that we did not select.

To aid interpretation of adjusted regression model outputs for
those unfamiliar with the outcome scales, we calculated Cohen
d for our judgements of clinically intuitive predictor magnitudes,

by outcome variable; where d may be interpreted by thresholds
of small (0.2), medium (0.5), and large (0.8) effects [37].

All analyses were performed using Stata (version 15.1;
StataCorp LLC) and R (version 3.6; R Foundation for Statistical
Computing). The HOPP project received approval from the
Norwegian Regional Ethical Committee (2014/2064/REK
south-east), and parents of all children provided written informed
consent for their child’s participation.

Results

Overview
Data comprised outcomes from 1711 year 5 (11- and
12-year-old) children (Tables S1 and S2 in Multimedia
Appendix 1), of whom 1368 (80.0%) had completed National
Test outcomes and 1560 (91.6%) had completed quality of life
outcomes. Missing data ranged from 4% to 81%, by variable.
Our training and validation data sets had data from 1205 and
506 children, respectively.

Academic Performance and Simulated Data
Academic performance was approximately normally distributed
(Figure 1). From crudely modeled academic performance
variables (Table S3 in Multimedia Appendix 1), we selected 7
variables for modeling (Table 2). We noted that after adjustment,
dietary variables either explained too little variance or had too
few observations for us to select for inclusion. Machine learning
techniques did retain some dietary variables (Table S4 in
Multimedia Appendix 1).

In real complete-case data, nonhierarchical and mixed models
explained approximately 30% of the variance in the training set
and 22% to 24% of the variance in the validation set (Table 3).
Model residuals were normally distributed. Machine learning
models explained between 13% and 63% of the variance in the
training set and approximately 0% of the variance in validation
(Table 3).
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Figure 1. Histogram of average national test scores.

Table 2. Adjusted effects in selected mixed regression model for predicting academic performance.

P valuenβ (95% CI)Variable

<.001384−0.0037 (−0.0047 to −0.0027)Stroop test congruent (milliseconds)

.063841.59 (−0.06 to 3.25)Effect of master-level education for father

<.0013841.98 (0.25 to 3.71)Effect of master-level education for mother

.0013840.21 (0.08 to 0.34)Average hand strength (kilograms)

.0013842.47 (1.08 to 3.87)Hours of physical activity (self-reported; dichotomized)

.043841.82 (0.07 to 3.57)Effect of mother having higher education

.033841.19 (0.25 to 3.71)Hours of television per week (self-reported; 7-level quasi-continuous)
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Table 3. Performance indicators in real data and real data augmented with simulated data (quadratic, nonlinear, or heteroscedastic) for academic
performance.

Validation (n=406)Training (n=962)Model

nR2 valuebRMSEnR2 valuebRMSEa

1630.220.853840.300.81Nonhierarchical linear model

1630.830.403840.780.45Quadratic

1630.700.533840.680.55Nonlinear

1630.610.613840.700.53Heteroscedastic

1630.240.863840.300.83Mixed model

1630.840.393840.790.46Quadratic

1630.720.533840.680.56Nonlinear

1630.620.623840.700.54Heteroscedastic

——————cRegression with splines

1630.840.393840.820.41Nonlinear

63−0.020.951210.620.61Random forest

630.750.511210.910.32Quadratic

630.640.571210.890.36Nonlinear

630.530.671210.890.34Heteroscedastic

58−0.050.891160.630.55Support vector machine

580.620.531160.870.33Quadratic

580.180.771160.770.46Nonlinear

580.520.621160.850.35Heteroscedastic

66−0.011.021330.130.90k-Nearest neighbors

660.750.481330.840.37Quadratic

660.750.481330.810.41Nonlinear

660.600.611330.790.43Heteroscedastic

66−0.021.031240.350.73Neural network

660.850.401240.820.38Quadratic

660.790.461240.790.41Nonlinear

660.530.701240.770.43Heteroscedastic

aRMSE: residual mean square error.
bUnlike unadjusted R2, it is possible for adjusted R2 values to be negative.
cNot performed.

Figure 2 shows scatter plots of academic performance and
simulated variables. All had strong effects in regression models
when modeled as quadratic, quadratic, and linear. Adding a
simulated quadratic variable to crude regression models
explained approximately 79% of the variance in the training set
and 82% to 83% of the variance in the validation (Table 4).
Corresponding machine learning models explained 80% to 94%
of the variance in the training set and 78% to 83% of the
variance in the validation set, with support vector machine and
neural network performing best. The nonlinear simulation was
the only one with a variable that had a nonlinear relationship
with academic performance, and we fitted 4 splines. Regression
with splines explained 83% of the variance in the training set
and 85% of the variance in the validation set. Corresponding

machine learning models explained 81% to 94% of variance in
the training set and 81% to 86% of the variance in the validation
set, with neural network performing best. Adding a simulated
heteroscedastic variable to crude regression models explained
64% of variance in the training set and 62% of the variance in
the validation set. Corresponding machine learning models
explained 68% to 90% of the variance in the training set and
58% to 66% of the variance in the validation set, with neural
network and support vector machine performing best.

Regression performed best for modeling real data augmented
with simulations (Table 3). Regression with splines performed
best when adding the nonlinear simulated variable. Table 5
shows machine learning performance improved after imputation;
however, regression models outperformed machine learning.
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Regression models built using imputed data included 13
variables (Multimedia Appendix 1). Variables selected by
machine learning techniques are shown in Table S4 in
Multimedia Appendix 1. The missing at random assumption

was widely acceptable, with 3 out of 35 variables selected for
modeling (master’s education or above for mother, master’s
education or above for father, and parent quality of life score)
having an effect on academic performance.

Figure 2. Scatter plots of average national test score and simulated (A) curvilinear, (B) nonlinear, and (C) heteroscedastic variables.
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Table 4. Crude performance of simulated variables.

Validation (n=406)Training (n=962)Model

nR2 valueRMSEanR2 valueRMSEa

Nonhierarchical linear model

4060.820.439620.790.45Quadratic

4060.680.589620.680.56Nonlinear

4060.620.639620.640.59Heteroscedastic

Mixed model

4060.830.439620.790.45Quadratic

4060.680.589620.680.57Nonlinear

4060.620.639620.640.59Heteroscedastic

Regression with splines

4060.850.399620.830.41Nonlinear

Random forest

4060.780.499620.940.25Quadratic

4060.810.459620.940.24Nonlinear

4060.580.669620.900.32Heteroscedastic

Support vector machine

4060.830.429620.800.44Quadratic

4060.820.439620.810.44Nonlinear

4060.660.619620.680.57Heteroscedastic

k-Nearest neighbors

4060.810.459620.840.40Quadratic

4060.820.439620.880.34Nonlinear

4060.600.659620.760.49Heteroscedastic

Neural network

4060.830.429620.800.44Quadratic

4060.860.389620.840.40Nonlinear

4060.660.599620.680.56Heteroscedastic

aRMSE: residual mean square error.

Table 5. Performance indicators for academic performance in sensitivity analyses (single-mean imputation).

Validation (n=406)Training (n=962)Model

nR2 valueRMSEanR2 valueRMSEa

4060.150.929620.200.88Nonhierarchical linear
model

4060.180.929620.210.89Mixed model

4060.140.949620.480.76Random forest

4060.120.959620.320.82Support vector machine

4060.120.869620.200.89k-Nearest neighbors

4060.090.979620.180.90Neural network

aRMSE: residual mean square error.
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Quality of Life
Despite a ceiling effect, we judged the distribution of
child-reported quality of life (Figure 3) to be within limits of
tolerance for untransformed parametric modeling (and we
confirmed there was a normal distribution of residuals
postmodeling). Since visual inspection revealed no nonlinear
relationships, and only very slight heteroscedasticity at times,
we judged regression modeling would perform best. We
dichotomized 1 diet variable (fish oil consumption) based on
crude effects (Table S5 in Multimedia Appendix 1). We selected
a parsimonious 3-variable model (Regression model 1) on the

basis of raw performance (Table S6 in Multimedia Appendix
1) and a second 4-predictor model (Regression model 2) using
only variables with a high number of observations and
representing modifiable risk factors (Table 6). When added,
academic performance had a significant association with quality
of life (P=.02), with an adjusted effect of 0.12 (95% CI 0.02 to
0.22). We did not include academic performance in our
comparative model because it reduced observations and led to

lower training R2 values. Two of the machine learning
techniques retained academic performance and several diet
variables in addition to fish oil (Table S4 in Multimedia
Appendix 1).

Figure 3. Histogram of child-reported quality of life scores.

Table 6. Adjusted effects of with modifiable risk factors in mixed regression model for predicting quality of life.

P valuenβ (95% CI)Variable

<.0016761.09 (0.53 to 1.66)Frequency of physical activity (7-level quasi-continuous)

.002676−0.95 (−1.55 to −0.36)Hours of television per week (self-reported; 7-level quasi-continuous)

.0086760.02 (0.002 to 0.03)Hard exercise (minutes)

.0486760.29 (0.002 to 0.59)Percentage of time in moderate exercise

Our parsimonious 3-variable mixed model explained 12% of
variance in the training set and 15% of the variance in the
validation set. Machine learning techniques retained more
observations than the first regression model due to our selection
of the fish oil variable, which had fewer observations (Table

7). Our second 4-predictor model explained 8% of the variance
in the training set and 6% to 7% of the variance in the validation
set. This was outperformed by support vector machine; however,
our second regression model retained more observations and
had been limited by us to modifiable risk factors.
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Table 7. Performance indicators by modeling approach for quality of life.

Validation (n=453)Training (n=1107)Model

nR2 valueRMSEanR2 valueRMSEa

1110.130.852930.110.89Regression model 1

1110.150.852930.120.89Mixed model 1

2750.060.956760.080.91Regression model 2

2750.070.966760.080.91Mixed model 2

1900.030.894810.740.66Random forest

2080.080.975240.140.85Support vector machine

1170.080.972950.330.78k-Nearest neighbors

1230.070.993190.280.80Neural network

aRMSE: residual mean square error.

Table 8 shows the results from imputed sensitivity analyses.
Regression models included 8 variables (Multimedia Appendix
1). The variables selected by the machine learning techniques
are shown in Table S4 in Multimedia Appendix 1. The missing
at random assumption was mostly acceptable, with 5 out of the

17 variables selected for modeling (hard exercise, percentage
of time in moderate and light exercise, parent quality of life
score, and master’s education for father) having an effect on
quality of life.

Table 8. Performance indicators by modeling approach for quality of life in sensitivity analysis (single-mean imputation).

Validation (n=453)Training (n=1107)Model

nR2 valueRMSEanR2 valueRMSEa

453.130.931107.090.95Regression model

453.140.931107.090.95Mixed model

453.050.961107.590.80Random forest

453.070.961107.170.92Support vector machine

453.060.961107.120.94k-Nearest neighbors

453.050.971107.090.96Neural network

aRMSE: residual mean square error.

Discussion

Principal Results and Comparisons to Existing
Research
In modeling continuous health outcomes in a data set containing
some missing data, linear regression was less prone to
overfitting, retained more observations, and outperformed
common machine learning techniques. In validation, regression
explained approximately one-quarter of the variance in academic
performance and up to 15% of the variance in quality of life,
using exercise, lifestyle, and parental education quality of life
data. Imputation improved machine learning performance, but
improvements were not sufficient to outperform regression.
Machine learning techniques outperformed regression for
modeling nonlinear and heteroscedastic simulations and may
be of use when there are no missing data or imputation is
plausible, and where complex nonlinearity or heteroscedasticity
exists. However, regression with splines performed almost as
well for nonlinear modeling.

Multiple comparisons exist between machine learning
techniques and logistic regression, multiclass, and survival
analysis models, which taken together suggest similar results
and an increased risk of overfitting with machine learning
techniques [9,38-44]. However, few comparisons exist between
machine learning techniques and linear regression for continuous
health outcome measures. Hoffman et al [10] compared linear
regression and support vector machine to predict Oswestry

Disability Index score after surgery and found an adjusted R2

of 0.42 for linear regression and 0.93 from support vector

machine in a sample of 20 individuals. We observed that R2 for
support vector machine in our academic performance training
set was approximately twice those for linear regression.
However, the same relationship is not borne out in validation,

suggesting the high R2 value in the primary data is an artefact
of overfitting. Laitinen and Räsänen [45] compared a regression
equation with neural network in a sample of 125 patients with
congenital heart disease and found that neural network
performed best. However, the neural network used study data
alone, and thus, was likely subject to overfitting, while the
regression equation was externally validated. Hayward et al
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[11], in 91 patients with pancreatic cancer, compared linear
regression to several machine learning techniques, including
decision trees, k-nearest neighbors, and neural network across
a range of outcomes. They reported machine learning techniques
and regression were comparable in 45 (35%) comparisons,
machine learning techniques were superior in 33 (25%)
comparisons, and machine learning techniques were inferior in
52 (40%) comparisons [11]. Our study uses more data than were
used in prior work and more clearly demonstrates the superiority
of linear regression for modeling continuous outcomes.

We found very strong evidence that reported physical activity,
time recorded in vigorous exercise, and percentage of time spent
in moderate exercise are positively associated with quality of
life as continuous health outcomes in typical circumstances
when adjusted for each of the other modeled variables.
Associations between socioeconomic status, increased physical
activity, and child quality of life are well established
[13-15,46-48]. It has been suggested that the association may
be explained via mechanisms involving affective response,
increased self-efficacy, and improved mood-regulating
neurotransmitter and endorphin release [14,49,50]. We found
strong evidence that television and computer use is inversely
proportional to quality of life. Increases of 1 use level (eg, going
from 0 to 2 hours use per day), 100 minutes of vigorous exercise,
or a 10% increase in exercise, are associated with small or
small-to-medium (Multimedia Appendix 1) effects on quality
of life. A systematic review [51] of physical activity and
sedentary behavior on child quality of life found consistent
evidence that watching television, using computers, or playing
video games for more than 2 hours per day was significantly
associated with lower child or adolescent quality of life. We
found very strong evidence that parental assessment of child
quality of life is associated with child quality of life assessment;
this has been noted previously [25]. We found some evidence
of association between academic performance and quality of
life after adjustment; a 20-unit increase academic performance
was associated with a small quality of life increase, and we are
aware of no comparative work.

We found very strong evidence that reported physical activity,
increased hand strength, mother having master’s education or
above, and decreased Stroop time, are associated with increases
in academic performance. We found some evidence that a
mother having university education and increases in television
and computer use, are associated with increased academic
performance. Reporting exercise that causes a sweat for at least
2 hours per week, 10 kg greater hand strength, a mother having
university or master’s education, increases of 1 television and
computer use level, or a decreased Stroop time of 1 second were
each associated with small or small-to-medium increases in
academic performance. Socioeconomic status variables have
been shown, in a meta-analysis [52] of 101,157 students, to be
positively correlated with academic performance (with medium
effect sizes), which is consistent with our findings. The role of
socioeconomic status (ie, including parental education) may be
explained by modified risk factors and health behaviors or
self-concept [47,53]. Several mechanisms underlying a link
between physical activity and academic performance have been
suggested, which are thought to involve maintenance and

facilitation of the plasticity of brain structures through altered
neurogenesis and angiogenesis, enhanced central nervous system
metabolism, and increased availability of growth factors [54-56].
An association between increasing physical activity and
academic performance was demonstrated in a 2014 systematic
review [57] of 215 studies. However, a 2019 systematic review
[54] of 58 interventional studies of physical activity on cognitive
performance, found only 10 out of 21 analyses (48%) in 5
high-quality studies demonstrated significant effects and found
that the evidence was inconclusive. Furthermore, Singh et al
[54] found only 15 of 25 analyses (60%) demonstrated academic
performance benefits; stratification led to observation of strong
evidence of a beneficial effect on math, but inconclusive
evidence for language performance. Our own findings of an
association between physical activity and general academic
performance, come from using a composite outcome of reading,
math, and English tests, and thus, future separate analyses may
be of additional value.

Diet may affect both quality of life and academic performance
via mechanisms related to the consumption of adequate
micronutrients [17,58]. An association between healthy diet
and the emotional functioning subscale of the Pediatric Quality
of Life Inventory was demonstrated in a prospective study [18]
of 3040 Australian adolescents (age 11 to 18 years). Our findings
suggest small crude effects of diet across quality of life domains
more generally. Decreased attendance, attention, and academic
performance have been reported in undernourished children
when compared to those reported in well-nourished children;
fruit and vegetables, fat, and iron intake have been highlighted
as having moderate effects in a study [58] of 5200 Canadian
school children. A study [20] of 4245 Australian school-aged
children (age 8-15 years) showed increased consumption of
evening meal vegetables, breakfast consumption, and fruit are
associated with higher spelling or writing scores, and increased
sugar beverages are associated with lower scores. In our study,
crude effects of increased sugared cordial consumption,
sugar-free cordial, and pizza were associated with decreased
academic performance generally but explained too little variance
for us to select for inclusion in an adjusted model.

Implications
The rising popularity of machine learning techniques is
understandable given the general abundance of data and a need
for fewer assumptions. Machine learning techniques may be
useful simply by virtue of the amount of data available.
However, in public health research and health services research,
data are less abundant and often missing. When modeling
continuous outcomes in such circumstances, machine learning
techniques are likely to perform worse unless marked nonlinear
or heteroscedastic relationships exist. We have shown that the
tendency to overfit that is often demonstrated in binary and
multiclass machine learning techniques is also a challenge when
modeling continuous outcomes. Furthermore, an innate inability
for parameter estimation hampers interpretation and may make
machine learning techniques generally less useful. At the time
of writing, machine learning techniques have made relatively
little impact in public health research on COVID-19 (with either
continuous or categorical outcomes) where there is a pressing
and immediate need for good modeling. We find this
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unsurprising—in most cases, public health data have normal
distributions, and marked nonlinearity is rare. In these cases,
traditional regression methods use the most efficient estimators
and will lead to better models.

Interventions aiming to improve activity levels in children may
have a positive effect on both child quality of life and academic
performance. The small association between academic
performance and quality of life could follow satisfaction of
achievement, although reversed causal direction, or residual
confounding is plausible. In addition to increasing physical
activity, new interventions to improve quality of life might
target improvements in academic performance. Television and
computer use is associated with decreases in quality of life but
improvements in academic performance and these factors should
be examined separately to clarify other promising intervention
targets.

Strengths, Limitations, and Recommendations for
Future Research
We provide like-for-like comparisons between machine learning
techniques and regression for modeling continuous health
outcomes, with larger sample size than those used in previous
research, and separate validation. Nevertheless, our work has
limitations. We used an average of reading, math, and English
tests as a proxy for academic performance. Not including
subjects such as science may impair construct coverage of
academic performance. Using single-mean imputation and last
observation carried forward (in missing Ungkost variables)
allowed us to avoid using multiple imputation (which is based
on regression approaches) for data used in machine learning
models (ie, to avoid mixing methods). However, multiple
imputation provides better coverage than single-mean
imputation, and last observation carried forward is known to
be problematic [59]. It has been highlighted that the assumption
of no change over (limited) time may hold in some contexts
and can be better than ignoring missingness altogether [60]. In
our case, we believed the assumption of no or limited change
would be better than ignoring missingness completely or mixing
methods when comparing regression approaches with machine
learning techniques. There is a potential limitation regarding
the validity and generalizability of results to 11- and 12-year-old
children in the case of greater than assumed unobserved changes
in missing Ungkost variables. With respect to single-mean
imputation, our results showed that the missing at random
assumption was not valid for some modeled variables. We
believe that the applied techniques have been kept robust to

imputation issues because results were in alignment with those
from complete-case analyses; however, results derived from
our imputed sensitivity analyses should be interpreted
cautiously. Generalization of results to other countries should
also be done with caution, since there may be baseline
differences in activity and culture among Norwegian children.
Finally, we focused on machine learning techniques that we
judged to be the most common and which we thought
researchers would find useful; we acknowledge that this is not
a comprehensive comparison of regression with all possible
machine learning techniques.

Future focus on comparisons to other machine learning
techniques, separate analysis of academic performance
components, and iteratively varying the size of the training set
to explore how training set size affects overfitting will provide
further useful knowledge. The Ungkost item on television and
computer use combines 2 activities. We found large positive
associations between the item and academic performance and
a small negative association with quality of life. We suspect the
positive associations may be grounded in computer use for
education, and the negative associations may be grounded in
uses for leisure. Separation of these exposures will provide
clarity. Some machine learning techniques retained diet variables
that we did not select for adjusted models. One strength of
machine learning techniques may be an ability to detect mild
and easily missed nonlinear relationships, which is worth further
exploration.

Conclusions
For modeling continuous health outcomes when some data are
missing, linear regression is less prone to overfitting and
outperforms common machine learning techniques. Imputation
improves the performance of machine learning techniques, but
improvements are not sufficient to outperform regression.
Machine learning techniques outperform regression in modeling
nonlinear and heteroscedastic relationships and may be of use
in cases where imputation is sensible or there are no or few
missing data. Otherwise regression is preferred. Regression
with splines performs almost as well in nonlinear modeling.
Lifestyle variables, including physical activity, television and
computer use, muscular strength, and parental education were
predictive of academic performance or quality of life explaining
up to 24% and 15% of the variance in these outcomes,
respectively. Targeting these areas in future interventions may
help improve child quality of life and academic performance.
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